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Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main
task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning
in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the
robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color
tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination
values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control
parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for
different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by
making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was

tested on different walking patterns with different subjects, and the results showed high recognition accuracy.

1. Introduction

At-home biomonitoring systems have become an important
solution in the medical field as an assistive technology for
the people who have difficulties leaving their houses, such
as elderly people or motor-function impaired persons (MIPs)
[1-8]. Benefits of these systems include more convenient and
comfortable ways of healthcare for patients and reduction in
the workload of the therapists [5-8].

At-home healthcare applications cover a wide range of
topics regarding physiological measurements or biomonitor-
ing applications. Biomonitoring research in at-home health

care emerged from the demand on improving the quality
of life (QoL) of the people, such as to measure the vital
signs, check their health over through the measurements,
identify abnormalities from long-term at-home observation,
and monitor rehabilitation assistance.

In this research, our concern is mostly focused on the
observation and analysis of motor function-related daily
activities of the people in need such as the elderly and the
motor-function impaired people. For this reason, tracking the
subject and detection of daily activities are crucial tasks to
be performed. The system should record data of continuous
walking patterns for further analysis by the experts or
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FIGURE 1: Required modules to implement an at-home biomonitoring mobile robot for the support of the elderly or MIPs.

computer-aided diagnosis systems. Therefore, in this study,
we put our primary concern on tracking of subjects and
detection of daily activities at-home with a mobile robot as
an assistive technology to support the people with motor-
function impairment.

There are several approaches for daily observation that
provide information about the activities that the subjects are
performing [9-16]: (i) wearable sensors that include a wide
range of different sensors such as accelerometers and (ii)
smart house systems that implement solutions with multiple
vision devices attached to certain fixed sites in a house. The
main advantages of wearable systems are that they provide
cheap and accurate solutions for activity recognition and
analysis. The complexity of these systems, regarding the
recognition algorithms and maintenance, is lower than other
solutions such as smart houses with multiple-camera systems.
However, the main disadvantage of wearable sensors is the
attention required by the users. Subjects can be bothered by
the fact that they have to wear many sensors and they have to
be careful to avoid damaging the sensors while doing daily
living things: sitting, eating, sleeping, and so forth. Quite
often, subjects have to put on and off and charge the batteries
of the sensors.

On the other hand, smart houses do not have these
disadvantages; daily activities can be tracked by systems that
include multiple observation devices such as motion tracking
systems, cmos/ccd cameras, and color and infrared cameras
such as Kinect [8, 10, 11, 17, 18]. For instance, Tamura et al. [7]
proposed an at-home biomonitoring system in which auto-
mated electrocardiogram (ECG) signals are measured and
observed in some of the arranged places at home, such as bed,
toilet, or bathroom, without using body surface electrodes.
Even if they provide reliable observation capabilities to detect
and analyze the daily activities performed by the subjects,
they also have some disadvantages. Due to the number of
observation devices, these systems are expensive and hard to
set up and maintain. Moreover, despite the large number of
sensory devices, it is still possible to have blind spots in indoor
environments that can prevent the monitoring.

As proposed in our previous works [5, 8, 19, 20], our
main idea is to use assistive robotics to support elderly or
motor-function impaired persons biomonitoring. Although
a mobile system brings more complexity to handle daily
observation tasks, a mobile robot solution includes several

advantages: (i) it is a cheaper smart system than smart
houses, (ii) it could make full use of the capability of sensors,
since the sensors could be brought to a position and an
angle optimal or suboptimal to observation, (iii) it avoids
the multiple vision modules by using a mobile monitoring
system, and (iv) it prevents the need of the subjects for
wearing any sensors [5, 8,19, 20] compared to wearable sensor
applications. These advantages make the mobile robot a good
candidate for assistive technologies. In addition, based on
the Robocare project, Cesta et al. [21] made a preliminary
experiment about the way that people evaluate the use of a
robot at home for different purposes such as surveillance,
service, or companion tasks [21, 22]. In most cases, the robot
and subjects had some interactions considering the tasks for
each scenario [21] such as accepting voice commands from
subjects and serving. In these experiments, with 40 elderly
subjects, activities that are usual to occur during the daily
living were investigated [21]. After making a questionnaire
to the experiment subjects, they gave a positive response [21]
and supported the idea of having mobile robotics applications
for at-home assistive tasks.

1.1 Background. Therefore, in our previous research [5, 8,19,
20], we presented an at-home biomonitoring mobile robot
project to improve the quality of life of motor-function
impaired persons (MIPs). The robot observes the subject and
recognizes the activity he is performing. It is also able to
provide analysis of walking pattern if the lower limb joint
trajectories were traceable [5, 8]. To achieve these tasks,
there are several modules that have to be developed. Figure 1
presents the scheme of these modules.

Until this moment of our current research, we have
focused on some of these modules. Due to the low resolution
image, high illumination changes and low texture details,
for our real time applications, and color-based trackers
supported by the depth data are the most suitable options.
So, we developed a visual tracking model in [20] using an
improved color tracking algorithm that takes advantage of
particle filter model, depth data, and bottom-up saliency map
[20]. Saliency maps are the visual attention computational
models inspired by the visual system [20]. The idea is
to identify attentive regions on the scene by reducing to
redundancy which improved visual tracking in [20] when
combined with the particle filter color tracker. Particle filter
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based color tracker is a robust tracker; however, there are
many parameters to consider; the motion of the robot should
be integrated to particle motion model to increase the visual
tracker performance, which is very difficult to implement
because of the indeterministic and uncertain behaviour of
the robot that depends on the subject position. For the robot
behaviour, in most of the cases, we have made experiments
using a reactive control model [5, 8, 19] for the robot move-
ment while tracking the subject of interest. However, without
having a global reference of robot and subject position, it is
very difficult to implement a robust mobile tracking system.
By knowing the global position, it is possible to have different
options for the movement of the robot using path planning
algorithms.

In addition, activity recognition regarding the MIP be-
haviour analysis and classification (see Figure 1) was accom-
plished by analyzing the features from the human body
contour. This was done by extracting height and width ratios
from the several body parts from the binary images of
extracted subject tracking regions, and then, Hidden Markov
model (HMM) [5, 8] was used to classify the current action by
observing the changes in the body structure by using the joint
angles of the lower limb [5, 8]. Moreover, normal walking
and impaired walking were differentiated by HMM-based
classification with high accuracy. However, the problem with
the features used in [5, 8] is that it is not robust when there is
partial occlusion of the lower limb part of the body. Lower
limb part of the body is crucial to discriminate between
walking and standing during the activity recognition process.
Also, this algorithm requires specific training models for
each subject separately, so it is hard to obtain good activity
detection results, especially for dynamic activities such as
walking, for several subjects by using only one trained model.

Due to the problems stated in the previous versions of our
work [5, 8, 19, 20] several improvements and experimental
analysis have been done for the robot behavior and subject
tracking.

(i) First of all, instead of using reactive control, robot
operating system (ROS) [23] was integrated to our
system as many works also take advantage of ROS
for the mobile robot applications [23-26]. The main
advantages of using ROS are the global mapping
and localization [23-26] functionalities that increase
the performance of the robot motion, provide more
flexibility to robot during subject tracking, and enable
the use of a more robust activity recognition approach
under occlusion cases.

(ii) Then, we have changed depth and saliency improved
particle filter color tracker with a new color tracking
approach presented in [27]. This approach mainly
changes the particle filter model with scale and ori-
entation adaptive mean shift tracker (SOAMST) [27]
since it also provides good tracking results even under
scale and orientation changes [27] with less parameter
adjustments. Also, depth integration [19, 20] is also
done for the SOAMST algorithm too to improve the
robustness of visual tracking.

1.2. Contribution. Despite several stated improvements on
our robot structure, the main contribution of this paper is
summarized in the following points.

(i) To be able to achieve robust robot tracking and activ-
ity recognition, visual tracking should be satisfactory
enough to find subject on the scene in changing envi-
ronmental conditions. For example, different light
conditions, which are also affected by the pose and
distance between subject and robot, can affect the
color information that can lead to possible false track-
ing. So, we have researched how illumination changes
affect the visual tracking, which is crucial in daily
at-home biomonitoring. By visual tracking analysis
with different illumination conditions, it is possible
to determine which lux (quantitative measurement
of the light conditions) values provide better or
worse tracking results. Then, robot tracking can be
improved with the consideration of these constraints,
and also, as a future work, the robot would be able to
switch between depth-based and color-based tracking
to increase the visual tracking performance.

(ii) There are many works on the analysis of navigation
and path planning for mobile robot and how the
environmental layout affects the behaviour during
navigation [28-30] without the consideration of con-
tinuous subject tracking. But there are not stud-
ies focused on analyzing the robot motion related
parameters for robot based subject tracking regarding
the visual tracking constraints such as illumination
and distance, environmental settings, smoothness of
the tracking path of the robot, and subject safety.
Therefore, in this work, several experiments were
done to analyze and find the suitable parameters for
our indoor biomonitoring robot task.

(iii) With the integration of localization and mapping
algorithms, we proposed a new localization assisted
activity recognition algorithm, which suggests a fast
model and is robust to occlusion cases where the
lower limb body is not visible. A state machine-based
activity recognition approach is used, where global
location, the height, and ratio of the upper body part
within a defined region of the subject are used. There
is no need of using training data because it utilizes
person specific heuristics to classify the activity of the
subject by considering activity state changes.

The paper continues as follows. Section 2 describes the
robot platform including both hardware and software com-
ponents considering ROS and its integration to system,
visual and robot based tracking, and activity recognition.
Section 3 gives the visual tracking tests and the details for
illumination change based experiments on color based visual
tracking. Then, Section 4 shows the experimental analysis
with robot behaviour with consideration of illumination
constraints obtained by visual tracking analysis with different
lighting conditions during subject tracking with different
parameters for robot path planning. Section 5 demonstrates
the experimental results on the proposed activity recognition
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algorithm. Finally, discussion and conclusion remarks are
given.

2. System Architecture

The system structure is given in Figure 2, where all the com-
ponents, hardware and software, of the system are presented.
The hardware is composed of the robot platform and its
components. The software part includes the ROS [23, 25] and
algorithms in MATLAB codes to perform a given task such
as visual tracking, robot tracking, and activity recognition.

2.1. System Hardware. The robot hardware (Figure3) is
assembled base on Pioneer P3-DX, equipped with a laser
range finder (LRF) and a Kinect sensor on a rotating platform
(Figure 4). The LRF is used for mapping, localization, and
obstacle avoidance. The Kinect is used for subject detection
and it is mounted on a rotating platform in order to extend
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the detection range so that the visual tracking can be achieved
even if there is the difficulty for the robot to change the
pose.

2.2. System Software. The system uses ROS for robot behavior
control and MATLAB for an improved visual subject tracker,
activity recognition, and robot command control.

2.3. ROS Integration into the System. ROS is used for map-
ping, localization, and robot movement (to a point estab-
lished by MATLAB) and converts the local subject pose to the
global subject pose. In detail, the ROS communicates with the
robot using the ROSARIA package [23]. The communication
purpose is to have control of the robot and receive odometry
data. To control the robot, MATLAB sends three types of
commands: rotating with an angle, going to a goal, and
stopping (shown as robot destination task in Figure 2), and
the communication between ROS system and MATLAB is
achieved by using MATLAB engine.

As for the control of the robot movement that allows
sending the robot to a specific point, a navigation system is
implemented in ROS. First, we manually control the robot
to explore the surrounding environment and use Gmapping
package [24, 25] to map the environment by combining the
information of LRF and odometry (see Figure 5). From this
point, ROS navigation stack, including localization, costmap,
global path planner and local planer, is used for autonomous
robot motion planning. Adaptive Monte Carlo localization
approach (AMCL) [26] is used to locate the current pose of
robot, based on the map built by Gmapping. The costmap
[31] is an occupancy grid map, which keeps all the obstacle
information, including the static map and dynamic updating
information provided by robot sensors. The cost of each
grid is related to the distance between the robot and an
obstacle. For example, when the robot is closer, the cost is
bigger.

According to the current position of robot, the desti-
nation point is established by MATLAB and the costmap,
and a Dijkstra’s algorithm based global path planner is
implemented to plan a shortest feasible path. Trajectory
rollout [32] and dynamic window approach (DWA) [33] are
used to generate the velocity commands that are sent to
the robot, in order to follow the path generated by global
path planning until the robot arrives to the destination or
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it is stopped by MATLAB command. Since the costmap
contains the obstacle information, the global path planner
and local planer can avoid the obstacles automatically (see
Figure 5).

2.4. Visual Tracking. The visual tracking algorithm is imple-
mented on MATLAB by using the scale and orientation
adaptive mean shift tracking (SOAMST) algorithm [27].
We made improvement by integrating Kinect depth image
support to increase the importance of weights based on the
depth likelihood as proposed in [19, 20]. In addition, saliency
map integration is also possible by updating the weights
as proposed in [20], but in this work, we omitted using
saliency for real-time processing performance. The details of
the SOAMST color region tracker can be find in [27], and
depth and saliency improvement details can be implemented
similar to the [19, 20].

Depth improved SOAMST is explained as follows [19, 20,
27].

(a) Initial target model is calculated by manually selecting
the region of interest (Figure 6) on the subject based on
normalized color histogram from R, G, and B color channels
with 16 bin quantization, and initial target position (y,) is
decided by the target model.

FIGURE 7: Depth likelihood map.

(b) Based on the initial target position, initialize the target
depth or distance to the robot from depth data D as follows:

tempDepth=D(y0-5:y0+5x0-5:x0+5);
@)
d, = round (median (double (tempDepth (:)))) .

(c) Set iteration number, k, to 0.

(d) For the current depth map, based on the previous
target position, ¥, find the depth likelihood map (Figure 7)
as in (2), in which reference target region point will have the
highest likelihood to the points at current frame with similar

depth:
2
1 - (Dy - dO)
P, = _— |, 2
Ry exp< e ()

where P, is the depth likelihood map calculated by the depth
map D, based on the depth values at point y and d, is the
target depth value at previous frame.

(e) For the current data based on the previous target
position, ¥, find the target candidate model.

(f) Calculate the weights of each pixel in the target
candidate region as

w, - dii\] % G)

u=1 f)u (yO),

where d; is the depth likelihood value obtained from P,
and g, and p,(y,) are the reference target model and target
candidate model of the search region.

(g) Then, new target position can be calculated as

2i XiW;
n=S o)
Yiw;
where y, is the new matched point for the subject position
obtained by comparing the initial target model and current
frames candidate model, x; is the points in the search region,
and w; is the weights at x;.



(h) This operation continues until matching point con-
verges to a value as in

Ad = |y, = yo
Yo=N
if Ad<e|k=>15

go to step (i) (5)
else

k=k+1;

go to step (e).

(i) After the new tracking point is found, the height,
width, and orientation of the target candidate model can be
calculated by singular value decomposition of the covariance
matrix obtained by the second order moment features as
follows:

2 T
Uy Uy a 0] [”11 “12] _
x X =SVD (Cov), (6)
[”21 “22] [0 v Uy Uy ( )

a=k\A,

_ |H20 Hn1
Cov = [ ] b=k\,

U= [“11 ”12] @)
Hi Moz ’

Uy Uy

where [uy, u21]T and [u;, MZZ]T can yield the orientation of
the tracked region and a® and b* are the scaled eigen values
of Cov in (7), which can represent the height and width of the
tracked ellipsoid region.

(j) Then, next step is to find next search region for the next
frame as

(a+ Ad)? 0

T
0 w+ad]Y ®

Cov, =U x

(x = 1) x Covy' x (x =)' <1, )

where the points x that provide the conditions in (9) can be in
the next search region. Ad is the change for the search region
in the next frame.

2.5. Activity Recognition. By the integration of mapping and
localization, new activity recognition has been proposed
to handle the problems of our previous approach such as
occlusion cases [5, 8]. This update includes a new, fast, and
person specific model that does not require any training
process using high amount of off-line training data. The new
model takes advantage of person specific heuristics, state
transition rules, and global localization of the subject by
utilizing the information through robot localization. Using
these features, the model classifies the possible indoor daily
activities such as walking, standing, sitting, bending, lying
down, cycling, and falling. The state transition rules between
activities are given in Figure 8.
Person specific features include variables such as

(1) height parameter based on the extracted contour
region of the tracked subject;
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FIGURE 8: State transition applied in activity recognition model.

(2) change in the height parameter between frames;

(3) a ratio parameter that can be calculated through top
region of the extracted body contour (see Figure 9);

(4) subject location based on the tracking point on the
subject calculated by the visual tracking algorithm
using Kinect and robot global position obtained by
lidar and odometry (The transformation from local
Kinect 3D data to global 2D map is given in (10) [34]:

SGx _ SLx TGX]
[SGy] = Ax [SL)'] ! [TGJ' ’ 10
s, cos (&) —s,, sin («)
- [sx sin (o) syycos () ] ’ (1)
T, = Rg, —dcos (0)
(12)

TGy = RGy - d Sin (0) N

where Sg, and Sg, are the subjects global x and y
positions on global 2D map and S, and S, are the
local Kinect data of the subject on the relevant x-
axis and y-axis of Kinect to global 2D map. « is the
Kinect pose on global map calculated by the robot
pose and rotating table angle. The transformation
matrix, A, is shown in (11), and s, and sy of A are
the scaling coefficients on x-axis and y-axis. Tg,
and T, are the translation values on x-axis and y-
axis, respectively, due to the difference between robot
center and Kinect position on the robot. Translation
values were computed as in (12) with the given R,
and Rg,, which are the robot positions in global 2D
map, and d is the distance between Kinect position
and the robot center. And, the robot pose on global
map is given as 0.);

(5) velocity of the subject between a defined number of
frames.

As it has been mentioned that the new model can be
used to classify static activities such as standing, sitting, and



The Scientific World Journal

Sitting

Bending

FIGURE 9: Extracted contour region, lines on the top part of the body to calculate the ratio parameter, and tracking point on the extracted

region.

lying down. However, features to represent static activities
are not enough to detect dynamic or location based specific
behaviors such as cycling on a stationary bicycle. Hence, we
take advantage of the subject global position on the 2D map
defined in (10). If the subject is sitting or bending at a specific
global map position (marked as the stationary bicycle zone), it
can be inferred that the subject is using cycling machine. And,
if the extracted body contour is changing its global position
on the global map and the height of the extracted region is
for the standing condition, it can be inferred that the subject
is walking even if the subject body is not fully extracted or
there is partial occlusion.

As long as visual tracking and localization of the subject
are successfully done, activity recognition model can achieve
the classification task with high accuracy independent of
posture and occlusion cases.

Since the one purpose of the project is the biomonitoring
of the human walking conditions for the different types of
situations, such as normal, impaired, and elderly walking
patterns, it is important to for the system to detect the
walking activity for the stated different walking patterns.
Because it is important to know the walking activity for
the biomonitoring system to record the data of the subject’s
walking behaviour, especially for the people in demand such
as elderly or impaired people. By this way, experts or an
algorithm can analyze the recorded data whenever necessary.

There are many algorithms that can detect walking
activity, but most of the experimental results are generally
based on normal walking conditions including other daily
activities. Therefore, in this work, we tested the proposed
activity recognition of algorithm for the walking condition on
normal, impaired, and elderly walking patterns. Experiments
showed that the proposed algorithm can robustly detect
walking activity for the various patterns as long as the subject
tracking is accurate. The results for the walking activity for
different patterns can be seen in the experimental results
section.

To demonstrate how the state transitions were handled,
state transition rules for standing and walking activities,
which are representative activities in terms of their frequency
of occurrence and dependency on localization information,
were described as in Algorithm 1.

switch States,_,
Case 0
if Height, | — Height] > Sg,
States, = 5;
elseif Height;_, — Height, > Syopan
if r, > Ratio

States, = 3;
else

States, = 2;
end

elseif Height; > Hitanding
if isOnCycling (Pf (Gx, Gy))
States, = 4;
elseif abs (Pf (Gx, Gy> -P (Gx> Gy)) > Swalking
States, = 1;
else
States, = 0;
end
end
Case 1
if Height, | — Height; > Sg;
States, = 5;
elseif isOnCycling (Pf (Gx, Gy)>
States, = 4;
elseif abs (P,S (Gx, Gy) -P (Gx: Gy)) < Swalking
States, = 0;
end

end

ALGORITHM 1

In Algorithm 1, States, is the activity on frame t. Activity
labels is defined as follows: (i) standing = 0, (ii) walking = 1,
(iii) sitting = 2, (iv) bending = 3, (v) cycling = 4, (vi)
falling = 5, and (vii) lying down = 7. t is the current frame
number. Sp,;; and Sy, are the speed parameters to decide
fall or non-fall cases based on the tracked subject height at
the current and previous frames as Height,_, and Height,_,.
Swalking 18 the subject speed threshold to decide whether
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TABLE 1: Experimental data content.
Subjects  Walking case Abbreviation  Number of frames
Impaired walking w 1000
Subject1 Elderly walking EW 1000
Normal walking NW 1000
Impaired walking w 1000
Subject 2 Elderly walking EW 1000
Normal walking NW 1000

Total number of frames 6000

the subject is moving or not. Localization assistance uses the
global subject position P;(G,,G,) for the necessary cases.
And, 7, is the ratio parameter at frame ¢ defined around the
maximum height of the tracked region as shown in Figure 9
to discriminate activities such as sitting, bending, and lying
down based on person specific Ratio threshold.

3. Experiments of Visual
Tracking Performances and Effect of
Lighting Conditions

Obviously, it is crucial factor for the monitoring and activity
recognition process to have good robot motion and robust
visual tracking performance. Therefore, initially, this work is
also focused on two other aspects: (i) visual tracking limita-
tions occurs due to the color model changes on the tracked
subject, in which color model is affected by the illumination
conditions from the light source or the distance between
robot and subject, and (ii) then the experiment and analysis
of robot behaviour with the given environmental conditions
including the visual tracking constraints. Finally, after the
system tests improvements on robot tracking, the proposed
activity recognition is tested on various walking patterns to
check its robustness to subject and pattern variations.

3.1. Depth Improved Visual Tracking Experiments. First of
all, we have tested the SOAMST [27] and depth improved
SOAMST tracking model proposed in this work in Section
2.3. The experiments were done by using the recorded data
described in Table 1 that includes 6000 frames with various
walking patterns and color representations from different
subjects.

In this study, the same subjects were required to test
elderly, impaired, and normal walking patterns to see how the
walking patterns from the same subject differ during tracking
and activity recognition tasks. Therefore, each subject par-
ticipated in experiments to record data on elderly, impaired,
and normal walking situations. Normal walking experiments
were done with self-paced walking speed, without any limi-
tations (Figure 10(a)). On the other hand, the elderly walking
and impaired walking cases were simulated with a wearable
simulation kit as shown in Figures 10(b)-10(c). The impaired
walking kit (Figure 10(b)) was used on the right foot of two
right footed subjects to cause impairment on the right lower
limb. And, for the elderly walking, the kit causes walking
difficulty due to tied joint in a way that neck and knees
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(a) () (©

FIGURE 10: (a) Normal walking, (b) simulated impaired walking, and
(c) simulated elderly walking.

TABLE 2: Visual tracking results.

Type SOAMST [27] Depth improved SOAMST
True False True False
W 774 226 1000 0
Subject] EW 851 149 1000 0
NwW 899 101 1000 0
W 1000 0 1000 0
Subject2 EW 1000 0 1000 0
NW 998 2 914 86
Overall results 5522 478 5914 86
Accuracy% 92.03 797 98.57 1.43

were constrained to cause difficulty on standing straight and
making big moves as in normal walking. Therefore, the two
simulating kits resulted in quite realistic walking patterns for
both the elderly and impaired walking cases.

Experimental data recorded in Table1 is prepared with
stable light conditions by opening all light sources in the room
to be able to see the improvement by the proposed depth
likelihood integration to SOAMST color region tracker while
decreasing the effect of illumination changes.

Table 2 gives the number of frames with correctly tracked
subjects and false trackings for each recorded data. For the
SOAMST, we have seen that good tracking performances can
be obtained when the color of the subject representation has
high contrast with the background condition. On the other
hand, color region tracker is not robust enough when the
foreground and background representations are similar to
each other. Also, high illumination variations or shadows on
the foreground region may result in false tracking cases with
the SOAMST [27] algorithm.

However, proposed depth integration improved the
tracking accuracy a lot, in which tracking was accomplished
without any false tracking in five of the six cases of the
dataset. For the proposed depth improved SOAMST, only
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FIGURE 11I: Tracking results for SOAMST and depth likelihood map supported SOAMST.

one case yielded worse result than SOAMST [27] using only
color model for target matching. The reason of the failure
can be due to the sudden depth changes on the scene,
and also, depth likelihood and joint color representation
on the background region can have more similarity to the
reference color representation. Otherwise, in general, depth
integration can help to improve the robustness of SOAMST
under changing illumination conditions.

In Figure 11, images of the tracking results of SOAMST
and depth likelihood map based improved SOAMST models
are given. It is obvious that depth data integration to weight
updates improves the tracking results significantly while
preventing the failure cases as in the last two columns
of Figurell. But, still, if the color distribution model is
not convenient and the depth values of the subject and
background are similar, there can be still false detection
or positions, scale, and orientation errors (see Figure 11 4th
column of the depth improved tracking result) on the selected
region.

In sum, limitations and optimal condition of the
SOMAST [27] color tracker should be examined under
different illumination and distance conditions to fully take
advantage of depth data integration. Therefore, the exper-
iments with various lux values and distance conditions,
regarding the light strength, were tested on SOAMST [27] for
further analysis by examining the color features and visual
tracking.

3.2. Hllumination Experiments for Visual Tracking. In this part
of the work, we made several experiments by modifying
the light conditions and distance between the robot and
the subject. The aim of these experiments is to observe the
impact on the visual tracking due to the changes in the
color information produced by the different light conditions.
Depending on the changes of the color, the robot may fail
with possible false tracking. Using a light meter, illumination
values at different distances were tested using the SOAMST
[27] visual tracking algorithm. So, it is possible to see which
lux (quantitative measurement of the light conditions) values
provide good or bad tracking results with the given system.

3.2.1. Experiment Setup. The experiments for the illumi-
nation tests have been done in the scenario presented in
Figure 12. The robot, with the Kinect camera, is in charge of

Robot
% Light source

FIGURE 13: Illumination sensor: CUSTOM LX-2000SD light meter.

recording the video and it is located in one of the corners of
the laboratory close to the light source. A halogen lamp is the
only light source used in the room.

Different spots to evaluate the tracking system have been
established based on the luminosity ranges measured by
the illumination sensor, CUSTOM LX-2000SD light meter
(Figure 13). For example, the first spot has an illumination
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TABLE 3: Moving robot condition: height and width variance of the tracking region with one-color representation.
Covariance Red Green Blue
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1000 600 600
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. 400 400
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value between 450 and 500 lux and it is located at 1.40 meters
from the camera (Figure 12), and the values at 4.95 and 6.25
meters are 50 + 15 lux and 40 + 5 lux, respectively (Figure 12).

3.2.2. Color Histogram Analysis with Changing Conditions.
For this experiment, the robot with the camera is fixed
at the position presented in Figure12. It records a video
of the immobile subject for each of the marks to see the
variations in color representation by checking the histogram
representation.

The color histogram results are presented in Figure 14.
Histograms 1, 2, and 3 show the information when the
subject is at the marks at the distance of 1.85, 3.60, and 6.25
meters, and in Figure 14, graphs 4, 5, and 6 demonstrate the
histograms at the same marks while the robot has been moved
from the initial position closer to the subject, within the
distance of around 1.5 to 2 meters.

As it can be seen from the preliminary analysis, light
condition and the distance between the subject and robot
have a great impact on the reference target model based
on normalized color histogram for visual color tracking
algorithm due to the fact that these conditional deviations
may change the texture details of the region selected on
the subject. However, for a better understanding of the
limitations, in this work, additional experiments were done to
investigate these conditions with SOAMST [27] color based
region tracker.

Hence, at this scenario, two more different tests have been
done. (i) One test was to study visual tracker while the robot
and subject move. (ii) Then, visual tracking performance was
tested when the robot is in a fixed position and just only
the subject moves. Both experiments were done with two
different scenarios where two different region templates were

tried in each case to see the performance difference by using
one- and two-color region models. The following sections
present the experiments and their results of these tests.

3.2.3. Robot and Subject Moving. At this experiment, both the
robot and subject are moving. The robot moves while trying
to keep a constant distance within an interval from 1.5 to 2
meters. The subject moves in the marks set up at the distance
of 1.85, 3.60, and 6.25 meters where there are three different
light conditions: around 350-400lux, around 100lux, and
below 50 lux, respectively.

These experiments make it possible to determine which
lux values are in the safe or critical zone for region tracking
models. The experiments on the tracking were done using
three different color representations separately: (a) red, (b)
green, and (c) blue, while testing just one color for subject
representation.

Figure 15 and Table 3 present the tracking results for each
color space. In Figure 15, the green ellipsoid region is the
search area to match the target model, and the red ellipsoid
region is the detected target region where centroid of the
target region defines the tracking point of the current frame.
So, tracking success or failure is decided whether the center
of the target region is on the subject or not.

Since, during the subject’s motion, the distance between
the robot and the subject has been the same in all the
experiments, one should expect that search and tracked
regions by the SOAMST [27] would be similar too; however,
there are high deviations for the matched region because
the illumination value changes. The SOAMST [27] algorithm
calculates the covariance based on the current search region
and reference target distribution in which this matrix based
on the second order moments can represent the height,



1

The Scientific World Journal

o o [3a} o o el
00S¥ 00S¥ 00S¥ 00s¥ 00S¥ 00s¥
000% 000% 0007 000¥ 000¥% 000¥
00S€ 00S€ 00S€ 00s€¢ 00S€ 00s€
000€ 000€ 000€ 000¢ 000€ 000€
00ST 00ST 00SZ 00st 0052 00sc
000T 000T 0002 0002 0002 0002
00ST . . 00ST 00ST 00ST 00ST . }oost
> 0001 = 0001 0001 R . .qoo0t 000T 40001
=1 00¢ 1 005 o 00s =—4 005 o4 00S o= 00s
76543210o YT amm N anol 5.%4%3.%2%1%00 53525150o 535251_500
SSS3SsSs “sdsZsg SSSssSsSss sZsasgezsSg “odceZsg 2ogdezgSg
S\l n [\l n S\ n
00S¥ 00S¥ 00S¥ 00S¥ 00S¥ 00S¥
000% 000% 000¥ 000% 000% 000%
00S€ 00S€ 00S€ 00S¢ 00S¢ 00S€
000€ 000€ 000€ 000¢ 000€ 000€
00ST 00ST 0052 00ST 0052 00S¢
0002 . ——4 000z 000T 000¢ 000C o 000T
o1 0051 <4 oost 00ST 00ST o qoost 4 oost
—=-40001 4 0001 0001 10001 .4 ooot 4 0001
L ] 4 00s oo—s] 005 4 00s o4 00S o=} 00S
421006420O 535251500 535251500 535251500 535251500 535251500
S 9oC NN S — s 9 NSNS —=s S NSNS =2 NS VN =32 NN — 32
o o oo oo S (=} =) (=} =) (=) =] S (=} o o (=) (=} (=} =) (=) (=) S S S
— < <t — <
00S¥ 00S¥ 00S¥ 00S¥
000% 000% 000% 000%
o 00S€ o 00s¢ 00S€ 00S€
° ° 4 0oo¢ ° *——21 ooo< 000€ J 0oo¢
—=—=—=4 o0sc = oost o4 00T " o0t
= 000C 4 000T "o 0007 oo 4 000C
240051 oo 94 00ST o4 oos1 “Joost
e ooot T ooor -4 ooot J ooort
o—==+4 00S =9 00 e———+4 00$ 24 00S
wmmwwmmmmoo .m%%mmm.moo Mumwwwmoo munmmmwmoo
COOOoOOoOOoOoOO (=l =llelleNe N =R=-] (=R ) S O O O [ Nele) [= NN

-
5 2 &
= S =
[=} [ o
o = o
a=] 3] 3
g g =

) m

FIGURE 14: Target feature analysis for different colors with normalized histogram
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FIGURE 16: Moving robot condition: tracking results with two-color representation.

width, and orientation variance of the ellipsoid that defines
the tracked region on the subject [27]. So, depending on
the orientation of the tracked ellipsoid region, these high
deviations on the region representations can be visible either
on the width or on the height scale as in Table 3. In particular,
the lux values around 350-400 (frames around 1 to 400)
keep the subject tracking region similar; however, when the
subject moves to darker region, around 100 lux (around frame
600 to 1200 in Table 3), target model and current matching
are not consistent enough due to the loss of information
in the normalized color histogram, so tracking quality
decreases as this problem was also presented in Figure 14
priorly.

But, despite the loss of information, tracking can be
still performed. However, if the light on the subject goes
under 501ux, it is appreciated that the selected target and
tracked region are not consistent anymore (last two columns
of Figure15). Moreover, for the blue color, the tracking
algorithm fails to calculate scale and orientation changes
with less than 50 lux. For red and green colors, the tracking

is possible but the tracked regions consistency decreased
significantly.

In addition to the one-color based tests, the other test
has been done using two colors: red and Blue, green and
blue, and blue and dark Blue. The results of this experiment
are given in Figure 16 and Table 4. The use of two colors
increases the initial target region on the subject (see the first
columns of Table 4) when compared to the one-color model
situation. The impact of the light conditions has been proven
to be similar to the previous scenarios when only one-color
representation is used for target model.

3.2.4. Robot at a Fixed Position and Subject Moving. For this
experiment, the robot with the camera is in a fixed position,
the same position as demonstrated in Figure 12. The camera
records data while the subject is moving at the marks located
in a distance of 1.85, 3.60, and 6.25 meters. It should be noted
that, while the subject is moving, the same distance will not be
preserved between the subject and the robot as in the previous
experiment. The purpose of this experiment is to evaluate
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the impact on the tracking system when modifying distance
and illumination together by observing the relation between
these two parameters.

When the distance was kept in a constant interval
between the subject and the robot, tracking could be done
even at low lux light conditions such as 100 lux even though
it was not the desired case. While using just one-color
representation, tracking performance was acceptable if the
light conditions were above 100 and distance was between 1
to 3 meters.

On the other hand, when the robot is not moving and
the subject is 3.6 meters distance, which has around 100 lux
value, green color based tracking (see Figure 17 4th column)
failed because target color model matched with an irrelevant
region, which also had similar color to the reference target
model, inside the search area. Finally, red and blue cases
barely could continue tracking the subject (Figure 17). So, the
light conditions below 50 lux with a distance higher than 5
meter are not sufficient to rely on color based tracking for
all tested color samples. In addition, for the two-color and
the fixed robot experiments, subject tracking fails for all the
cases when the light condition is less than 100 lux and the
distance between subject and robot is greater than 3.6 meters
(Figure 18).

4. Robot Behaviour Experiments with
Different Robot Motion Parameters While
Tracking a Subject

After the visual tracking experimental analysis based on
illumination and distance factors, the results state that some
constraints should be applied to the robot tracking such as

stable light conditions and reliable distance between subject
and robot. Then, with these constraints, robot tracking can be
tested for further improvements.

With the goal of making the system more robust, the
objective of these tests is to analyze two main parameters that
can significantly affect the motion of the robot for tracking a
subject while it is moving and changing his trajectory and to
establish the optimal values for them. The two parameters are
the speed of the robot and the inflation radius of the obstacle
definition that can affect the path planning during tracking
task.

In addition, regarding the at-home biomonitoring appli-
cation, the aim is to follow and recognize the behavior
of people with walking difficulties such as the elderly and
motor-function impaired people. Since the robot can track
the elderly or impaired walking patterns easier compared
to normal walking and the speed of the targeted subjects is
slower than 3 km/hr, which is the lower limit of self-paced
normal walking, the experiments regarding robot velocity
and inflation ratio were done with normal walking pattern
only.

The speed parameter is set up as the maximum speed of
the robot. This parameter has effects on keeping the target
in the visual scene and on the required time to slow down
or stop. The inflation radius affects the path of the robot
while tracking the subject due to the fact that it expresses the
obstacle definitions or available free space for the robot.

This section describes the experiment setup and the
two tests that have been performed: (i) the collision speed
and (ii) the robot performance tests. The first test aims to
establish the maximum speed for the robot that prevents it to
collide with the user considering the subject and robot safety
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FIGURE 18: Fixed robot condition: tracking results with two-color representation.

criteria. The second one analyses the speed and the obstacle
inflation radius of the robot to evaluate how they change the
performance of the tracking process.

4.1. Experiment Setup. The experiment setup is done by
defining a set of configuration parameters and building the
laboratory map. To set up the experiment, the first step is
to create the laboratory maps using mapping function of the
robot as in Figure 19 for the three different layouts used in
these experiments. Also, in our experiment, the same room
was used in all tests but different layouts also were tested
by making smaller or larger free space for checking robot
behaviour in different situations. In these layouts, setting the
experiment in the same room or in a different room was not
very crucial since the important point is testing the robot
motion in different situations with various free space options.
These layouts (see Figure 20) may not present a problem for
the system for autonomous navigation, but they do so for
performing navigation with subject tracking task based on
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FIGURE 19: Sample for experimental layout (the numerical values in
centimeters) and global map.

the visual tracking feedback. For the visual tracking system,
the robot must keep a direct visible line with the subject for
vision feedback, and also, it has to update the path to follow
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FIGURE 20: Experiment layouts and subject tracks (the numerical values in centimeters).

the subject based on the position of the subject on global
map.

The layouts have been designed to represent different
situations that may occur in the real environments. The first
layout represents a room with no obstacles in the center. All
the obstacles are in the borders of the room. In the second
and third scenarios, there is an obstacle in the center of the
room that makes it more difficult for the robot to move as it
is forced to follow the subject where there is only one direct
path available. The main differences between second and the
third layouts are the size and shape of the central obstacle. In
the third layout, the obstacle is bigger reducing the available
path for the robot.

Once the physical layout is already deployed in the
laboratory, the next step is to build the map that the robot
uses in the tracking process. The map is built as described
in [23-25]. In Figure 19, the image at the right is an example
to present the robot map built from the laboratory layout.
The areas in black represent the obstacles for the robot and
the white areas are safe for the robot to move. As it can
be seen, the robot is free to move in the room except in
the area delimitated by the obstacle in the middle of the
room.

Two parameters, for robot decision on moving to follow
the subject, are common to all the experiments presented in
this paper. The maximum distance between the robot and the
subject is set to 1.2 meters. This means that the robot starts
moving when the distance to the subject is higher than this
value; in another case, the robot is able to track the subject
without moving.

The maximum distance has been established based on
the results of the illumination tests. As stated in the previous
experiments for a distance higher than 3.6 meters, color
based visual tracking system does not provide reliable results
due to illumination and distance variations that cause low
similarity or texture details. A value of 1.2 meters provides
some reaction time to the robot to start moving when the
subject starts moving while keeping the distance between
them lower than 3.6 meters. Besides, the robot considers that
the subject is moving when it covers a distance change of

at least 20 cm on the global map as described in the activity
recognition experiments.

As stated previously, there are two important parameters
for robot motion, included in this part of the paper, which
have been studied in order to determine their impact for the
tracking and movement of the robot. These parameters are
the speed of the robot and the inflation radius of the obstacles.
At the system (ROS) for the robot motion (Figure 2), these
parameters are modeled with the following variables.

(i) Maximum speed of the robot: the speed of the robot
is controlled by the max_vel x parameter. The values
that this parameter can take represent the maximum
forward velocity, in meters/seconds, of the robot.
This parameter is included in the configuration file
costmap_common_params. Yaml.

(ii) Inflation radius: this parameter represents the radius,
in meters, to which the map inflates obstacles cost
value. This parameter is included in the configuration
file costmap_common_ params.yaml.

4.2. Collision Test Results. Once the experiment has been set
up, it is possible to start the tests to analyze the impact of
the speed and the obstacle inflation radius. While increasing
the speed of the robot, a new problem appears because of
the robot deceleration. At higher speeds, robot needs more
time to stop. If the speed is too high, the robot may not have
enough distance with the subject, and they may collide.

The objective of the collision speed test is to determine the
maximum speed of the robot that implies no collision with
the subject. To perform these tests, the subject walks from the
starting point to the mark “2” of the map (Figure 20 layout
3). The speed of the subject has to be, at least, faster than the
robot. When the subject reaches the mark “2”, subject waits
until the robot stops.

Table 5 presents the results of the test by modifying
the speed of the robot and the obstacle inflation radius.
The speed is decreased from 0.70 meters/sec until the robot
does not crash with the subject. In our tests, the obstacle
inflation radius seemed to have no influence on the results of
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TABLE 5: Robot collision test results.
Distance/speed 0.05 0.35
0.70 Yes Yes
0.65 Yes Yes
0.60 No No

the collision tests such that using a low inflation radius value,
0.05, or a higher one, 0.35, does not affect the collision test
results.

4.3. Robot Performance Test Setups. Speed and obstacle infla-
tion radii are two parameters that affect the trajectory of
the robot during subject tracking task. This section describes
the tests to study the impact of both parameters on the
performance of the tracking process.

The maps used for these experiments are the ones
presented in Figure 20. With the layouts of these maps, two
different tests are defined.

(i) Nonstopping test: this test only includes the third
layout in Figure 20. At this test, the subject walks
faster than the normal speed, around 1 step per
second. He moves from the mark “1” to mark “2” and
then to the mark “1” to start over.

(ii) Stopping tests: these tests have been done on each
of the three layouts shown in Figure 20. The subject
moves from one mark to another by following the
paths presented in Figure 20 in the order of the
destination numbers, and, at each destination point,
the subject stops and waits for 3 seconds.

Once the subject has completed the number of turns
established for each experiment, the test is over and the results
are logged. The results of the experiments contain whether the
robot was able to complete the track, the time to complete the
path, and the path followed by the robot.

There are three possible reasons about why the robot was
not able to complete the track:

(i) the robot lost the tracking of the subject;

(ii) the robot crashed with any of the obstacles of the
room;

(iii) the robot got stuck for more than 30 seconds.

All tests have been done by modifying the different
values for the maximum robot speed and inflation radius
parameters. The rest of parameters in the localization process
remain the same for all the tests.

4.4. Nonstopping Tests. The nonstopping tests represent an
unnatural situation as the subject is continuously moving
around one obstacle at fast speed. This scenario can barely
happen in the real life. However, the objective of this scenario
is to analyze the behaviour of the tracking system when the
robot is pushed to move and turn fast. It also represents
a challenge for the Kinect moving camera, as the synchro-
nization between the quick movement of the robot and the
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TABLE 6: Robot tracking performance (nonstopping tests)”.

Speed/inflation radius 0.05 015  0.25 0.35
0.50 Yes (+30) No’®  No®  Yes (+40)
1.00 Yes No®>  No? No®
1.50 Yes (+15) No*  No’ No?

*Reasons not to complete the track: Stuck’, Crash?, and Lost’.

moving platform is not an easy task. Due to this fact, it is
possible to loose the track of the subject.

Faster speeds also mean more vibration for the robot,
which can contribute to loosing the localization of itself on
the map. When the localization is lost, the robot can collide
with the obstacles in the room.

As it was previously proven in Section 4.2, the maximum
speed to prevent the robot to collide with the subject is
0.60 m/s. But for these tests, it is possible to increase the speed
of the robot over that speed as the subject is walking faster
so there is no risk that the robot could collide with him. So
the speed values tested in this scenario are 0.50, 1.00, and
1.50 m/s, respectively, and the obstacle inflation radius goes
from 0.05 to 0.35 meters in increments of 0.1 meters.

For this experiment, the subject turns four times around
the obstacle, starting from “subject start” point and finishing
at mark “1” To complete one round to the circuit, at the
established subject speed, it takes around 15 seconds. This
means that the each test for a given speed and inflation radius
should take around 1 minute for the whole 4 rounds.

The results of the experiment are shown in Table 6. The
values in the fields of the table indicate if the robot was able
to complete four rounds in the circuit and, if applicable, the
extra time over the normal time to complete the experiment.
When the total time is much higher than 60 seconds, it means
that the robot got stuck, but it was able to get back to the track
and the experiment can be continued.

4.5. Stopping Tests. These tests were applied to the three
different layouts and tracks as presented in Figure 20. All the
tests were made for 5 turns around the room where the subject
stops in the different points that are marked on the tracks as
shown in Figure 20.

For each layout, the maximum tested speed is 0.60 m/s,
which is the maximum speed for the robot that prevents the
collision with the subject as proven in the previous section.
Other tested values are 0.50 and 0.40 m/s. In addition, the
inflation radius has also been modified for these experiments,
in which it takes values from 0.05 to 0.45 meters in increments
of 0.1 meters.

The results of the experiments are shown in Tables 7, 8,
and 9. The values in the fields of the table indicate whether
the robot was able to complete 5 rounds to the track and also
whether the robot got stuck, but it was able to recover within
the 30 seconds previously specified.

For the experiments performed in the two first layouts
(see the results in Tables 7 and 8), the robot did not have any
problems to complete the tracks. For the second layout, it got
stuck sometimes, but it was able to recover the tracking and
ends the tests with success.



The Scientific World Journal

TABLE 7: Robot tracking layout 1 (stopping tests)".

Speed/inflation radius ~ 0.05 0.15 0.25 0.35 0.45

0.60 Yes Yes Yes Yes Yes
0.50 Yes Yes Yes Yes* Yes*
0.40 Yes Yes Yes* Yes* Yes*

*The index (4) indicates that the robot got stuck but recovered.

TABLE 8: Robot tracking layout 2 (stopping tests).

Speed/Inflation radius  0.05 0.15 0.25 0.35 0.45

0.60 Yes Yes Yes Yes Yes
0.50 Yes Yes Yes Yes Yes
0.40 Yes Yes Yes Yes Yes

TABLE 9: Robot tracking layout 3 (stopping tests)".

Speed/inflation radius ~ 0.05 0.15 0.25 0.35 0.45

0.60 No' Yes* Yes No' Yes
0.50 No' No' Yes* Yes* Yes
0.40 No'  No' No! No'  No'

*The index (4) indicates that the robot got stuck but recovered. The index (1)
for not complete track cases indicates that robot got stuck and failed to track.

For the first layout (Figure 20), as presented in Table 9,
the results show that the robot has no problem to track the
subject in any of the combinations of speeds and inflation
radius. The main reason of the good results is that, in this kind
of layouts, the robot can move in the center of the room. The
robot is not forced to follow the same path as the subject, but
it can track him/her just by moving in the center of the room
avoiding most of the obstacles that can cause a collision. Blue
lines in Figure 21 express the path followed by the robot while
tracking the moving subject with the path marked with green
lines.

The second layout (Figure 20) presents a scenario where
an obstacle is in the middle of the room. This obstacle
represents furniture such as a table and a desk. With this
layout, we are preventing the robot from have a comfortable
position in the middle of the room as in the first layout, and
by this way, we force it to move around the room following the
subject. In this layout, the empty space around the obstacle is
high, and it allows the robot to move around without serious
difficulties. For some of tests in this condition, the robot was
stuck, but it could recover within the given 30 seconds.

The third layout (Figure 20) represents the most restric-
tive scenario where the robot is forced to follow a narrow
path while tracking the subject. The shapes of the corners of
the obstacle present also an extra difficulty for the robot. The
lowest speed that has been tested was 0.4 m/s. For this speed
value, there was no success in any of the tests independent
of the inflation radius value. The reason of why the robot
does not complete the track is due to the fact that robot
was stuck during tracking, especially because of entering
the corner regions that restricted the robot to define a free
path to move. In this layout, faster speeds increased the
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FIGURE 21: Track for layout 1 and robot path during the experiment.

success ratio of the experiment. For the 12 tests made, 6 of
them present good results while the robot was not able to
complete the 10 rounds of the track in 8 of the remaining
results. As presented in Table 9, the results are not as good
as for previous experiments. The narrow paths and obstacles
drastically reduce the success rate of the experiments.

5. Experiments on the Activity
Recognition Algorithm

After completing visual and robot tracking experiments,
finally, this section expresses the experiments on activity
recognition, especially walking activity detection for data
recording to support possible health care assistance to the
subjects. For the experiments, first, data were recorded from
two subjects with their normal walking and two types of
simulated walking patterns such as impaired and elderly
walking, where elderly and impaired walking conditions were
simulated by wearing tools as demonstrated in Figure 10.

For each case, 1000 frames were used to test the activity
recognition algorithm as given in Table 1 of visual tracking
data, in which subjects walk or stand inside the room con-
tinuously. In our work, walking activity detection has higher
priority on other activities since the walking patterns can be
analyzed whenever necessary, especially for the elderly and
impaired people at-home health care support. It is important
to record the data during the subjects’ walking activity, and
it can be achieved for different subjects and walking patterns
robustly. Hence, in this part, we tested the recognition rate
of the algorithm for different walking patterns separate from
other activities even though including the static activities
would increase the accuracy due to high detection rate of
static actions.

In the experiments, person specific parameters for activ-
ity recognitions are decided for the subject 1 and impaired
walking case initially, and these selected parameters are
applied on all cases without any change. Impaired walking
(IW) is the slowest motion among all cases so velocity
parameter is defined according to IW where it is given as
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TABLE 10: Activity recognition results for different types of walking
patterns.

Type True False Accuracy%
W 984 16 98.40
Subject 1 EwW 974 26 97.40
NW 947 53 94.70
Iw 976 24 97.60
Subject 2 EW 963 37 96.30
NW 931 69 93.10
Overall performance 5775 225 96.25

20 cm per 10 frames that is around 0.2m/s for the current
system.

Table 10 gives the activity recognition results for the
recorded data described in Table 1. The results show that
walking condition can be recognized with high accuracy for
various walking patterns even though the same heuristics
were used for all cases. In both subjects, impaired walking
tests have the best accuracy on detecting the difference
between standing and walking activities around 98%. Normal
walking of subjects had the lowest accuracies around 93% and
95%; however, these results are still in acceptable accuracy,
and overall accuracy for all data is more than 96%, which is
quite high considering the usage of same heuristics in each
case.

Moreover, our analysis on false recognition generally
includes the cases during transition states such as: (i) start
of walking from standing, (ii) transition from walking to
standing condition, and (iii) rotation of the subjects around
themselves with high position changes. On the other hand,
the accuracy of correctly detected walking activity is more
than 99% and is almost 100% when the subjects are in the state
of continuous walking motion without transition condition
from one state to another. Therefore, it can be concluded
that the proposed activity recognition algorithm is a reliable
approach to record the walking activity cases for the purpose
of further analysis as an assistive technology for at-home
biomonitoring systems.

In addition, we also made experiments on other activities
including, standing, sitting, bending, lying down, on cycling,
and falling, where falling is another important case such
as walking in at-home monitoring applications. In all these
experiments, since the activities such as standing and sitting
were static cases without any motion except falling activity,
we started recognition when the activity was in its state
without transition periods as in changing from one activity
to another. For example, the frames during transition from
standing to sitting, standing to bending, and so forth were not
count because these transitions were not the actual activity of
standing, sitting, bending, or lying down cases. Also, for the
falling case, the activity was classified as falling continuously
until the subject moved and changed the activity state to other
activities.

In Table 11, the recognition results for various activities
were given, where 1000 frames were tested for each activity. As
it can be seen that static behaviors such as standing, sitting,
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TABLE 11: Activity recognition results for different activities.

Activity True False Accuracy%
Standing 1000 0 100.00
Sitting 1000 0 100.00
Bending 997 3 99.70
Lying down 1000 0 100.00
Cycling 1000 0 100.00
Falling 991 9 99.10
Overall 5988 12 99.80

and lying down yielded 100.00% accuracy without any false
recognition since these activities were very stable due to their
static nature. Bending had 3 false recognition cases among the
1000 frames, and this is probably because of the large amount
of motion and the change in pose and height during each
bending activity, which might have caused misclassification
to similar or transition activities, such as sitting or standing,
and their transition states. Again, with the assistance of
localization information, activity on cycling machine could
be recognized at 100.00% accuracy. Also, falling activity was
recognized with more than 99% accuracy, which is crucial to
detect this activity on emergency actions for the people living
alone. And, over all recognition rate was obtained as 99.80%
from 6000 frames for the tested activities shown in Table 11.

In addition to these results, in Figure 22, two cases with
occlusion of the lower limbs were given, and these two
activities were correctly classified by the proposed activity
recognition model. Many algorithms, including our previous
implementations, [5, 8] handle the activity recognition by
taking advantage of features extracted from lower limbs and
upper body. However, when there is an occlusion on lower
limbs, activities such as walking can not be recognized accu-
rately, not being able to extract any observable features from
lower limbs [5, 8]. Therefore, our proposed model makes full
use of the tracking position, height of the tracked subject, and
global location of the tracked subject as explained in method-
ology section for activity recognition (Section 2.5). With the
information, even though there is not clear information about
lower limb joints (Figure 22(a)) or the partial occlusion on
both upper body and lower body (Figure 22(b)), walking
activity could be detected accurately only if we know that the
height of a subject is comparable to the height of walking pose
and the subject’s global position is changing on global map.
And, our walking tests in Table 10 demonstrate that walking
can be recognized with high accuracy using person specific
features and localization assistance. In sum, it can be seen that
the proposed system can handle occlusion situations when
the subject is accurately tracked as in the examples shown in
Figure 22.

6. Discussion

This section provides an analysis of the results presented in
the previous experiments, the illumination and the speed and
obstacle inflation radius results, in order to determine the best
setup for the system.
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FIGURE 22: Sample robot system tracking and activity recognition results with partial occlusion cases for (a) sitting and (b) walking activities.

6.1. Visual Tracking and Illumination Results. First of all,
the experiments for the visual tracking demonstrate that
integration of the depth information to handle the illumi-
nation variations improved the tracking results obviously. It
means that multiple sensory information fusion is required
for a robust indoor tracking to achieve at-home monitoring
mobile robot. Hence, to be able to handle various illumina-
tions, different sensor types can support the system such as
the infrared sensors in the case of low illumination or dark
room conditions.

Based on the results of the performed tests, it is possible
to state that color information may not be reliable all the time
during real-time tasks considering the subject that is tracked
by the mobile robot during daily activities. So, it is beneficial
to find out limitations of the color tracker used in our system
and safe regions to utilize the visual tracker relying on color
considering the distance and illumination conditions.

In sum, this experimental analysis concludes that some
certain conditions should be provided at the environment for
areliable color region based visual tracking algorithm: (1) the
illumination condition on the subject to be tracked should be
greater than 100 or 200 lux for better results and (2) for the
given lux and distance specifications, as in Figure 12, if the
distance between robot and subject is able to keep the interval
less than 3.6 meters, there is high chance of successful and
continuous robot tracking supported by the visual tracking
algorithm.

6.2. Speed and Obstacle Inflation Radius Results. The speed
of the robot and the inflation radius are two important
parameters to be considered when performing the tracking of
the subject and the results of the activity may differ depending
on the layout of the room. There are no studies that analyze
parameters that may impact the behaviour of a robot when
performing a vision tracking activity. Therefore, the objective
of the experiments related to those parameters was to identify
the speed range and the obstacle inflation radius where the
tracking process is more stable with the given constraints of
visual tracking algorithm.

The speed parameter is needed to be high enough to be
able not to lose the subject but slow enough not to make

the robot collide with the obstacles and/or the subject. When
the speed of the robot is high, the robot covers more distance
while stopping. This distance, while the robot is decelerating,
can be not enough and may cause the collision with the
subject or even with an obstacle. Using the results presented
in Table 5, it is possible to determine the maximum robot
speed to prevent the collision with the subject. The collision
is inevitable when the max_vel x parameter takes values over
0.65. Based on this results, the robot speed must be set
at 0.60m/s or even lower than that to prevent this from
happening. The obstacle inflation radius has no influence on
the experiments.

Experiments described in Sections 4.4 and 4.5 study the
performance of the tracking system based on the speed and
the obstacle inflation radius. With the results of these tests,
it is possible to compare the path followed by the robot and
to check if it is able to complete the specific track of the
experiments.

As it has been mentioned, nonstopping tests do not
represent the normal behaviour of the activity performed
by humans at home. Table 6 shows the results of these
nonstopping tests. As it is presented, the rate of success is
quite low, especially when the speed is set to 1.00 and 1.50 m/s.

It is possible to observe how the inflation radius affects
the path followed by the robot. The influence of the inflation
radius is presented in Figure 23. For both maps, the speed of
the robot is set to 1.5 m/s. The map on the left presents the
track of the robot for an obstacle inflation radius value of
0.05 and the one on the right for a value of 0.35. As it can
be appreciated the track is softer when the inflation radius is
lower. At the map of the right the curves when the robot is
turning are sharp bends. A softer path makes the robot less
suitable for loosing the track or the localization in the map.
This is the reason why the results at Table 6 present good
results for an inflation radius value of 0.05 but the results get
worse when this value is increased.

Another interesting result presented in Table 6 is the time
to complete the track when the speed is set to 0.50 m/s. The
time values are higher for this value even when the subject
is always walking at the same speed. Because the speed of
the robot is not high enough, the robot sometimes got stuck
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F1GURE 23: Track for 1.5 m/s speed and 0.05/0.35 of inflation radius.

for a few seconds. The subject has to wait for the robot to be
released and that results in increasing the required time to
complete the track.

The situation when the subject stops is different from the
one previously exposed. People at home are used to walk and
stop when walking in a room. The walk to a desk and stop for
amoment to pick something and then start walking again and
so on. This is the situation represented by these experiments,
and this situation is more favorable for the tracking process.
As the user stops for a short time, the robot can use that break
to recover the lost distance and get a better position in the
room. This allows for the use of lower speeds by increasing
the reaction time of the robot.

In this part, we have analyzed three different scenarios
representing three layouts with different characteristics. In an
open layout, Figure 20—layout 1, when there are no obstacles
in the middle of the room there is no restriction for the speed
of the robot; the only limit is the maximum speed of 0.60 m/s
that prevents the robot from crashing with the subject. The
robot is able to perform its activity without any problem.
Moving in the room center freely, the speed or inflation radius
do not have any effect on the performance. The same results
are obtained when the robot has a wide space to move around
an obstacle (Figure 20—layout 2). The robot can follow the
subject, and the success in all the tests states that any value in
the range of the one tested provides good results.

When there is not enough space to move and/or when
the shape of the obstacles is complex the speed and infla-
tion radius for the robot motion have to be considered to
guarantee the success of the tracking process. As a result of
the experiments, only speeds over 0.40 m/s lead to success.
Values around 0.50 m/s and inflation radius over 0.15 increase
the success rate of the tracking activity even if it does not
provide 100% success.

The exception for this speed range was when the inflation
radius was set to 0.05 meters. Using this low value, the robot
was not able to complete the track. Probably, with 0.05 meters
inflation ration, the robot can get close to the obstacles and
so this may make it easier for the robot to get stuck during
subject tracking task. Indeed, the reason why the robot could
not complete the track was always that the robot got stuck
during navigation.

The success rate for these two speed parameters, when
the inflation radius is over 0.05, is 5 tests out of 8. At these
speeds the robot looks quite stable and the only reasons not
to complete the track are that if it was stuck in some points
of the track. But generally the parameter combination with
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a speed of 0.50-60 m/s and an inflation radius 0.15-0.45 offer
the best results in complex scenarios.

As a summary, for open and wide areas, speed and
inflation radius do not affect the performance of the tracking
activity. But, for the not ideal conditions, if the room contains
a narrow path of complex obstacles, the value of these
parameters should be restricted to the range proposed in this
paper. The results of the test show that setting the speed of the
robot at 0.5 or 0.6 m/s and the inflation radius between 0.15
and 0.45 generates better results.

6.3. Activity Recognition Results. With mobile robot, if a
robust visual tracking and robot based subject tracking is
provided, the experimental results depict that it is possible to
achieve activity recognition for different subjects and walking
patterns using the same simple heuristics, which is crucial to
record reliable data of the subjects.

Our previous works [5, 8] had activity recognition perfor-
mances over 98% with high accuracy; however, these models
required training data and tuning for each specific subject,
which is difficult to handle each time when the subject is
changed. Also, these calculations including the state-of-the-
art models, and that generally requires whole body contour
features for walking or dynamic activity detection. But, with
the proposed model, the activities can be recognized under
limited conditions such as partial occlusion.

Using the proposed model with simple person specific
heuristics and localization assistance, we were able to obtain
98% activity recognition accuracy for all activities tested by
12000 frames even without using large amount of training
data. The proposed algorithm does not require color image
based feature extraction, which is also important by providing
robust activity recognition under changing environmental
conditions. Moreover, dynamic activities on static positions
such as cycling on cycling machine can be detected also
with the localization assistance provided by the subject global
position.

It can be concluded that the proposed activity recognition
algorithm is a reliable approach to record the walking activity
cases for the purpose of further analysis as an assistive
technology to at-home biomonitoring systems.

7. Conclusion

This paper has presented three main contributions: the
proposal of a new activity recognition algorithm, the effect
of illumination conditions in the visual tracking process, and
the impact of parameters related to robot motion and path
panning in the robot navigation behaviour when tracking a
subject.

Based on the illumination tests it has been proven that
the ambient illumination also affects the behaviour of the
robot. The better results are obtained with illuminations of
100-200 lux or more. When this light condition is presented
the robot can perform the tracking process with high chances
of success. In addition to the light condition, the distance,
which also effects the texture details obtained from the sensor,
is an important factor, and better results are observed in the
conditions that the subject to robot distance is less than 3.6



The Scientific World Journal

meters. Since the reliability of color based visual tracking is
decreasing due to distance and illumination factors, a better
approach for visual tracking task to work with changing
illumination conditions should be modeled, for example, by
switching from color to infrared sensor based tracking. In
addition to visual tracking, robot existence as a assistive
technology and its behaviour indoor environment should
be studied qualitatively concerning the human feelings and
psychological response to use the mobile robot systems.

Analyzing robot parameters for the scenarios used for
the experiments presented in this paper, it has been shown
that the two analyzed robot parameters, speed and inflation
radius, can affect the behaviour of the robot while the robot
is actively tracking the subject with visual tracking model.
The experiments presented in this paper have to determine
the best speed and obstacle inflation radius parameters for
the tracking process. For simple scenarios, the impact of
these two parameters is not relevant but for more complex
scenarios the robot fails while tracking the subject for some
parameters combinations. For these types of scenarios, the
tests speeds of 0.5 and 0.6 m/s offered better results. Increas-
ing the speed over these values provokes the collision of the
robot with the subject. Decreasing the speed can make it
easier for the robot to get stuck. At the recommended speeds,
the obstacle inflation radius must be greater than or equal to
0.15 to offer better results.

The new localization assisted activity recognition algo-
rithm has been integrated with the robot platform. This
algorithm is faster and more robust, and it is effective in those
cases where the lower limb body is not visible. It also does not
required training data to operate. The results are promising
for being able to detect walking activity for different subjects
and walking patterns.

In summary, the contribution of this paper can be stated
as (i) integration of a new localization assisted activity
recognition algorithm in a mobile robot that tracks a subject;
(ii) analyzing how the illumination conditions and robot
motion parameters affect the tracking; and (iii) finding the
optimal conditions for robot based subject tracking where the
conditions can be listed as (a) quantitative light conditions
(lux value), (b) robot to subject distances, (c) robot speed,
and (d) map inflation radius during path planning and robot
motion.
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