
RESEARCH ARTICLE

Optimization of multiplex quantitative

polymerase chain reaction based on response

surface methodology and an artificial neural

network-genetic algorithm approach

Ping Pan1, Weifeng Jin2, Xiaohong Li2, Yi Chen1,3, Jiahui Jiang1, Haitong Wan4,

Daojun Yu1,5*

1 Hangzhou First People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,

2 College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,

3 Zhejiang Hospital, Hangzhou, Zhejiang, China, 4 College of Life Science, Zhejiang Chinese Medical

University, Hangzhou, Zhejiang, China, 5 Department of Clinical Laboratory, Affiliated Hangzhou First

People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

* yudaojun98@163.com

Abstract

Multiplex quantitative polymerase chain reaction (qPCR) has found an increasing range of

applications. The construction of a reliable and dynamic mathematical model for multiplex

qPCR that analyzes the effects of interactions between variables is therefore especially

important. This work aimed to analyze the effects of interactions between variables through

response surface method (RSM) for uni- and multiplex qPCR, and further optimize the

parameters by constructing two mathematical models via RSM and back-propagation neu-

ral network-genetic algorithm (BPNN-GA) respectively. The statistical analysis showed that

Mg2+ was the most important factor for both uni- and multiplex qPCR. Dynamic models of

uni- and multiplex qPCR could be constructed using both RSM and BPNN-GA methods. But

RSM was better than BPNN-GA on prediction performance in terms of the mean absolute

error (MAE), the mean square error (MSE) and the Coefficient of Determination (R2). Ulti-

mately, optimal parameters of uni- and multiplex qPCR were determined by RSM.

Introduction

Real-time quantitative PCR (qPCR) can quantitatively analyze a reaction template (nucleic

acid) via the real-time continuous monitoring of the fluorescence signal generated from each

cycle of the PCR amplification process. This technique has the advantages of being highly spe-

cific, highly sensitive, reproducible, accurately quantifiable, and highly automatable[1, 2].

Therefore, real-time PCR has been widely applied in fields such as molecular diagnostics, life

sciences, agriculture, medicine, and food science[3–5]. Despite this broad application, there

are still difficulties in the practical implementation of the technique, especially in multiplex

qPCR systems. Due to the addition of multiple pairs of primers and probes, changes of factors

such as annealing temperature, elongation temperature, and number of cycles can result in
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non-specific products and different effects on amplification. Furthermore, there is a lack of

uniformity in data interpretation, and standardization needs to be improved[6]. These issues

are mainly caused by the external factors that affect qPCR amplification and the practical diffi-

culties in controlling these factors.

Prior studies[7–9]have attempted to optimize various qPCR parameters to ensure accuracy

and stability. However, most of these studies employed single-factor tests when optimizing

qPCR systems[9]. Although these studies determined the effects of individual factors on qPCR

amplification, they required many and repeated tests and overlooked the effects of parameter

interactions. The determined parameters may not have been optimized yet.

The recent studies to optimize qPCR parameters have focused on uniplex qPCR. The wide

range of application for multiplex qPCR has brought increased attention to improving its

amplification efficiency and optimizing the parameters. The construction of a reliable and

dynamic mathematical model for multiplex qPCR that can be used to analyze the effects of

interactions between various parameters is urgently needed. Response surface methodology

(RSM) uses statistical and mathematical analysis to design experiments and involves a combi-

nation of experimental design techniques, including Plackett-Burman (PB) design, central

composite design (CCD), Box-Behnken design, and others. RSM can evaluate the effects of

variables on test results (yield) by analyzing experimental data. Additionally, RSM can analyze

the interactions between various factors, and can be used to construct a mathematical model

applicable for determining optimal conditions or ranges for a desired response[10]. RSM over-

comes the disadvantages of single-factor tests, including the time required, the limited number

of factors investigated, and the production of unreliable conclusions[11]. RSM has the advan-

tages of being easy to implement and allowing investigation of the interplay of different factors.

For these reasons, this methodology is commonly used in various fields such as pharmacy,

architectural science, biology, agriculture, and microbiology[12–14].

As an alternative to RSM, artificial neural networks (ANNs)[15] are an integral component

of artificial intelligence that can be applied for data analysis and prediction. As typical ANNs,

back-propagation neural networks (BPNN) optimize and monitor the performance of neural

networks under learning rules. BPNN can approximate any continuous function and have

robust non-linear mapping capabilities. Genetic algorithms (GA) simulate the principle of sur-

vival of the fittest in nature and search for the most globally optimized combination of parame-

ters for a given system. These algorithms can be used for discontinuous, indistinguishable,

random, or highly nonlinear target functions. Therefore, the prediction models of ANNs are

developed to analyze the obtained experimental data, while GA is utilized to optimize experi-

mental parameters for the above well-established models. An increasing number of studies

have focused on optimizing experimental conditions via ANNs and RSM in recent years[16–

18]. However, there has been little work on the optimization of qPCR systems using these two

methods. A few studies addressed that, as a predictive tool, ANNs can theoretically be used to

understand complex systems and assist in optimizing conditions for biological experiments

and related techniques such as PCR[19].

This study is based on previously developed AllGlo multiplex PCR systems for respiratory

syncytial virus (RSV), influenza virus (INF), and human metapneumovirus (HMPV). CCD is

used to design experiments with different concentrations of primers, probes, DNA polymer-

ase, Mg2+, and dNTPs in uni- and multiplex qPCR systems, based on the experimental results,

the interplay of the tested factors and their effects on cycle threshold (Ct) values of uni- and

multiplex qPCR are analyzed and discussed by RSM. Subsequently, prediction models for the

tested factors and Ct values are constructed via RSM and BPNN-GA respectively. The predic-

tion performance of these two models is then evaluated using the coefficient of determination

(R2), the mean absolute error (MAE), and the mean square error (MSE)[20–22]. The model
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resulting in better prediction performance is further tested for condition optimization. The

optimal conditions for uni- and multiplex qPCR of the three viruses are then determined.

Materials and methods

Preparation of qPCR templates

E. coli DH5α samples containing RSV, INF, or HMPV target gene plasmids were cultured sep-

arately at 37˚C under 5% CO2. A single colony was then transferred with an inoculation needle

to Luria-Bertani (LB) culture and shaken overnight at 200 rpm/min at 37˚C. Plasmid extrac-

tion was performed using a TaKaRa plasmid extraction kit following the manufacturer’s proto-

col (Takara Biomedical Technology Co., Ltd., Dalian, China, lot number 9760). The extracted

plasmids were dissolved in 50 μL of eluent. A Nanodrop 2000 spectrophotometer was used to

measure the A value of plasmid DNA at 260 nm/280 nm. Based on the measured copy number,

the plasmids for the three viruses were separately diluted, mixed at equal ratios to 104copies/

mL, and stored at -20˚C for later use. The repeated re-configuration of the template due to

insufficient storage and material preparation could lead to biased results[23]. In this study, the

amount of template needed was calculated and prepared prior to experiments, and the tem-

plates were stored in aliquots to increase test stability.

Primers and probes

The genetic sequences of the three viruses were downloaded from the GenBank database. The

primer picking tool and Oligo 6.22 from the NCBI database were used for comparison and

optimization. Conservative segments with high homogeneity were selected for primer and

probe designs. NCBI Blast was used to test the specificity of the primer and probe segments.

Primers were synthesized by Intragen Trading (Shanghai) Co., Ltd., China, and probes were

synthesized by Shanghai Yiyue Biotechnology Co., Ltd. (Table 1).

Experimental design

In this study, methods for uniplexqPCR are given in supplementary S1 Text. The concentra-

tions of primer (Factor A), probe (Factor B), DNA polymerase (Factor C), Mg2+ (Factor D),

and dNTPs (Factor E) were selected as independent variables and subjected to five levels of

design using RSM-CCD. According to the recommended concentrations of these variables

given by the VazymeLAmp1 DNA Polymerase PCR kit (Vazyme Biotech Co., Ltd, Nanjing,

Table 1. Primers and probes used for AllGloqPCR.

Gene IDa Primes and probes Sequences(5’-3’) Size(bp)

JX131645.1 RSV-F GCACCGCCAAGACACTAGAA 179

RSV-R GTGGTTTGCCGAGGCTATGA

RSV-P JUP(VIC)- GGA CCT GGG ACA CTC TCA ATC ATC T -JUPb

KC731523.1 HMPV-F GGGAGCAAAGCAGAAAGTTTGT 128

HMPV-R TTGCACAGACACATGCCCTA

HMPV-P NEP(CY5)-GCT TAT GGA GCT GGT CAA ACA CTG C-NEPb

L25072.1 INF-F ACACCATCTGTGTGGGCTAC 136

INF-R CCGTTCAGACTGCAGAGCTT

INF-P MAR(FAM)- CTC TAC AGA CAC TGT TGA CAC AGT ACT AG -MARb

aGenBank.
bJUP, NEP and MAR are three kinds of different AllGlo probe fluorochromes, and correspond to the currently used VIC, CY5 and FAM fluorescence, respectively[24].

https://doi.org/10.1371/journal.pone.0200962.t001
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China), baseline levels and ranges were confirmed. The coded values and actual values of the

selected RSM design factors are provided in supplementary S1 Table. This study used a

50-test-point second-order RSM. The experiments for uni- and multiplex qPCR of the three

viruses (RSV, INF, and HMPV) with the same designs; the uniplex qPCR designs are provided

in S2 Table, and the multiplex qPCR designs are given in S3 Table.

Quantitative PCR amplification

qPCR was performed in a final volume of 50 μL, which included 5 μL of 10 ×VazymeLAmp1

Buffer (Mg2+-free), 0.5 μL of ROX Reference Dye II (50 ×) �3, and 4 μL of mix template. Addi-

tionally, MgCl2 (25 mmol/L), dNTP (10 mmol/L), primers (10 μmol/L), probes (10 μmol/L),

and LAmpTM DNA Polymerase (5 U/μL) were added in the concentrations provided in S2 and

S3 Tables (VazymeLAmp1 DNA Polymerase, Vazyme). An ABI 7500 Real-Time PCR System

was used for amplification. A two-step method was implemented that included pre-denatur-

ation at 95˚C for 30 s, followed by 40 cycles of denaturation at 95˚C for 5 s and elongation at

60˚C for 32 s. Three parallel repeats were conducted for each test, and the averaged Ct value

from the three repeats was taken as the result.

RSM

The averaged Ct value resulting from the three parallel tests was treated as the response value

(Y). Design-Expert.V8.0.6 was used for RSM analysis of the test data. The statistical signifi-

cance of the RSM-based model (model I) was checked by analysis of variance (ANOVA). The

variables were treated as continuous random factors. The complete CCD matrix for the experi-

mental Ct values of uni- and multiplex qPCR is described in S2 and S3 Tables. Optimized con-

ditions for Ct values were obtained in combination with 3D response surface graphs (Fig 1

and Fig 2, S1 and S2 Figs).

The mathematical expression used by model I to describe the response value, Y (Ct value),

versus the five factors studied (A, B, C, D, and E) can be written as follows[25]:

Y ¼ b0 þ
Pk

i¼1
biXi þ

Pk
i¼1

biiX
2

i þ
Pk

i¼1

Pk
j¼1

bijXiXj þ ε ð1Þ

Y is the response value (Ct value), Xi and Xj denote the coded levels of the independent vari-

ables, and β0 is the intercept; i, j, βi, βj, and βij are coefficients, ε is the test error, and k repre-

sents the number of independent factors. In the following descriptions, Y1, Y2, and Y3

represent the corresponding multiplex qPCR RSM polynomial equations for RSV, INF, and

HMPV, respectively.

BPNN-GA

A 3-layer BPNN-GA comprised of input, hidden layer, and output layers was used to construct

a mathematical model (model II), Concentrations of primers, probes, DNA polymerase, Mg2+,

and dNTPs were used as the 5 inputs, and the Ct value was the output. Library (neuralnet) of R

language was used for analysis, and we scaled Ct values to lie within the range (-)2.378-(+)

2.378 in BPNN-GA, while the activation functions were sigmoid for all the models, a five-fold

cross-validation was employed to select the number of nodes on the hidden layer and to train

the model[26].

Optimization of uni- and multiplex qPCR conditions for the three viruses (RSV, INF, and

HMPV) was performed using the trained model obtained using five-fold cross-validation with

GA. Optimized conditions were obtained along with the corresponding predictive Ct values.

Optimization of multiplex qPCR based on RSM and ANN
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Model evaluation and validation

The Coefficient of Determination (R2), the mean absolute error (MAE) and the mean square

error (MSE) were monitored to evaluate and compare the stabilities and prediction perfor-

mances of the model I and model II. R2 is applicable to the training data set, and the larger R2

indicates that the more percent of the variance in the response variable can be explained by the

explanatory variables[27]. And the smaller the MAE and MSE means the better the model[28].

The model that performed better was selected as a predictive model for condition optimization.

Validation was conducted under the predictive optimal operation conditions subsequently.

The equations representing the evaluation indices used for model performance are pro-

vided below[27]:

R2 ¼ 1 �

Pn
i¼1
ðYi;p � Yi;eÞ

2

Pn
i¼1
ðYi;e � YaÞ

2
ð2Þ

MAE ¼
1

n

Xn

i¼1
jYi;p � Yi;ej ð3Þ

Fig 1. RSM-3D contour graphs showing groups of two interacting factors for multiplex qPCR of RSV. (A: primers, B: probes, D: Mg2+, E: dNTPs).a: The effects of

interaction between primers and Mg2+ on the Ct value; b: The effects of the interaction between probes and Mg2+ on the Ct value; c: The effects of the interaction

between Mg2+ and dNTPs on the Ct value. Graphs illustrate that the smaller Ct value can be obtained when the Mg2+ concentration is at a median level within the test

range and the concentrations of primers and probes are higher, but the associated cost should be considered; in this study, the concentrations of these primers and

probes are kept below 0.32 mmol/L.

https://doi.org/10.1371/journal.pone.0200962.g001
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MSE ¼
Pn

i¼1
ðYi;p � Yi;eÞ

2

n
ð4Þ

Yi,p is the value predicted by the model, Yi,e is the experimental Ct value, Ya is the averaged

experimental Ct value, and n is the number of data points.

Results

RSM

The effects of operating variables were investigated according to the statistical analysis of

CCD. According to variance analysis (Table 2), the F and P values of the corresponding multi-

plex qPCR models for the three viruses were F = 6.61 and P<0.0001, F = 3.67 and P = 0.0009,

and F = 7.89 and P<0.0001; the P values were all less than 0.05, indicating that all the RSM

models of multiples qPCR were statistically significant; meanwhile, the statistical results on

factors showed that there was evident that at least one of the 5 predictors had an effect on the

response, such as the statistical results on factors of RSV, the P value of DNA polymerase and

Mg2+ were 0.0452 and<0.0001 respectively, demonstrated DNA polymerase and Mg2+were

statistically significant for Ct value in multiplex qPCR of RSV, in addition, the P value of prim-

ers, probes, and other factors were>0.5, they had no significant effect on Ct value; the statisti-

cal results on factors of INF and HMPV showed the same conclusion. Variance analysis of

uniplex qPCR was given in S4 Table.

Y1 ¼ 23:600 � 0:420� C � 1:630� Dþ 0:950� D2 ð5Þ

Fig 2. RSM-3D contour graph showing interactions between parameters for multiplex qPCR of INF and HMPV. (A: primers, B: probe, D: Mg2+, E: dNTPs)a: The

effects of the interaction between Mg2+and primers on the Ct value for multiplex qPCR of INF; b: The effects of interaction between primers and Mg2+ on the Ct value

for multiplex qPCR of HMPV; c: The effects of the interaction between probes and Mg2+ on the Ct value multiplex qPCR of HMPV; d: The effects of the interaction

between Mg2+and dNTPs on the Ct value for multiplex qPCR of HMPV.

https://doi.org/10.1371/journal.pone.0200962.g002
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Y2 ¼ 23:740 � 0:880� Dþ 0:370� E � 0:460� ABþ 0:580� BE ð6Þ

Y3 ¼ 23:600 � 0:320� A � 1:100� Dþ 0:370� AC þ 0:620� D2 ð7Þ

Eqs (5)–(7) represent the multiplex qPCR polynomial model for the three viruses (RSV,

INF and HMPV). Coefficients that had no statistical significance are eliminated. As seen from

polynomial equations of multiplex qPCR for three viruses, the Mg2+ all affected significantly

the Ct values, thus, the most important factor under the conditions used for these experiments

was the concentration of Mg2+.

The RSM-3D plot used for RSV multiplex qPCR is illustrated in Fig 1, and the RSM-3D

plot other viruses of multiplex qPCR is set out in Fig 2. The x- and y-axes represent the two

Table 2. Analysis of variance (ANOVA) for the Ct values of multiplex qPCR using RSM-CCD.

Source Dfb RSVa INFa HMPVa

SSb Fb P SSb Fb P SSb Fb P
Model 20 195.630 6.610 <0.0001��� 89.860 3.670 0.0009�� 90.320 7.890 <0.0001���

A 1 2.48 2.02 0.1834 3.66 2.99 0.0949 4.30 7.52 0.0105�

B 1 2.83 3.35 0.1561 2.16 1.76 0.1950 0.98 1.71 0.2017

C 1 5.86 5.89 0.0452� 3.97 3.24 0.0828 0.011 0.019 0.8904

D 1 114.79 82.64 <0.0001��� 33.38 27.23 <0.0001��� 51.94 90.75 <0.0001���

E 1 0.094 0.024 0.7922 6.08 4.96 0.0342� 1.10 1.93 0.1756

AB 1 1.47 1.07 0.3022 6.71 5.48 0.0266� 0.15 0.26 0.6127

AC 1 1.92 1.45 0.2402 3.84 3.13 0.0878 4.28 7.47 0.0107�

AD 1 0.70 0.44 0.4736 4.38 3.58 0.0690 2.36 4.13 0.0518

AE 1 0.92 0.61 0.4143 1.56 1.27 0.2687 0.12 0.21 0.6496

BC 1 0.17 0.34 0.7272 0.95 0.78 0.3853 0.76 1.33 0.2578

BD 1 1.36 1.79 0.3214 0.70 0.57 0.4547 0.094 0.16 0.6886

BE 1 5.16 4.36 0.0592 10.72 8.75 0.0062�� 4.489×10−3 7.844×10−3 0.9301

CD 1 0.63 0.38 0.4968 2.52 2.06 0.1628 0.28 0.50 0.4869

CE 1 3.55 4.22 0.1143 1.80 1.47 0.2361 0.063 0.11 0.7430

DE 1 0.15 0.042 0.7429 2.95 2.40 0.1322 1.48 2.58 0.1196

A2 1 2.808×10−3 0.088 0.9637 0.49 0.40 0.5328 0.061 0.11 0.7458

B2 1 6.068×10−3 0.028 0.9467 1.405×10−7 1.146×10−7 0.9997 5.920×10−3 0.010 0.9197

C2 1 1.23 2.30 0.3460 0.94 0.77 0.3877 0.022 0.038 0.8460

D2 1 49.71 21.76 <0.0001��� 3.08 2.51 0.1243 21.32 37.25 <0.0001���

E2 1 0.028 0.17 0.8866 0.11 0.088 0.7695 8.105×10−3 0.014 0.9061

Residual 28 37.370 34.320 16.020

Lack of Fit 21 37.320 277.800 <0.0001��� 34.220 113.830 <0.0001��� 15.960 84.010 <0.0001���

Pure Error 7 0.0450 0.100 0.063

Cor Total 48 233.000 124.190 106.340

Adequate pression 14.275 8.9560 14.392

�p−value<0.05

��p−value<0.01

���p−value<0.001.
aRSV, HMPV, INF are three virus used in this study.
bDf: Degree of freedom; SS: Sum of Squares; F, F-value.

https://doi.org/10.1371/journal.pone.0200962.t002
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interacting factors, and the obtained Ct value is expressed on the z-axis. The color, height, and

contour of the curves indicate different response levels. Interacting factors are described as

AD, BD, and DE. As can be seen from Figures, Mg2+ is the most important parameter influ-

encing the Ct value. The RSM-3D plots used for uniplexqPCR are shown in S1 and S2 Figs.

BPNN-GA

The fitting error and predictiveerrorof five-fold cross-validation of model II for multiplex

qPCR produced by training neurons in the hidden layer are provided in Table 3. The fitting

error and predictive error are the bases used to select the number of nodes in the hidden layer.

When fitting error and predictive error were relatively small, and took the minimum predic-

tion error as the primary condition, the corresponding number of hidden-layer nodes was

treated as the training model. Such as RSV multiplex qPCR, the fitting error had improvement

in performance by increasing the number of hidden layer, whereas, the performance of predic-

tive error showed negative effect for 3, 5 neurons, respectively, so the number of neurous was 4

as final model of RSV multiplex qPCR. At the same, the number of nodes selected for INF and

HMPV multiplex qPCR was 4, 3, respectively. And the fitting error and predictive error of

five-fold cross-validation of model II for uniplex qPCR were given in S5 Table.

RSM versus BPNN-GA

In this study, RSM and BPNN-GA were used for data analysis. Corresponding mathematical

models were constructed and referred to as model I (RSM) and model II (BPNN-GA).

The R2 values for model II were closer to 1 than for model I in both uni- and multiplex

PCR for all three viruses, The MAE and MSE of model II was much smaller than those of

model Ifor both uni- and multiplex qPCR of the three viruses (Table 4, S6 Table). Though R2

of model II are all larger than RSM, compared with RSM, ANN’s predictive Ct values are more

deviated from the actual situation, especially in HMPV and INF for multiplex PCR (Table 5,

S7 Table), therefore, we believe that in the PCR system optimization, RSM is more appropriate

than ANN. Hence, model I was selected as the final prediction model.

Validation

After comparing the stabilities and prediction performances of models I and II, model I was

selected for condition optimization. The optimized conditions were subjected to validation

tests, three parallel repeats were performed and relative errors (shown as Eq ((8)) between vali-

dated Ct values and predictive Ct values for multiplex qPCR for RSV, INF and HMPV are

3.351%, 13.744%, 4.550% respectively. The relative errors of the validated Ct values of uniplex

qPCR for RSV, INF and HMPV are 6.748%, 1.520%, 4.590% respectively. The validation

Table 3. Five-fold cross-validation of model II for multiplex qPCR.

Neurons RSVa INFa HMPVa

Error of fit (�w � s) Error of prediction (�w � s) Error of fit (�w � s) Error of prediction (�w � s) Error of fit (�w � s) Error of prediction (�w � s)

1 0.099±0.063 0.048±0.023 0.120±0.098 0.075±0.132 0.079±0.12 0.057±0.082

2 0.056±0.058 0.055±0.023 0.077±0.089 0.079±0.077 0.040±0.078 0.022±0.069

3 0.035±0.035 0.039±0.023 0.056±0.072 0.043±0.080 0.023±0.055 0.016±0.044

4 0.042±0.049 0.034±0.041 0.051±0.079 0.042±0.059 0.022±0.024 0.020±0.052

5 0.031±0.050 0.040±0.049 0.046±0.064 0.046±0.06 0.024±0.058 0.016±0.049

aRSV, HMPV, INF are three virus used in this study.

https://doi.org/10.1371/journal.pone.0200962.t003
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results indicate a greater relative error for multiplex qPCR of INF; the error rates for multiplex

qPCR of the other two viruses were within an acceptable range.

Relative Error ¼
jCtp � Ctej

Cte
� 100% ð8Þ

Relative Error: Actual relative error, generally given as a percentage; Ctp: predictive Ct value

under optimal conditions; Cte: experimental Ct value under optimal conditions

Discussion

As a detection technique, qPCR has significant advantages[1]. However, the number of factors

influencing the process is relatively high, and the interactions between these factors are com-

plicated, especially in multiplex qPCR systems. Due to the addition of multiple pairs of primers

and probes, changes to factors such as annealing temperature, elongation temperature, and

number of cycles can result in non-specific products and different effects on amplification,

which leads to difficulties in comparing results of qPCR.

Considering the important effects of different primers on uni- and multiplex qPCR[29], we

considered the primer melting temperature (Tm) and GC percentage as well as the homogene-

ity of the primers and the target nucleic acid sequence when designing primers. Having close

Tmvalues can improve the amplification of product in multiplex qPCR[30–32]. The uni- and

multiplex qPCR mathematical models built using RSM for the three viruses produced statisti-

cally significant results. Additionally, adequate precision measures the signal to noise ratio,

and this ratio greater than 4 is desirable. The ratios for the models were all greater than 4

(Table 2, S4 Table), indicating models are sufficiently precisionand can be used to guide exper-

iments[33].

Table 4. Performance numbers of BPNN-GA versus RSM models for multiplex qPCR.

parameter RSVa INFa HMPVa

Model I Model II Model I Model II Model I Model II

R2 0.847 0.980 0.746 0.940 0.864 0.976

MAEb 0.633 0.0007 0.613 0.0009 0.483 0.0003

MSEb 0.762 0.0015 0.700 0.0021 0.327 0.0008

aRSV, HMPV, INF are three virus used in this study.
bMAE means the mean absolute error; MSE means the mean square error.

https://doi.org/10.1371/journal.pone.0200962.t004

Table 5. Optimization conditions and predictive Ct value of model I and model II for multiplex qPCR.

Factors RSVb INFb HMPVb

Model I Model II Model I Model II Model I Model II

Aa(μM) 0.290 0.319 0.230 0.319 0.320 0.164

Ba(μM) 0.310 0.319 0.260 0.319 0.320 0.320

Ca(Uc/μL) 0.040 0.081 0.050 0.319 0.030 0.081

Da(mM) 2.550 0.172 2.350 0.319 0.800 0.195

Ea(mM) 0.160 0.319 0.090 0.144 0.080 0.082

Predictive Ct value 21.485 8.3974 19.908 17.4232 24.362 -9.5411

aA: primers, B: probes, C: DNA polymerase, D: Mg2+, E: dNTPs.
bRSV, HMPV, INF are three virus used in this study.
cU: active unit of enzyme.

https://doi.org/10.1371/journal.pone.0200962.t005
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As seen from Polynomial equations of uni- and multiplex qPCR for three viruses, the Mg2+

all significantly affected the Ct value. Meanwhile, Fig 1 also indicate magnesium ion is the

most important parameter influencing the Ct value. Thus, the most important factor under

the conditions used for these experiments is the concentration of magnesium ion.

To our knowledge[34], dNTP and DNA polymerase are competing reagents in PCR sys-

tems. Free magnesium is necessary for DNA polymerase to exert its biological activity; the for-

mation of bonds between dNTP and DNA also requires magnesium ion. Furthermore, in

multiplex PCR with a constant dNTP concentration, the amplification product increases as the

concentration of Mg2+ increases, and non-specific bands are eliminated. However, when an

excessive concentration of Mg2+ is used, amplification slows down and may even stop, which

is speculated to result from a suppression effect[35].

Multiple factors affecting multiplex PCR amplification are consistent with those observed

in this study. Mg2+ significantly influenced the formation of the PCR amplification product; at

appropriate concentrations, positive effects on the amount of PCR product were observed, but

suppression occurred at excessively high concentrations. Under the experimental conditions

used, changes in dNTP concentration did not significantly affect PCR amplification, which

could be due to the range of dNTP concentration was too narrow in this study.

Interestingly, Mg2+ had a positive effect on uniplex PCR but a negative effect on multiplex

qPCR of RSV in this study, which are concordant with prior work[32], DNase concentration

differentially affects the amplification of uni- and multiplex PCR; an increase in DNase con-

centration in uniplex PCR leads to an increase in non-specific product but positively affects

multiplex PCR amplification.

Nonetheless, model I was relatively better than model II under the experimental conditions

used in this study, its prediction function was still unsatisfactory. This could be related to the

limitations of RSM, such as the ability to only build quadratic polynomial functions[36] and

the inability to portray the relationship between multiplex qPCR factors. Although model II

was better at solving non-linear functions[37], it produced over-fittings[28].

As a result, model I was selected for condition optimization. However, in multiplex qPCR,

unlike the concentrations of template-specific primers and probes, the same concentrations

must be used for DNA polymerase, Mg2+, and dNTPs. Therefore, further adjustments to mul-

tiplex qPCR conditions based on parameter optimization results are necessary. For multiplex

qPCR, combined with RSM-3D plots, the smaller Ct values were obtained at greater concen-

trations of primers and probes. However, considering the increase in non-specificity when

primer and probe concentrations are too high and the differences in the optimized conditions

for the primers used for different viruses[32], the primers and probes concentrations suggested

by the RSM models for each virus were determined to be the optimized condition for each

virus. DNA polymerase and Mg2+ behaved similarly within a median range of concentrations

(0.04–0.08 mmol/L and 2.0–2.5 μmol/L respectively), which could be sufficient for all three

viruses. Considering the increase in non-specificity triggered by a high concentration of Mg2

+[29], the concentration used was set at 2.35 mmol/L. dNTPs did not significantly influence

the response value. The final and cost-effective optimal conditions to be used for uni- and mul-

tiplex qPCR are given in Table 6 and S8 Table.

Conclusions

Optimization conditions of uni- and multiplex qPCR were predicted by RSM. By operating

designed experiments, the effects between different variations were investigated. Furthermore,

two mathematical models were constructed via RSM and BPNN-GA. The statistical results of

RSM indicated that Mg2+ was the most important factor in this study. And interestingly, the
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same factor played different role in different reaction system. Though the R2of GA-BPNNs are

all larger than RSM, the predictive Ct value of qPCR is too different from the actual value,

therefore, we believe that in the PCR system optimization, RSM is more appropriate than

ANN, perhaps because its internal relationship, so RSM was performed better in modeling

both uni- and multiplex qPCR.

Supporting information

S1 Fig. RSM-3D contour graph showing interactions between parameters for uniplex

qPCR of RSV. (A: primers, B: probe, D: Mg2+, E: dNTPs) a: The effects of interaction between

primers and Mg2+ on the Ct value; b: The effects of the interaction between probes and Mg2

+on the Ct value; c: The effects of the interaction between Mg2+and dNTPs on the Ct value.

(TIF)

S2 Fig. RSM-3D contour graph showing interactions between parameters for uniplexqPCR

of INF and HMPV. (A: primers, B: probe, C: DNA polymerase, D: Mg2+)a: The effects of

interaction between primers and Mg2+ on the Ct value for uniplex qPCR of INF; b: The effects

of the interaction between probes and Mg2+ on the Ct value for uniplex qPCR of INF; c: The

effects of the interaction between Mg2+and DNA polymerase on the Ct value for uniplex qPCR

of INF; d: The effects of the interaction between Mg2+and DNA polymerase on the Ct value

for uniplex qPCR of HMPV.

(TIF)

S1 Table. Independent variables and levels used for response surface design.

(PDF)

S2 Table. CCD matrix for the independent variables and experimental results from uni-

plexqPCR.

(PDF)

S3 Table. CCD matrix for the independent variables and experimental results from multi-

plex qPCR.

(PDF)

S4 Table. Analysis of variance (ANOVA) for the Ct values of uniplex qPCR using

RSM-CCD.

(PDF)

S5 Table. Five-fold cross-validation of Ct values for uniplex qPCR.

(PDF)

Table 6. Optimal conditions for multiplex qPCR.

Factors RSVb INFb HMPVb

Aa(μmol/L) 0.290 0.230 0.320

Ba(μmol/L) 0.310 0.260 0.320

Ca(Uc/μL) 0.050 0.050 0.050

Da(mmol/L) 2.350 2.350 2.350

Ea(mmol/L) 0.160 0.160 0.160

aA: primers, B: probes, C: DNA polymerase, D: Mg2+, E: dNTPs.
bRSV, HMPV, INF are three virus used in this study.
cU:active unit of enzyme.

https://doi.org/10.1371/journal.pone.0200962.t006
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S6 Table. Performance numbers of BPNN-GA versus RSM models for uniplex qPCR.

(PDF)

S7 Table. Optimization conditions and predictive Ct value of model I and model II for uni-

plex qPCR.

(PDF)

S8 Table. Optimal conditions for uniplex qPCR.

(PDF)

S1 Text. Results of uniplexqPCR.

(PDF)
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