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ABSTRACT: Searching for thiosemicarbazone derivatives with the potential to inhibit
acetylcholinesterase for the treatment of Alzheimer’s disease (AD) is an important
current goal. The QSARKPLS, QSARANN, and QSARSVR models were constructed using
binary fingerprints and physicochemical (PC) descriptors of 129 thiosemicarbazone
compounds screened from a database of 3791 derivatives. The R2 and Q2 values for the
QSARKPLS, QSARANN, and QSARSVR models are greater than 0.925 and 0.713 using
dendritic fingerprint (DF) and PC descriptors, respectively. The in vitro pIC50
activities of four new design-oriented compounds N1, N2, N3, and N4, from the
QSARKPLS model using DFs, are consistent with the experimental results and those
from the QSARANN and QSARSVR models. The designed compounds N1, N2, N3, and
N4 do not violate Lipinski-5 and Veber rules using the ADME and BoiLED-Egg
methods. The binding energy, kcal mol−1, of the novel compounds to the 1ACJ-PDB
protein receptor of the AChE enzyme was also obtained by molecular docking and
dynamics simulations consistent with those predicted from the QSARANN and QSARSVR models. New compounds N1, N2, N3, and
N4 were synthesized, and the experimental in vitro pIC50 activity was determined in agreement with those obtained from in silico
models. The newly synthesized thiosemicarbazones N1, N2, N3, and N4 can inhibit 1ACJ-PDB, which is predicted to be able to
cross the barrier. The DFT B3LYP/def-SV(P)-ECP quantization calculation method was used to calculate EHOMO and ELUMO to
account for the activities of compounds N1, N2, N3, and N4. The quantum calculation results explained are consistent with those
obtained in in silico models. The successful results here may contribute to the search for new drugs for the treatment of AD.

1. INTRODUCTION
In recent years, there has been much interest in exploring and
developing new active drugs, particularly for generating
prospective small-molecular-weight pharmaceuticals interact-
ing with various biological targets.1 This can also be a
streamlined drug design approach. Researching and finding
potential new drugs will take years and be quite expensive.2

Furthermore, successful results are achievable with only a tiny
fraction of novel compounds getting regulatory approval.3

Finally, the medicine will be manufactured and commercial-
ized. This procedure frequently includes numerous preclinical
and clinical experiments. Clinical studies seek to evaluate
whether a novel treatment is safer and more effective than an
existing one.4,5 The primary tasks in the preclinical testing
phase are connected to discovering possible novel drugs.
Potentially active compounds can eventually transform into a
model compound that can be improved later.6,7

One of the key screening strategies resulted in the
performance of new compound searches. A set of test
chemicals may be screened against biochemical or cellular
targets.1,7 The candidate compounds identified during the
screening process are deemed the most appropriate. Following

the screening, both PC and pharmacological parameters were
examined concurrently.8 They were then assessed for their
potential to synthesize a lead compound.9 Because of the
various effector effects, the screening data acquired may have
limitations in general. Positive results can frequently pave the
way for further essential tests. Negative screening results, on
the other hand, may become less important during testing. We
can employ computational methods as an essential option to
overcome the limits of the screening process.10,11

Furthermore, the computational method enables both time-
and cost-effective solutions. Virtual screening procedures can
be a viable option. Virtual screening uses a vast data library of
compounds created and screened using an in silico model to
provide a selection of potentially valuable drugs. This is
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regarded as an effective tool in modern drug discovery.12 Only
when X-ray crystallography data are available is the docking
method preferred. In the absence of X-ray protein crystal
structures, ligand-based approaches such as pharmacological
group mapping, shape-based screening, and fingerprint
similarity may be the only viable and appropriate option. If
there are many test compounds, the ligand-based technique is
favored.13

In practice, the virtual screening process depends on the
data set. The fingerprinting approach will become an extremely
effective tool for detecting new drugs. Furthermore, this
approach efficiently retrieves chemicals that are bound to
protein targets. It can provide a solid foundation for
fragmentation investigations, such as associative atomic
diagrams.14 There can be tens of thousands of different atom
arrangements. Using variable combinations cleared the path for
producing realistic directions in searches using fingerprinting
techniques. The data set size and the intricacy of the
correlation between variables were reduced. This inquiry
could be the best instrument for forecasting a molecule’s
property−expression interactions. Beyond its active properties,
this exhibits chemical diversity and other features.15

Alzheimer’s disease (AD) affects around 44 million
individuals globally. There are currently no cures for AD and
just symptomatic treatments. Given the scarcity of effective
treatments for AD due to its multifactorial pathophysiology,
developing new multitargeted medicines is desirable. AD is one
of the most serious neurological disorders affecting the
elderly.22 Donepezil, an acetylcholinesterase inhibitor, was
used to create a new class of thiosemicarbazone derivatives.23

These thiosemicarbazones are intended to target five important
AD markers: low acetylcholinesterase levels, autophagy
dysfunction, metal homeostasis disruptions, protein aggrega-
tion, and oxidative stress. PBPT (pyridoxal 4-N-(1-benzylpi-
peridin-4-yl) thiosemicarbazone) emerged as the leading
compound among these thiosemicarbazones.23,24 This drug
demonstrated the most promising multifunctional activity, with
very low antiproliferative activity, considerable chelation
efficiency, oxidative stress inhibition, and acetylcholinesterase
inhibitory activity. These varied qualities show PBPT’s
potential as a multifunctional drug for treating AD. The
biological activity of the thiosemicarbazone derivatives was
investigated using acetylcholinesterase (AChE).25 Acetylcholi-
nesterase is engaged in the termination of impulse transmission
by rapidly hydrolyzing the neurotransmitter acetylcholine in
several cholinergic pathways in the central and peripheral
nervous systems. Enzyme inactivation caused by different
inhibitors results in acetylcholine buildup, overstimulation of
nicotinic and muscarinic receptors, and neurotransmission
disturbance. As a result, as related medicines and toxins,
acetylcholinesterase inhibitors interact with the enzyme as their
principal target.26

This introduction discusses the toxicity and pharmacology of
reversible and irreversible acetylcholinesterase-inactivating
drugs. In the case of commonly used reversible inhibitors in
treating neurodegenerative illnesses, special attention should
be paid to the currently approved drugs (donepezil,
rivastigmine, and galantamine) in the pharmacopeia. Pesticides
that cause AD and include toxic carbamates are utilized.26,27

Following that, the irreversible mechanism of acetylcholines-
terase inhibition generated by organophosphorus chemicals
and their specific and nonspecific harmful effects, as well as
irreversible inhibitors of pharmaceutical actions, were

described.25 In addition, the pharmacological therapy of
organophosphate poisoning is discussed, emphasizing oxime
reactants with decreased enzymatic activity employed as
causative medicines following poisoning.28

Furthermore, organophosphorus and carbamate pesticides
can be detoxified in mammals by enzymatic hydrolysis before
reaching their targets in the nervous system. Carboxylesterases
are the most efficient carbamate degraders, whereas phospho-
triesterases are the most effective organophosphate detoxi-
fiers.29 Cholinesterase inhibitors (also known as acetylcholi-
nesterase inhibitors) are a type of medication that prevents
acetylcholine from being broken down usually. Acetylcholine is
the body principal neurotransmitter, acting in the peripheral
and central nervous systems. Acetylcholine, for example, is
released by motor neurons to stimulate muscles; acetylcholi-
nesterase is also involved in arousal, attention, learning,
memory, and motivation. Cholinesterase inhibitors inhibit
the cholinesterase enzyme, which is responsible for the
breakdown of acetylcholine. The concentration of acetylcho-
line in the synaptic cleft rises as a result (the space between
two nerve endings).30 Cholinesterase inhibitors are mostly
used to treat dementia in AD patients. Acetylcholine levels in
the brain are lower in those with AD.27 Cholinesterase
inhibitors have only had a minor impact on dementia
symptoms such as cognition.31 The protein acetylcholinester-
ase is found in the organism homo sapiens. Acetylcholinester-
ase stops signal transduction at the synapse by rapidly
hydrolyzing the released acetylcholine into the synaptic
cleft.27 Cholinesterase inhibitors can produce vasodilation,
pupil constriction, increased sweat, saliva, tear secretion,
decreased heart rate, and mucus secretion in the respiratory
system.30,31 Biological or chemical properties can be precisely
predicted using either a continuum or a categorization.32,33

Nowadays, with the strong development of computer
techniques, machine learning techniques have become
important tools applied in different scientific fields. With the
development of supervised machine learning methods such as
support vector regression, partial least-squares (PLS) regres-
sion, and artificial neural networks, these methods have now
been significantly improved (SVR). PC descriptors of the
structures and molecular fingerprints are used in these
techniques.34,35,38 The potential for solving issues has been
dramatically increased as a result. Using the methods of
artificial neural network QSARANN, support vector regression
QSARSVR, and kernel-based PLS regression QSARKPLS, models
were created from the relation between molecular descriptors
and activity.17,18,38 A trustworthy predictive QSAR model has
been created that can be utilized to direct the creation of new
chemicals and routine synthesis or acquisition of additional
compounds. Applying a specific QSAR model to a set of
possible compounds can help identify which ones have the
necessary qualities.18,38 This could help determine which
aspect of chemical structure contributes favorably and
adversely to the expected behavior. Instead of merely listing
and testing a considerably more significant number of
compounds, this method enables the logical design of the
chemical structure by altering the structure by changing the
next R functional group.17,38 To achieve this goal, a variety of
QSAR models can be applied. Recently, supervised machine
learning algorithms have advanced significantly. Important
elements of this approach include recursive partitioning and
the QSAR method using 2D descriptors or chemical
fingerprints. QSAR can also be applied to chemical modeling.
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A highly efficient QSARKPLS method based on unrestricted
chemical fingerprinting in combination with kernel-based
(KPLS) is also used.17,18,38

This study reports the design and synthesis of the
acetylcholinesterase inhibitory potential quantum dot thio-
semicarbazone derivatives based on in silico models, including
QSARKPLS, QSARANN, and QSARSVR models, and docking and
molecular dynamics (MD) simulations. Binary fingerprints and
molecular physicochemical (PC) descriptors were used to
construct the QSAR models, prediction compound activities,
and decipher compound activities. Binary fingerprint dis-
tinctiveness is reduced to a single chemical component. The
molecular structure is readily solved by the QSARKPLS model
using the atomic contributions of each R substituent. This
explains the structural characteristics that are advantageous and
disadvantageous while developing novel substances. A
sufficient amount of data is provided by the neural network
model QSARANN to predict the molecular activity effectively.
With a molecular topology that is inspired, the QSARANN
model is applied. The thiosemicarbazone class, which inhibits
acetylcholinesterase for pharmacological objectives, was
studied using the QSARANN model. In this paper, we also
report employing docking calculation approaches, QSARANN
and QSARSVR models, and models to simultaneously predict in
vitro activity and binding energy (BE).

2. DATA SETS AND METHODS
2.1. Biodataset Selection. The data were obtained from

PubChem and ChEMBL databases with 3791 thiosemicarba-
zone compounds.39 This study performed data screening based
on the Agglomerative Hierarchical Clustering (AHC)
statistical technique.40 Agglomerative Hierarchical Clustering
was used to make up homogeneous groups of objects (classes)
based on their description by a set of variables or from a matrix
describing the similarity or dissimilarity between the objects.
After the categorical screening, 129 compounds, including
inhibitory activity on acetylcholinesterase, were selected, as
given in Table S1.39 The 1ACJ-PDB protein is acetylcholines-
terase selected from the PDB database of Tetronarce
californica.41 The binding sites of acetylcholinesterase for the
quaternary ligands were investigated by X-ray crystallography
and photosynthetic labeling. The crystal structure of the
complex with the ligand was determined.41

The data set was randomly divided into a training set and a
test set with a proportionality of 70:30, respectively. The IC50
(nM) concentration activity values were converted to pIC50
(−log IC50) values.

39 The descriptive statistics for the training
and test data set are shown in Table 1. Before building the
QSAR model, the distribution of the activity data sets was

checked,44 as shown in Figure 1. Compounds were selected to
be suitable for the QSAR study. The distribution of activities of

the compounds met the requirement of the standard
distribution. The pIC50 activities of two paired data sets had
high similarity in the range of 3.435−7.435 for the training set
and 3.397−6.205 for the test set. All structures are optimized
down to minimal energy using the UFF force field. This force
field is capable of describing electrostatic interactions well.45

2.2. Selection of Molecular Descriptors. The molecular
descriptors need to be computed to build the QSAR models
and are mainly combined with binary fingerprints and PC
descriptors.17,18 The binary fingerprints can be obtained from
molecular structures. There are different groups of fingerprints.
The selection of each type of fingerprint depends on the
molecular structure. Fingerprint types are often selected based
on the error of the model. There are three commonly used
fingerprint types: linear fingerprints (LFs), radial fingerprints
(RFs), and dendritic fingerprints (DFs) that consist of linear
and branched fragments.19

Besides, there are also PC descriptors such as molecular
weight (MW), octanol−water partition (A log P), hydrogen
bond acceptors (HBAs), hydrogen bond donors (HBDs),
molar refraction (MR), polar surface area (PSA), total polar
surface area (TPSA), molecular polarizability (Polar), number
of rotatable bonds (nRB), electron topological states (Estate),
chiral center count (CCC), heavy atom count (HAC), and
ring count (RC).17,36

2.3. QSARKPLS Model. The QSARKPLS model is built on the
same essential principle as when building a QSAR model from
a training set of compounds. A group of independent x
variables are initially assembled from a combination of
fingerprints that “occurred” in at least one compound in the
training set. Therefore, each variable x is a descriptor with a
binary value (0/1) representing a particular chemical fragment
found at least once. A given variable x will be discarded if its
mean is 7 or more standard deviations (SDs) from the mean of
all x variables in the group.46,47 This process succeeds in
removing fingerprints that are close to zero or almost always
very close to 1. Additional x variables are removed by
removing one variable from each pair with a more significant
correlation than 0.95.46,47 The remaining x variables are then
automatically scaled (zero means and 1 SD), with all scaling
factors saved to apply to any further test set data.17,47 For a pair

Table 1. Descriptive Statistics for the Training and Test Sets
for Acetylcholinesterase (AChE)

statistical values training set test set

mean 4.807 4.815
standard error 0.076 0.112
SD 0.720 0.702
sample variance 0.519 0.493
range 4.000 2.808
minimum 3.435 3.397
maximum 7.435 6.205
observations 90 39

Figure 1. Distribution of training and test data.
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of auto-scaled variables, represented by the column vectors xi
and xj, the kernel matrix K is defined as

K d d x xexp( / ) withij ij ij i j
2 2= = (1)

Here, the σ parameter is nonlinear and can be adjusted to
optimize the accuracy of the missed predictions. The kernel
matrix of the training and test sets is centralized, and the
QSARKPLS model using the five latent factors is optimal. This
results in significantly fluctuating σ values upon random seed
selection. However, the predictions of the QSARKPLS model are
insensitive to σ values of 20 or greater.17 Therefore, σ is kept
constant at 20 for all calculations.
2.4. QSARANN Model. The overall model of the built and

tested neural network can simultaneously predict the pIC50
activity and BE for the receptor active site of the AChE protein
using a combination of selected fingerprints and PC
descriptors.18,37 The neural network model has a standard
structure: an input layer, a hidden layer, and an output layer.
The neural network models are trained using the Broyden−
Fletcher−Goldfarb−Shanno (BFGS) algorithm.48
We choose the multilayer neural network model. The

building process of the QSARANN model is done by the
automated searching technique SANN of the neural network
architecture.18 The neurons on the hidden layer are automati-
cally searched for between 8 and 25 neurons. The data set in
Table S1 is divided into 93 (70%) compounds in the training
set, 18 (15%) compounds in the validation set, and 18 (15%)
compounds in the testing set. The automatically selected
training algorithm is related to the learning rate, momentum,
and target epochs. The specified learning rate is used to adjust
the neural network weights. A gradient descent algorithm is
also used. It is a first-order optimization algorithm that tries to
move step by step to successively lower points in the search
space to determine the minimum position. The training
algorithm BFGS48,49 is a powerful quadratic training algorithm
with fast convergence. The epochs 10000 are used during the
neural network training to adjust the weights to reduce the
error.
The model QSARANN I(m)-HL(n)-O(k) includes the input

layer I(m) with m input neurons as dendritic binary
fingerprints, the PC descriptors, and a mixture of DF and
PC descriptors; the hidden layer HL(n) with n hidden
neurons; and the output layer O(k) with k output neurons that
consists of the pIC50 biological activity and BE, kcal mol−1, of
the ligands to the receptor active site.
2.5. Building the QSARSVR Model. The BE and pIC50

activity data sets are nonlinearly distributed data. The
QSARANN model simultaneously predicts the pIC50 values
and BEs for the compounds in the test set and the newly
designed compounds. This study also builds a QSAR model
based on a support vector regression technique. This is based
on the concept of a decision plane defining decision
boundaries. Machine learning techniques also include the
support vector regression method. This method uses the
separation plane between a data set with different distributed
pIC50 and BE values. This method is widely used for nonlinear
data sets in different areas. Compounds can be initially
mapped, i.e., rearranged, using a set of mathematical functions
known as the kernel. The process of rearranging compounds is
called mapping. Instead of making a complicated curve,
optimal linearity can use the linear separability of compounds
with different pIC50 and BE values to separate them.

The functional dependence of the variables pIC50 and BE on
a set of molecular descriptors in the support vector regression
model (QSARSVR) needs to be estimated.

50,51 Similar to other
regression methods, the relationship between the molecular
descriptors and the pIC50 activities and BE values are given by
a deterministic function f(x) plus the addition of some additive
noise

y f x( ) noise= + (2)

A process can consist of sequential optimization of an error
function. This process includes classification and sequential
optimization of the error function. A function f(x) needs to be
defined to allow accurate prediction of new cases. This can be
achieved by training the QSARSVR model on a training set.

50,51

Depending on the definition of the error function f(x), the
function type can be identified. The first error function used is
known as the epsilon-SVM regression

w w C C0.5
i

N

i
i

N

i
T

1 1

+ + *
= = (3)

Kernel radial basis function (RBF) can be chosen for
constructing the Support Vector Machines Regression
model.50,51 Here, C is the capacity constant and should be
chosen carefully to avoid overfitting, w is the vector of
coefficients, ξi represents the parameters for handling non-
separable data (inputs), and the i index labels the N training
cases. It should be noted that the larger the C, the more the
error is penalized.18,51

K X X X X( , ) exp( )i j i j
2= { | | } (4)

where K(Xi·Xj) = ϕXi·ϕXj; i.e., the kernel function represents a
dot product of input data points mapped into the higher
dimensional feature space by transformation ϕ. The kernel ϕ is
used to transform data from the independent input to the
feature space. Value gamma γ is an adjustable parameter of
certain kernel functions.
2.6. Molecular Docking Calculations. 2.6.1. Protein

Preparation. To perform docking of protein receptor
interactors, we considered the component-target pathway
and protein interaction network and analyzed their importance
in the KEGG pathway. The 1ACJ-PDB protein construct was
selected as a molecular binding target from the RCSB PDB
database (https://www.pdb.org/).41 The ligands and solvents
were removed from the protein structures�these structures
were then stored in PDB format after hydrogenation and
optimization. The optimal energy of the protein after
optimization is −6151.25 kcal mol−1. The active ingredients
are screened and compared with the chemical components.
The processed target protein and effective compound
structures are added into AutoDock for molecular binding.52,53

After binding tests, the most suitable structure is selected based
on the BE value. The 3D structure of the 1ACJ-PDB protein
with the active target site is prepared for binding, as shown in
Figure 2.
The receptor is first mapped to a grid to identify a binding

site. The receptor occupies grid points within a given distance
of the marked receptor atoms and, therefore, is not considered
the site for ligand atoms. The common practice for
determining a binding site is based on a known ligand position
already in an active site in coordinate x = 3.214, y = 65.854,
and z = 65.167, as illustrated in Figure 2. This coordinate site is
used for binding 129 compounds and novel compounds to
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determine the significant interaction that inhibits the 1ACJ-
PDB protein. Receptor−ligand interactions allow the inves-
tigation of the weak binding and nonbinding interactions
between small ligands and protein receptors. Attaching ligands
to proteins is a complex and challenging task. Binding is usually
approximate in that the structure of the ligand and acceptor
does not change during binding. The most common
approximation for binding is to hold the protein as a rigid
structure and attach a series of ligands to the active site. This
study implements docking calculation in this way.
2.6.2. Ligand Preparation. A database of 129 compounds in

Table S1 and newly designed compounds was created in
research. The optimal energy of these compounds is minimized
using the force field (UFF) with a total number of steps of
2000.45 The optimization process is stopped to obtain stable
optimal energy if the energy difference is less than 0.05. The
structures of the ligand molecules were reconstructed using
ChemDraw Ultra and saved in SDF file format. The energy-
minimized compounds were then transferred to virtual
screening by docking using the Autodock technique to
simulate the ligand docking into the active site of the 1ACJ-
PDB protein.41

2.7. MD Simulations. Simulations of MD often include
many phases, each of which is carried out at a different
pressure or temperature. After performing the docking
calculation, we can carry out the MD simulation to determine
the ability of ligand binding to the active site of the 1ACJ-PDB
protein of AChE. The protein−ligand complex was placed in
an aqueous solvent box containing 13,603 molecules of H2O
along with NaCl at a concentration of 0.15 M. MD
simulation42,43 was performed under the NPT condition with
N = 49,250 atoms, and the system is heated from 0 to T = 300
K, pressure P = 1.0325 bar. The 1ACJ-PDB protein consists of
350 residuals and 4218 heavy atoms. The equilibration and
production simulation times are given a run duration of 200 ns.

2.8. Synthesis Path of Potential Inhibitors. The newly
designed thiosemicarbazones with the potential to inhibit the
1ACJ-PDB protein of AChE in the treatment of AD have been
predicted by QSAR models and demonstrated by docking and
MD simulations. The QSARKPLS and PharmaRQSAR models
were combined to assess the effects of substituents R1, R2, R3,
and R4 in each compound with an eye toward designing new
compounds. The synthesis ways of newly designed thiosemi-
carbazones can be started from the primary compounds. We
used a mixture of mainly thiosemicarbazone derivatives and a
few suitable compounds such as piperidine-4-amine, di-
(pyridine-2-yl)methanone, N-ethylcyclohexanamine, and iso-
thiocyanic acid in EtOH, NaOH, or HCl.65 The mixtures were
implemented in the range of 4 h. After finishing the reaction,
the solvents were evaporated under vacuum, and the solids
formed were crystallized from a suitable DMF solvent65,66 to
form the solid thiosemicarbazones, respectively.
The spectral data of 1H NMR and 13C NMR in DMSO-d6,

15N NMR in chloroform-d solvent, and chemical shifts
expressed in single ppm taste and the results of the elemental
analysis demonstrated the chemical structures of new
thiosemicarbazones. The mass spectrometry (MS) data of
new thiosemicarbazones were also used for identification.10

The results of the spectral and elemental analysis of the
compounds were consistent with the designed structures. In
addition, we also determined the melting points on the
thermoelectric device, which are not calibrated. The analyzed
results were performed at different analysis centers. We suggest
four newly designed thiosemicarbazone compounds, N1, N2,
N3, and N4, which can be synthesized from the following
reaction pathways.
The following reaction synthesizes the newly designed

compound N1 (Scheme 1).
The following reaction synthesizes the newly designed

compound N2 (Scheme 2).
The following reaction synthesizes the newly designed

compound N3 (Scheme 3).
The following reaction synthesizes the newly designed

compound N4 (Scheme 4).
2.9. Quantum Calculations. Quantum chemical calcu-

lations can be used to find out if the newly made molecules can
interact with amino acids at the active receptor sites in
proteins. It may be interesting to consider the mechanism of
potential compounds that inhibit the 1ACJ-PDB protein
acetylcholinesterase (AChE) against AD. Theoretical level
DFT calculations are carried out on a Turbomole 2016 using
the B3LYP method and the basis set def-SVP.67,68 For
optimizing the geometry of new hypothetical potential

Figure 2. The active target site of the AChE receptor includes amino
acids TRP84, GLY118, GLU199, PHE330, TRP432, HIS440, and
GLY441 from receptor cavities.

Scheme 1. Synthesis Diagram of the New Compound (N1)
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compounds, there are no symmetry constraints. Additionally,
the relative effective core potential (ECP) is also included in
the calculation. To assess the strength of chemical bonds in
compounds, the ideal molecular energies at the B3LYP/def-
SVP level67,68 are employed. To examine how their
intermolecular interactions could affect their capacity to
generate donor−acceptor bonds, natural binding orbitals
(NBOs) were conducted. Based on the energy highest
occupied molecular orbital (HOMO), or EHOMO, which
describes a molecule’s propensity to give up electrons, while
the lowest unoccupied molecular orbital (LUMO), or ELUMO,
describes a molecule’s capacity to take electrons, the electron
density distribution is established.69 The energy gap ΔE =
ELUMO − EHOMO reflects the proclivity of the organic
compounds to effectively bond the receptor interaction surface.
I = −EHOMO and A = −ELUMO are the HOMO and LUMO
energies, respectively, that are used to compute the ionization
potential (I) and electron affinity (A) of the possible inhibitors.

3. RESULTS AND DISCUSSION
3.1. QSARKPLS Model. Binary fingerprints are used to build

QSARKPLS models because it has many key advantages. The
QSARKPLS model is more favorable than other methods. The
three types of fingerprints used are linear, radial, and dendritic
binary. They are also used for virtual screening. In addition,
latent factors in the range of 3−6 are also used to build the
QSARKPLS models. These latent factor numbers can be
changed automatically to prevent the SD of the QSARKPLS
model from falling below 0.4. We can choose a nonlinear
kernel level of 0.05. The results of building the QSARKPLS

model based on the exploration and selection of the number of
latent factors and fingerprint types are shown in Table 2.

The QSARKPLS model is built based on the kernel-based PLS
regression to select attributes on the structural data set and
apply this model to other data sets. The QSARKPLS model is
available with the fingerprint as the independent variable x.
The binary fingerprints in the QSARKPLS model are built as a
linear combination of the input x variables by correlating them
with the y variable. This method is helpful for large numbers of
variables x, with both under- and overdetermined systems.
Table 2 shows the statistical values R2 and Q2 of the training
and test set for the QSARKPLS models built using the three

Scheme 2. Synthesis Diagram of the New Compound (N2)

Scheme 3. Synthesis Diagram of the New Compound (N3)

Scheme 4. Synthesis Diagram of the New Compound (N4)

Table 2. Comparison of Training and Prediction Ability of
QSARKPLS Models Based on Groups of Fingerprints and
Latent Factors of Change

no. latent factor fingerprints R2training Q2
test

1 4 dendritic 0.961 0.720
2 3 dendritic 0.925 0.713
3 6 dendritic 0.996 0.722
4 5 dendritic 0.991 0.750
5 5 linear 0.986 0.688
6 6 linear 0.994 0.710
7 4 linear 0.971 0.675
8 3 linear 0.945 0.674
9 5 radial 0.978 0.653
10 4 radial 0.965 0.644
11 3 radial 0.942 0.636
12 6 radial 0.987 0.680
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best-performing fingerprint types and latent factors, respec-
tively, as shown in Figure 3.
We can see that the dendritic binary fingerprint and latent

factor value of 5 gave optimal R2 and Q2 values calculated by
eqs 5 and 6. In addition, Table 2 and Figure 3 show that the
DF was better than the others, on average, for training and test
sets. Thus, we can choose the optimal latent factor in the
predictive results of the QSARKPLS model.
Values R2 and Q2 are used to evaluate the QSAR models for

the fitting training set and the test set. The values R2 and
Q244,48,59 are calculated by the following formula.

R
y y

y y
1

( )

( )
i i i

i i

2
training 2

training
training

2=
(5)

Q
y y

y y
1

( )

( )
i i i

i i

2
test 2

test
test

2=
(6)

Here, y̅training and y̅test are the average observed activities of the
training and test sets, respectively. Moreover, yi and ŷi are the
experimental and calculated activities from the QSAR models.
Interestingly, the advantage of DFs in diverse applications

has been demonstrated in many recent studies. Many scientists
have supported this by using fingerprints to build QSAR
models that have been published in various journals.16−21 We
can also see that this fingerprint is very flexible and powerful
for structural characterization. For this reason, DFs can be used
in all subsequent work here, as exhibited in Figure 4.
The QSAR model can easily infer structure−activity

relationships (SARs) by carefully analyzing well-designed
compounds. A certain complexity and subtlety of this
relationship can be challenging to unravel without a reliable
model. Furthermore, the QSAR model can generally help
visualize the advantages and disadvantages of a molecular
structure. This could help bridge the gap between simply
figuring out what properties are essential for bioactivity. From
this, it is possible to identify and design new compounds that

Figure 3. Optimal surfaces R2 and Q2 depend on latent factors and binary fingerprint groups: (a) training set and (b) test sets.

Figure 4. Correlation between experimental and predicted pIC50 activity from QSARKPLS using a latent factor of 5 and independent variables: (a)
DF descriptor and (b) mixed DF and PC descriptors; symbols: (●) training set; (green ●) test set; (orange ■) 95% training set; and (peach ■)
95% prediction.
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can be synthesized or obtained as part of a potential optimal
compound.

The QSARKPLS model can help us visualize the significant
effects of structural factors on bioactivity. The QSARKPLS

Figure 5. The significant effects of R substituents for inhibition activity 1ACJ-PDB of AChE are visualized using the PharmaRQSAR and QSARKPLS
models with the molecular descriptors DF: (a) effects of R substituents R1, R2, R3, and R4; (b) absolute importance R substituents; (c) weak
activity; (d) moderate activity; and (e) vigorous activity.

Table 3. Predicted Results of pIC50 activity of Newly Designed Compounds N1, N2, N3, and N4 Resulting from the QSARKPLS
Model Using the DF and PC Descriptors and a Mixture of DF and PC
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model was built from DFs and has shown that the red position
indicates vigorous activity, and the green position describes
low activity when changing the R substituents, as illustrated in
Figure 5a. We assessed the effect of a substituent using the
PharmaRQSAR technique,20,58 as depicted in Figure 5. The R
group analysis defines the substituents attached to a core and
allows the properties of the R substituent to be displayed.
Cores can be specified using the smarts pattern or defined by
the maximum common substructure obtained from a
PharmaRQSAR run.
Based on the results of exploring the influence of R

substituents using the PharmaRQSAR models, it is easy to
orient the design of new substances, which can envision the
design of new compounds with more vigorous activity. We
chose the ligand Li39 in Table S1 as the lead compound to
experimentally design four new compounds, N1, N2, N3, and
N4, and were able to synthesize them, as shown in Table 3.
The significant influence of the R substituents at the four
respective positions is depicted in Figure 5b.
Furthermore, Figure 5c,d,e shows the QSARKPLS model

using the mixture of DF and PC descriptors that allow
complete visualization of the atomic effect. The QSARKPLS
model built from DFs quickly detects the changes in
compounds with weak, medium, and vigorous activities.
The atomic sites that increase the predicted activity are

colored red, and the atoms that decrease the activity are shown
in green. The color intensity already reflects the magnitude of
the effect. Of particular note is the magnitude representing the
activity signals of the atomic effect at a particular location in
the chemical structure skeleton. The fingerprint results indicate
that the molecular fragments consist of atoms from a fixed
structural skeleton and atoms from the change region.
Changing a substituent can add and remove a part from
fixed or change regions. It can also change from weak to
moderate and vigorous activity.
The structural effect is achieved in a good direction,

resulting in an atom of the molecular structural skeleton
bound to such sites that can turn from green to red, as shown
in Figure 4 and Table 3. We can see the molecular skeleton
when there is an impact that induces a conjugation, and such
molecular modeling suggests that parts of the molecular
skeleton may be unrelated or unfavorable except when the
correct substituent is attached.
We can exploit these transformations to synthesize or

acquire new compounds that change from one sequence to the
next. However, the general procedure is to identify favorable
features of moderate and vigorous bioactivity of bound R
substituents and transformations. This can infer and lead to
favorable combinations of properties. Of course, there is
nothing new in such an approach, but it is made much easier
by QSARKPLS models. Thus, we can get the influence of the R
substituent on the part of the structural skeleton. We see that

four major substituents can be attached to the molecular
skeleton with the effect depicted by colored arrows such as
green, gray, purple, and red, as shown in Figure 4 and Table 3.
The R substituent bonding to each site is depicted by color
corresponding to the biological effect upon attaching to the
molecular skeleton.
The molecular structure of the lead compound Li39 is a

relatively active substance, containing R1, R2, R3, and R4
substituents bonded to thiosemicarbazone skeleton sites with
different color effects, as described in Table 3. Aromatic ring
substituents are important groups R1 and R3, which
significantly increase the activity of pIC50. New compounds
can be designed toward this change of R1 and R3 substituents.
The pIC50 activities of the four newly designed compounds
N1, N2, N3, and N4 were predicted by the QSARKPLS model
using DF, PC, and mixed DF and PC descriptors. The
QSARKPLS model successfully demonstrated that the activity of
the novel substances changed appropriately according to the
rules shown in Table 3.
3.2. QSARANN Model. The results of building the neural

network architecture I(m)-HL(n)-O(k) are obtained by using
different input neurons. 200 dendritic binary fingerprint
descriptors are used as neurons on the input layer I(m); and
biologically active pIC50 and BE, kcal·mol−1 are used as
neurons on the output layer with k = 2; the optimal number of
neurons on the hidden layer with n = 15 was determined by
the genetic algorithm. In this case, the neural network
architecture I(200)-HL(15)-O(2) is defined. Similarly, 13
PC descriptors are used as neurons on the input layer I(m),
and the number of hidden neurons n = 6 is optimized, so the
neural network architecture is I(13)-HL (6)-O(2). Using
mixed descriptors, including DF and PC descriptors as input
neurons on the input layer I(m), the optimal number of hidden
neurons, in this case, is n = 12, so the neural network
architecture is I(213)-HL(12)-O(2).
The training and test sets given in Table S1 were used to

build and validate the QSARANN models. The applicability of
these neural network architectures is cross-validated by training
according to the learning parameters, and the training
algorithm is fixed, as given in Section 2.4. In the training
process of these neural networks, we found that higher learning
rates can converge faster but exhibit greater instability. A
learning rate of 0.7 or less is reasonable. Higher learning rates
can cause weight differences. The learning rate was selected
using a gradient descent algorithm. Momentum 0.7 is also an
important parameter used to compensate for slow con-
vergence, and if the weighted adjustment is consistent in one
direction, “speed up”. Momentum usually dramatically
increases the convergence rate, and higher rates can reduce
the learning rate to increase the stability without much loss in
the convergence rate. The validation results of these network

Table 4. Validation Results of the QSARANN Models I(m)-HL(n)-O(k) Using the DF and PC Descriptors and a Mixture of
These Descriptors

QSARANN model I(m)-HL(n)-O(k) R2training R2test Q2
valid training error test error validation error training algorithm

DFs

I(200)-HL(15)-O(2) 0.961 0.832 0.809 0.069 0.306 0.507 BFGS
PC Descriptors

I(13)-HL(6)-O(2) 0.956 0.937 0.929 0.095 0.185 0.260 BFGS
DF and PC Descriptors

I(213)-HL(12)-O(2) 0.988 0.907 0.919 0.024 0.262 0.259 BFGS
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architectures with different input and hidden neurons are given
in Table 4.
The QSARANN I(m)-HL(n)-O(k) models were selected

based on the standard least-squares technique to confirm the
responsiveness of the data in the case of random effects.
Therefore, the test results of available observations for each
case are efficient and valid. The predicted quality of the

QSARANN models can be compared with those from the
experimental data in Table S1 and the QSARKPLS models using
the DF, PC, and mixed descriptors of the DF and PC,
respectively, as illustrated in Table S2. Scatter correlation plots
for the QSARANN models correspond to the molecular
descriptors, as shown in Figure 6.

Figure 6. Correlation between experimental and predicted pIC50 and BE values from the QSARANN models for the training and test set using input
neurons: (a,b) DF descriptor; (c,d) PC descriptor; and (e,f) mixed descriptors of the DF and PC; symbols: (●) training set; (green ●) test set;
(blue ●) new compound; (orange ■) 95% training set; and (peach ■) 95% prediction.
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The QSARANN models seem to give better predicted results
than the QSARKPLS models. Significantly, using the DFs
combined with the PC descriptors yield more accurate
predicted results, as shown in Tables 4 and S2. Furthermore,
the R2training values range from 0.956 to 0.988; the R2test values
range from 0.832 to 0.937; the Q2

valid values range from 0.809
to 0.929. All these statistical values demonstrate that the
QSARANN models have accurate predictive quality. The
predicted results from the QSARKPLS and QSARANN models

built with the mixed descriptors of DF and PC descriptors have
proven to be better. Most importantly, the R2test and Q2

valid
values exceed 0.8.
Thus, we can see that the QSARANN models using a

combination of DF and PC descriptors predict the average
accuracy between the two approaches. The prediction results
of these QSARANN models are much closer to the experimental
value than those using only DFs. In this case, the RMSE values
obtained for pIC50 and BE are more strongly observed for the

Table 5. Optimal Parameters Gamma (γ) and Capacity (C) of the QSARSVR Models Were Selected for Predicting the pIC50
Values and BE, kcal mol−1, by Using the Grid Surface Technique

pIC50, mM BE, kcal mol−1

R2 C 0.01 0.1 1 10 100 R2 C 0.01 0.1 1 10 100
gamma 1 2 3 4 5 gamma 1 2 3 4 5
0.01 1 0.641 0.735 0.893 0.945 0.960 0.01 1 0.567 0.611 0.676 0.773 0.827
0.1 2 0.611 0.869 0.945 0.965 0.964 0.1 2 0.684 0.726 0.809 0.869 0.897
1 3 0.632 0.825 0.964 0.966 0.966 1 3 0.649 0.790 0.908 0.938 0.953
10 4 0.580 0.766 0.976 0.975 0.975 10 4 0.622 0.741 0.964 0.965 0.965
100 5 0.696 0.788 0.979 0.978 0.978 100 5 0.730 0.792 0.970 0.970 0.970
RMSECV C 0.01 0.1 1 10 100 RMSECV C 0.01 0.1 1 10 100
gamma 1 2 3 4 5 gamma 1 2 3 4 5
0.01 1 0.727 0.590 0.296 0.204 0.186 0.01 1 1.168 1.008 0.726 0.623 0.610
0.1 2 0.637 0.345 0.231 0.221 0.203 0.1 2 1.033 0.690 0.615 0.618 0.742
1 3 0.615 0.400 0.323 0.329 0.327 1 3 1.002 0.701 0.606 0.740 0.807
10 4 0.733 0.624 0.546 0.554 0.554 10 4 1.168 1.015 0.846 0.873 0.849
100 5 0.747 0.724 0.687 0.708 0.683 100 5 1.182 1.158 1.052 1.088 1.048

Figure 7. Contour plots for searching optimal parameters gamma, γ, and capacity, C; the optimal region of the R2 values: (a) pIC50 activity and (b)
BE; the optimal region of the RMSEC values: (c) pIC50 activity and (d) BE.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07934
ACS Omega 2023, 8, 11076−11099

11086

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c07934/suppl_file/ao2c07934_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07934?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07934?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07934?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c07934?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


compounds in the test set and the newly designed substances,
as described in Tables 4 and S2. However, the results can be
obtained using different QSARANN models. The QSARANN
model that combines the DF and PC molecular descriptors
performs better than the fingerprint-only model. Indeed, the
predicted results are surprising for the test and newly designed
compounds. The combined models yield a significantly higher
Q2 than the other two models.

3.3. QSARSVR Model. The QSARSVR model is built based
on the optimal choice of kernel function types, the kernel
parameter capacity (C), and gamma (γ). The multiplication
functions include linear function, polynomial function, radial
function RBF, and sigmoid function. By far, the kernel
function-type RBF is the most common choice used in
support vector machine regression. This is mainly based on
their finite and localized responses over the entire range of the
real x-axis. The RMSEC (mean squared error from calibration)

Figure 8. Correlation between experimental and predicted pIC50 values from the QSARSVR models. (a,b) DF descriptor; (c,d) PC descriptor; and
(e,f) mixed descriptors of the DF and PC; symbols: (●) training set; (green ●) test set; (blue ●) new compound; (orange ■) 95% training set;
and (peach ■) 95% prediction.
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and RMSECV (from cross-validation) values were used to
confirm the predictive quality of the QSARSVR model relative
to the reference. This process is performed so that the optimal
parameter capacity (C) and gamma (γ) can be found, as given
in Table 5 and Figure 7. The difference between calibration
and cross-validation is expressed as equal to the RMSEC and
RMSECV values. For QSARSVR models in general, RMSECV
should preferably be close to RMSEC, which indicates that the
QSARSVR model is not overfitted. This is calculated by

n
y yRMSECV

1
( )

i

n

i i
1

2=
= (7)

Here, y and ŷi are the activity values calculated from the QSAR
models.
We can utilize the optimal parameter of gamma (γ) in the

range 0.01−0.10 for pIC50 activity and gamma of 0.005−0.010
for BE, kcal mol−1, using input variables DF, PC, and
combined descriptors of DFs and PC. The correlation
coefficients R2 selected must be the largest, and RMSECV
values were the smallest, respectively, as shown in Table 5. The
QSARSVR model was constructed using the DFs, the number of
support vectors is 78 for pIC50 bioactivity, and the number of
support vectors is 90 for BE. The correlation coefficients
R2training are 0.940 and 0.958 for pIC50 activity and BE,
respectively. Using the PC descriptors for constructing the
QSARSVR model, the number of support vectors for pIC50
bioactivity and BE correspond to 28 and 82, respectively. The
correlation coefficient R2training was equal to 0.972 and 0.953 for
pIC50 bioactivity and BE, respectively. We also used the
combined descriptors of DFs and PC for constructing the
QSARSVR model. Here, the number of support vectors for
pIC50 activity and BE correspond to 70 and 85, respectively.
The correlation coefficients R2training were 0.940 and 0.937 for
pIC50 and BE, respectively. All results and predictive errors of
pIC50 and BE, kcal mol−1, for ligands in the test set in Table S1
are determined using the QSARSVR models, as given in Tables
S2 and S3. We have successfully built the QSARKPLS,
QSARANN, and QSARSVR models. All QSAR models have
demonstrated significant advantages in supporting the design
of new compounds and predicting the pIC50 bioactivity and
BE. The QSAR models did well on training and test sets
resulting from the screening process of the ChEMBL Database,
as illustrated in Table S1. Thus, these constructed QSAR
models also perform possibly well for diverse and complex data
sets. Indeed, a diverse range of thiosemicarbazones might be
well suited for these QSAR models.
This study performed rigorous testing of hypotheses

regarding the QSAR model and thiosemicarbazone molecular
structures. The QSAR models built here reconciled the overall
difference in chemical structure and the ability of different
bonding types of molecular structures. Therefore, QSAR

models can have any implications that are still unclear and can
also be elucidated. The QSAR models are well predicted across
the relevant test sets; those QSAR models can likely reliably
tolerate a wide variety of compounds. This gives the critical
value that the statistics show. The fingerprint-based QSARKPLS
model can effectively support molecular design on diverse data
sets. This can be accomplished by combining training sets and
building a ligand−receptor binding model that includes all
active targets of the 1ACJ-PDB protein AChE.
The results of building QSAR models to predict pIC50

biological activity and BE have shown the quality of QSAR
models, as shown in Figure 8. The error of the predictions for
the test sets was received to be positive, as shown in Tables S2
and S3. To test the inhibitory activity of the newly designed
thiosemicarbazones, we performed further docking calculation
stages to validate and predict the binding ability of the newly
designed compounds on the active target site of the 1ACJ-PDB
receptor. Here, the machine learning models QSARANN and
QSARSVR using combined descriptors of DF and PC with a
latent factor of 5 predict pIC50 bioactivity and BE to the target
site on 1ACJ-PDB. Before performing the docking calculation
for the newly designed compounds in Table 3, we tested the
drug-likeness properties of four newly designed compounds,
N1, N2, N3, and N4, by a virtual screening using the Lipinski-
5, Ghose, Veber, Egan, and Muegge rules.
In addition, we can also see in Figures 4, 6, and 8 that some

anomalies appear. They are outside the prediction and training
regions at the 95% confidence level. Some of these scores
represent too small a percentage of the total sample in the
training and control groups. This also does not significantly
affect the predictive power of QSAR models related to new
compounds, as shown in Figure 12. The prediction results for
new compounds are all within the prediction domain at the
95% confidence level (dark pink region). Moreover, if the
training process is prolonged, it can also get results for most
compounds in the 95% confidence region. The obtained
QSARANN and QSARSVR models produce more distributed
prediction results and, in particular, predict new compounds,
which can cause inaccuracy if the training process is prolonged.
We may find that our prediction results are thus optimal. Thus,
these QSAR models are not overfit. The obtained QSAR
models are optimally capable of reliably predicting new
compounds.
These rules aid in assessing whether new substances have

the most drug-like activity. Compounds that respond to drug-
like activity should not violate the Lipinski-5 rule for molecular
mass, HBD, HBA, and log P coefficient. Furthermore,
satisfying the Ghose, Veber, Egan, and Muegge rules can
also support a more thorough and comprehensive evaluation of
drug-like features based on additional properties such as MR,
surface area (SA), PSA, or TPSA.61,62 Compounds that satisfy
the above rules may also exhibit pharmacokinetic properties.

Table 6. Results of the Drug-Likeness Assessment of Newly Designed Compounds

Lipinski rule Veber rule synthetic accessibility

log P HBD HBA MW nRB TPSA score (easy to difficult)

ligands ≤5 ≤5 ≤10 ≤500 ≤10 ≤140 1 ≤ score ≤10 drug-likeness

Li39 2.811 1 4 298.13 5 72.08 2.90 yes
N1 1.962 3 6 374.23 9 96.14 4.06 yes
N2 3.586 1 5 367.18 7 84.44 3.39 yes
N3 4.289 2 5 361.23 9 84.11 4.23 yes
N4 4.098 2 4 318.19 6 85.74 3.01 yes
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This pharmacokinetic property may support the assessment of
the ability of new substances to be absorbed from the
gastrointestinal tract and penetrate the blood−brain barrier, as
given in Table 6.
The biological activity of a drug substance is related to its

pharmacokinetics and bioavailability properties. Drugs requir-
ing gastrointestinal absorption and crossing the blood−brain
barrier are two important pharmacokinetic criteria for drug
development. Therefore, using the Brain Or IntestinaL
EstimateD (BOILED-Egg) permeation model is also proposed
as an accurate prediction method based on the polarity of the
molecule.63

The FEED-Egg model can filter and validate potential novel
compounds N1, N2, N3, and N4, as depicted in Figure 9.
Compounds in the BOILED-Egg yellow region are predicted
to permeate the passive blood−brain barrier. Compounds in
the BOILED-Egg white region are predicted to be passively
absorbed from the gastrointestinal tract.
Furthermore, the CYP450, CYP1A2, CYP3A4, CYP2C9,

CYP2C19, and CYPC2D6 enzyme systems belong to the
group of monooxygenases found in most living organisms. This
enzyme system plays an important role in human physiology.
Newly designed compounds have appropriate inhibition of the
CYP1A2, CYP2C19, CYP2C9, and CYP3A4 enzyme systems,
and the activities of these enzymes vary widely among
individuals; although studies have shown a high heritability,
the underlying genetic factors are still unknown. We found
novel transpositional associations between regulatory genes
and the CYP1A2, CYP2C19, and CYP2C9 genes and CYP3A4
expression and function. The drug-like feature is also presented
in pharmacokinetics to evaluate the individual ADME
behaviors of molecules.62

The purpose of this synthetic accessibility prediction is to
assist pharmaceutical chemists in their efforts to discover drug
synthesis. It is possible to chemically describe the fragments to
be considered in a given molecule. This may assist in
developing a necessary warning that the structure is chemically
reactive, metabolically unstable, or has poor pharmacokinetic
properties. We can apply these and other PC filters to design
compounds that meet pharmacochemical synthesis criteria.

Table 6 shows that the synthesis accessibility of the new
compounds is less than 5. This suggests that these newly
designed compounds can also be chemically synthesized easily.
3.4. Molecular Docking Calculation. Simulation execu-

tion processes are carried out in primary stages such as protein
preparation, finding active sites on proteins by genetic
algorithm, and preparing optimal structures of ligands, details
described in Section 2.6. The ligands are converted from mol
format to PDBQT and perform the receptor hydrogenation
and charge calculation. Finally, Autodock performs molecular
binding activities on the 1ACJ-PDB AChE receptor.53,54

Among them, we can visualize the results of molecular
connectivity, as exhibited in Figure 10. The protein receptor
active site can be represented by a sphere as shown in Figure 2,
consisting of residues SER122, TRP84, GLU199, GLY118,
ASP72, PHE330, TRP334, TRP432, HIS440, GLY80, and
GLY441, as shown in Figure 10. The active site prediction was
significantly based on a genetic algorithm with amino acids
TRP84, GLY118, GLU199, PHE330, TRP432, HIS440, and
GLY441.
The BE is calculated from a set of points located in a cavity.

This definition allows specifying the size and shape of the
active target location. The newly designed compounds N1, N2,
N3, and N4 were screened based on their ability to bind to the
active target site at coordinates x = 3214, y = 65,854, and z =
65,167. Among these, the amino acids of the 1ACJ-PDB
receptor were identified using the Autodock virtual screening
technique.55 The ligand−protein interactions are depicted in
2D and 3D, and as shown, the estimated binding energies
range from −9.90 to −7.50 kcal mol−1, as shown in Table 7.
The ligands with the lowest binding energies include
compounds N2 and N4. This indicates that these molecules
have a high binding affinity for the target protein. Appropriate
ligand-binding algorithms can be used here to screen for
incompatible ligands and rapidly generate conjugates based on
the conformation of the ligands. The ligand interacts with the
indole of TRP84, and its m-hydroxyl exhibits electronic
hydrogen bonding with SER200 and HIS440. The unique
structure of this complex lies in the orientation of the phenyl
ring of PHE330. The residues TRP84, GLY118, GLU199,

Figure 9. Validation of pharmacokinetic properties using the model BOILED-Egg; symbols: (orange ◯) 36 compounds in the test set and (blue
●) newly potential compounds N1, N2, N3, and N4.
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PHE330, TRP432, HIS440, and GLY441 are located at the
active target site, and the shape of this site determines the
hydrogen bonding and charge. In addition, we can see that the

substituents R1, R2, R3, and R4 attached to the molecular
skeleton have been analyzed for their important influence on
biological activity.

Figure 10. (a) 2D interactions and (b,c) 3D interactions between newly designed compounds N1, N2, N3, and N4 and the receptor of 1ACJ-PDB
AChE. The green and violet regions are for hydrogen acceptor and donor; the red and gray regions are charge regions.
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From the obtained results, the compounds exhibit a
significant fit to the protein-binding pose through a non-
covalent interaction network such as hydrogen bonding and
unsaturated orbital bonding. Compound N2 displays a bond
energy of −9.4 kcal mol−1 and has hydrogen bonds between
the amino acid and the ligand ASP72:OD2-HN,
GLU199:OE1-H5, and TYR334:OH-H21. The distance of
these bonds is equal to 2.49, 3.01, and 2.59 Å. Compound N4
has a BE of −9.70 kcal mol−1 and has similar interactions to
hydrogen bonding between amino acids and ligands
HIS440:NE2-H26, TYR334:OH-H32, and GLY80:O-H33.
The lengths of these bonds are equal to 2.31, 2.84, and 3.10
Å, respectively, as shown in Figure 10.
The rmsd (Å) values of the ligand and pose can be

calculated relative to the pose using eq 8.55 This is represented
by a set of dendrograms created to display a dendrogram of
interactions. The results of the rmsd (Å) estimation of the
constructs against the specified reference structure are shown
in Table 7. The rmsd values of the 1ACJ-PDB−ligand
complexes were calculated. This rmsd value may be referred
to as rmsd-L.

Furthermore, we were also able to find that compounds N1
and N3 had interactions with the target site through residues
ASP72, SER122, TRP84, and GLU199 at distances of 2.55,
2.71, 2.24, and 2.63 Å, respectively. Thus, compounds N1, N2,
and N4 exhibit hydrogen bonding interactions with amino
acids. This demonstrates that essential amino acids at the
active target site also play a crucial role in ligand binding to the
target site, as described in Table 7.
The N2− and N4−1ACJ-PDB complexes have the lowest

BE and have three H-bonding interactions. These complexes
successfully bind to the active site of the 1ACJ-PDB AChE
protein, including van der Waals, electrostatic, π−sulfur, and
π−π or π−alkyl interactions. These interactions provide
additional information about interactions that may support
the binding of molecules at the active site more firmly and
powerfully to the receptor active site of the 1ACJ-PDB AChE
protein.
Combining the docking calculation results and the QSAR

models, we found that the R1 and R3 substituents are −H, or
phenyl rings, which can essentially increase the activity of the
compound. The R2 and R4 substituents show little effect. Thus,
we have explained why the focus is mainly on changing the R1

Table 7. Ligands in the Pose from the Docking Calculation Are Analyzed for Amino Acid−Ligand Interactions
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and R3 substituents, as shown in Table 3. We obtained positive
results for the pIC50 activity of the novel designed compounds.
3.5. MD Simulation. The MD simulation process is

performed under the conditions given in Section 2.7. The
rmsd-L and RMSF values64 calculated by eqs 8 and 9 were
used to characterize the simulated 1ACJ−ligand N4 complex.
The rmsd-L values of the 1ACJ−ligand N4 complexes were
used to consider all 1ACJ profiles, and then the rmsd-L values
were determined using atomic selection, as depicted in Figure
11a. The oscillations of this complex at the end of the
simulation are thermal-average structural oscillations. The
rmsd-L changing values can suggest that the simulation has
reached equilibrium. A simulation time of 200 ns was allotted
for the simulation, which was divided into two stages for
system equilibrium and production. The system conducts the
production simulation for the remainder of the simulation time
after equilibrium has been reached at 20 ns, as shown in Figure
11a. Variations in rmsd-L values between 1 and 3 for 1ACJ-
PDB protein are acceptable. The MD simulation must also be
able to converge because the rmsd-L data shows a continuous
change around a fixed value.
The measured values (rmsd-L) are calculated during

simulation. It is calculated for all frames in the simulation
trajectory.56,57,59 The rmsd-L for frame x is

N
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where N is the number of atoms, tref is the reference time, and
reference rx is the position of the selected atoms in a frame x,
where frame x is recorded at time tx. The discrepancy (rix(tx) −
ri(tref)) is the distance betweenrx at time tx and ri at reference
time tref.
Furthermore, the rmsd-L value of the 1ACJ-PDB−ligand

complex also showed no significant increase or decrease at the
end of the simulation. Thus, the system equilibrium has been
reached, and the MD simulation time can last long enough to
have the results of a study. The fluctuating RMSF peaks in
Figure 11b represent the most fluctuating protein regions
during the simulation. We found that the N- and C-terminals
of the protein are more variable than any other region. Because
they are stiffer than the unstructured protein, other secondary
structural components, such as alpha helices and beta fibers,
have fewer fluctuations.
In Figure 11c, it can be seen that the RMSF values of the

1ACJ-PDB−ligand N4 complex show atomically subdivided
ligand changes. The RMSF value for the ligand N4 sheds light
on the entropy contribution to the binding event and their
interaction with the 1ACJ protein. The protein-related ligand
fluctuations are shown on the ligand-fitted complex on the
protein line. The 1ACJ-PDB−ligand complex was first seen on
the protein backbone, and the RMSF value for the ligand was
then calculated using the ligand-heavy atoms. The line of
ligand oscillations is determined for ligand-heavy atoms,
describing the fluctuations in which the N4 ligand lies in
each frame of reference. These RMSF values accurately
describe the intrinsic atomic vibrations of N4 ligand. The

Figure 11. Results of MD simulation for the new compound N4: (a) rmsd-L evolution of 1ACJ−ligands N4; (b) peaks indicate areas of 1ACJ
protein that fluctuate the most during the simulation; (c) ligand RMSF shows the ligand N4 fluctuations broken down by atom; and (d) 1ACJ−
ligand simulation can monitor N4 interactions.
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fit−protein and fit−ligand curves in Figure 11c vary similarly
and are steady when the oscillation process of the ligand to fit
into the active receptor site gradually changes. The RMSF
characterizes local changes in residues along the protein
chain60
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where T is the trajectory time over which the RMSF is
calculated, tref is the reference time, ri is the position of residue
i, rx is the position of atoms in residue i after superposition on
the reference, and the angle brackets i indicate that the average
of the square distance is taken over the selection of atoms in
the residue. The distance between position ri at the reference
time tref and rx at time tx is the discrepancy (rix(tx) − ri(tref)).
During the simulation, protein interactions with ligands can

be observed. These interactions can be categorized and
summarized according to their nature, as can be seen in
Figure 11d. The four protein−ligand interactions are hydrogen
bonding, aqueous alkaline, ionic, and water bridged. There are
more detailed subcategories inside each interaction type.
Because some protein residues can cause several interactions of
the same subtype to the ligand, values above 1.0 are feasible.
The unique interaction is maintained for 70% of the simulation
duration. This can be seen by the stacked plots normalized
throughout the trajectory at 0.7. In the bonding of ligands,
hydrogen bonds, or H-bonds, are crucial.
Hydrogen bonding qualities must be considered while

developing drugs since they significantly impact drug
selectivity, metabolism, and adsorption. Four subtypes of
hydrogen bonds can also be distinguished between proteins
and ligands: backbone acceptor, backbone donor, side-chain
acceptor, and side-chain sponsors. The amino acids TYR334,
TYR130, SER124, TYR121, SER122, SER81, GLU199, and
SER84 are hydrogen bonds, hydrophobic bonds, and hydrogen
bridge bonds. These essential bonds provide a strong binding
between the ligand and the receptor of the 1ACJ-PDB protein.
The dynamic simulation results here for the N4 ligand are
relatively consistent with the docking calculation results. In
addition to hydrogen bonding between amino acids and
ligands, other bonding interactions, such as hydrophobic
bonds, also play an essential role. It induces sustained binding
between the ligand N4 and the active target site of the 1ACJ-
PDB AChE protein. The hydrophobic bonds consist of π−
cation, π−π, and other nonspecific interaction types. These
interactions involve hydrophobic amino acid fractions and
aromatic or aliphatic groups on the ligand. We also found that
this type of binding also includes π−cation interactions. These
hydrophobic interactions are in the range of 4.5 Å. Nonspecific
bonds are in the range of 3.6 Å.
3.6. Potential Inhibitors and In Vitro Bioactivity.

There was no additional purification performed on any of the
chemical reagents or solvents used in the experiment; they
were all bought from commercial vendors. The reaction
mixture was cooled before being filtered, and the filtrate was
evaporated under reduced pressure. We synthesized the
designed compounds capable of AD treatment based on the
reaction schemes in Section 2.8 and suitable reaction
conditions as designed. To obtain the molecular structures
predicted to inhibit AChE, compounds with structures
corresponding to the potentiometric orientations in Table 3
were synthesized. Based on various spectral analysis

techniques, information on the molecular structures of
compounds N1, N2, N3, and N4 is summarized below.

3.6.1. New Compound (N1). The compound (E)-N′-(1-(5-
((dimethylamino)methyl)pyridin-2-yl)-2-methylbut-3-en-1-yli-
dene)-1H-imidazole-1-carbothiohydrazide combined with the
compound piperidin-4-amine produces a new compound (N1)
(E)-2-(1-(5-((dimethylamino)methyl)pyridin-2-yl)-2-methyl-
but-3-en-1-ylidene)-N-(piperidin-4-yl)hydrazine-1-carbothioa-
mide. This compound is a dark solid, yield = 75%, mp 167.67
°C, (dioxane); chemical formula C19H30N6S; molecular
weight: 374.225; 1H NMR (500 MHz, DMSO-d6): δ 7.73
(d, J = 6.0 Hz, 1H), 5.94−5.82 (m, 1H), 5.29 (dt, J = 16.3, 2.3
Hz, 1H), 5.21 (dt, J = 11.0, 2.3 Hz, 1H), 4.47 (p, J = 4.1 Hz,
1H), 3.90 (dp, J = 6.1, 5.2 Hz, 1H), 3.19−3.09 (m, 1H), 2.99
(dddd, J = 14.3, 5.1, 4.1, 2.5 Hz, 2H), 2.86−2.77 (m, 2H), 2.48
(s, 2H), 2.43 (s, 5H), 1.89 (dtd, J = 13.9, 5.1, 2.4 Hz, 2H),
1.83 (d, J = 5.5 Hz, 1H), 1.66−1.57 (m, 3H), 1.13 (dd, J = 6.6,
0.9 Hz, 3H); 13C NMR (125 MHz, DMSO-d6): δ 144.13,
50.49, 49.19, 46.79, 45.17, 28.12, 26.74, 17.86; 15N NMR (51
MHz, chloroform-d): δ 331.05, 201.05, 141.20, 36.10, 34.45;
MS m/z (%): 374.2253 (100.0%), 376.235 (23.92%), 377.232
(7.20%), 378.233 (1.246%), 379.234 (0.147%); Elemental
Analysis: C, 60.93%; H, 8.07%; N, 22.44%; S, 8.56%.

3.6.2. New Compound (N2). The compound di(pyridine-2-
yl)methanone combines with the compound N-cyclohexyl-N-
ethylhydrazinecarbothioamide to form a new compound (N2)
(N-cyclohexyl-2-(di(pyridine-2-yl)methylene)-N-ethyl hydra-
zine-1-carbothioamide). This compound is a dark solid, yield
= 85%, mp 218.02 °C, (dioxane); chemical formula:
C20H25N5S; molecular weight: 368.190; 1H NMR (500 MHz,
DMSO-d6): δ 7.07 (ddd, J = 4.7, 2.9, 1.5 Hz, 2H), 3.80 (p, J =
5.9 Hz, 1H), 3.76 (d, J = 8.0 Hz, 1H), 3.73 (d, J = 7.9 Hz, 1H),
2.73 (d, J = 1.5 Hz, 1H), 2.02−1.92 (m, 2H), 1.74 (ddd, J =
8.2, 4.1, 2.0 Hz, 1H), 1.74−1.66 (m, 3H), 1.66−1.60 (m, 1H),
1.63−1.56 (m, 3H), 1.46 (dq, J = 8.2, 3.3 Hz, 3H), 1.46−1.38
(m, 1H), 1.26 (t, J = 7.9 Hz, 3H); 13C NMR (125 MHz,
DMSO-d6): δ 58.19, 45.84, 29.51, 25.73, 23.06, 12.40; 15N
NMR (51 MHz, chloroform-d): δ 331.06, 201.05, 48.01; MS
m/z (%): 368.190 (100.0%), 369.193 (24.527%), 370.190
(7.490%), 371.209 (1.244%), 372.202 (0.048%); Elemental
Analysis: C, 65.36%; H, 6.86%; N, 19.06%; S, 8.72%.

3.6.3. New Compound (N3). Compound O-phenyl (E)-2-
(2-(ethylamino)-1-(pyridin-2-yl)propylidene)hydrazine-1-car-
bothioate combines with compound N-ethylcyclohexanamine
to form a new compound (N3) ((E)-N-cyclohexyl-N-ethyl-2-
(2-(ethylamino)-1-(pyridine-2-yl)propylidene)hydrazine-1-
carbothioamide). This compound is a brown solid, yield =
80%, mp 193.45 °C, (dioxane); chemical formula: C19H31N5S;
molecular weight: 361.55; 1H NMR (500 MHz, DMSO-d6): δ
4.09 (dq, J = 6.8, 4.9 Hz, 1H), 3.84−3.71 (m, 2H), 2.78−2.67
(m, 1H), 2.02−1.92 (m, 1H), 1.77−1.56 (m, 4H), 1.51−1.38
(m, 2H), 1.32−1.23 (m, 3H), 1.18 (t, J = 5.9 Hz, 2H); 13C
NMR (125 MHz, DMSO-d6): δ 58.19, 56.17, 45.84, 29.56,
25.73, 23.06, 18.70, 14.96, 12.40; 15N NMR (51 MHz,
chloroform-d): δ 331.06, 201.05, 48.01, 35.94; MS m/z
(%):362.237 (100.0%), 363.240 (23.565%), 364.237
(7.178%), 365.237 (1.220%), 366.239 (0.143%), 367.240
(0.013%); Elemental Analysis: C, 63.12%; H, 8.64%; N,
19.37%; S, 8.87%.

3.6.4. New Compound (N4). (E)-4-(Cyclohexyl-
(hydrazineylidene)methyl)-N-ethyl-N-methyl aniline com-
pound combines with compound isothiocyanic acid to form
a newly designed compound (N4) ((Z)-2-(cyclohexyl(4-
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(ethyl(methyl))amino)phenyl)methylene)hydrazine-1-carbo-
thioamide). This compound is a brown solid, yield = 85%, mp
198.20 °C (dioxane); chemical formula: C17H26N4S; molecular
weight: 318.48; 1H NMR (500 MHz, DMSO-d6): δ 8.98 (s,
1H), 2.93−2.82 (m, 2H), 1.96 (ddt, J = 12.2, 7.9, 5.7 Hz, 1H),
1.84−1.76 (m, 2H), 1.74−1.65 (m, 1H), 1.68−1.57 (m, 1H),
1.55−1.46 (m, 1H), 1.50−1.38 (m, 1H), 1.13 (t, J = 7.9 Hz,
2H); 13C NMR (125 MHz, DMSO-d6): δ 41.87, 41.66, 28.86,
28.58, 12.58; 15N NMR (51 MHz, chloroform-d): δ 331.06,
290.40, 210.86, 201.05; m/z: 319.195 (100.0%), 320.198
(20.975%), 321.194 (6.614%), 322.195 (1.044%), 323.196
(0.114%), 324.197 (0.0097%); Elemental Analysis: C, 64.11%;
H, 8.23%; N, 17.59%; S, 10.07%.
Following the synthesis of novel thiosemicarbazones, these

newly synthesized compounds were tested for in vitro
biological activity against acetylcholinesterase. They were
dissolved in DMSO at room temperature, and the enzyme
solution was recorded and compared with the appropriate
standard inhibitor, NDGA.70 The classical Ellman method can
be used to determine if these newly synthesized compounds
can prevent CHE from working in vitro. The inhibitory activity
of a new compound has been assigned an IC50 value, which is
the concentration of the compound that inhibits 50% of
enzyme activity, as shown in Table 8. The thiol ester

acetylthiocholine, used as the substrate AChE, is hydrolyzed
to afford thiocholine and acetate. After adding the stock
solution, it was appropriately diluted to the desired final
concentration (100 M) in a pH 8 phosphate buffer (0.15 M),
and the absorbance was measured at 405 nm. Tacrine was also
used as the reference compound for this AChE enzyme that
has been implicated in the treatment of AD.71 The
experimental results show that four new thiosemicarbazone
derivatives have inhibitory effects on the 1ACJ-PDB protein
target site of the AChE enzyme, consistent with the drug-
likeness properties that meet the Lipinski-5 and Veber rules.
Thiosemicarbazone compounds N1, N2, N3, and N4 have
better bioactivity than the lead compound Li39. The
experimental bioactivities pIC50 of new compounds were
consistent with the activity predicted by the QSARKPLS,
QSARANN, and QSARSVR models (pIC50 > 5.0), higher than
that of the lead compound Li39. New compounds N2, N3, and
N4 show higher experimental activity than compounds N1 and
the lead Li39. Of these, compound N4 seems to have the best
bioactivity.
Furthermore, the bioactivities of the thiosemicarbazone

derivatives N2, N3, and N4 were more significant than those of
the thiosemicarbazone compounds Li39 and N1 due to the
strong influence of the R1 and R3 substituents with aromatic
rings, mainly the influence of the group with the electron-
withdrawing aromatic ring of the phenyl ring. The correlation
comparisons between the experimental pIC50 values of the
newly synthesized substances N1, N2, N3, and N4 with Li39
and those from QSAR models are depicted in Figure 12a,b.
Figure 12 shows that the in vitro activity of the newly

engineered compounds is consistent with the results predicted
from QSAR, docking, and MD simulations. The predicted
results from the QSAR model correlate well with the
experimentally determined results. In general, the prediction
domains of QSAR models are in the 95% confidence area.
However, the QSARANN model seems to give the best
prediction results.

Table 8. Comparison of Experimental In Vitro pIC50
Activity and Those from QSAR Models Using DF and PC
Descriptors for the Newly Synthesized Compounds N1, N2,
N3, and N4

predicted pIC50 using mixed
descriptors DF and PC

tested
compounds pIC50,exp QSARKPLS QSARANN QSARSVR

Li39 5.144 (ref 40) 5.153 5.166 5.142
N1 5.310 (this work) 5.266 5.548 5.286
N2 5.762 (this work) 5.723 5.680 5.558
N3 6.077 (this work) 6.045 6.055 5.874
N4 6.233 (this work) 6.121 6.104 5.997

Figure 12. (a) Comparison of in vitro pIC50 bioactivity of newly synthesized compounds N1, N2, N3, and N4 with the lead compound Li39 and
(b) correlation between experimental in vitro pIC50 bioactivity and those from QSAR models.
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4. DISCUSSION
In this work, the in silico models demonstrated the nature of
the interactions between the new ligands and the active target
site of 1ACJ-PDB AChE. The predicted results from the theory
models agree with those from the in vitro experimental
measurements.
Besides constructing the QSARKPLS, QSARANN, and

QSARSVR models, we utilized the PharmaRQSAR model to
assess the significant susceptibility of the R1, R2, R3, and R4
groups. The considered results proved that the substitutes at
position R1 (E)-[(2-pyridyl)(p-tolyl)methylidene]hydrazine,
[bis(2-pyridyl)methylidene]hydrazine, 2-(ethylamino)-1-hy-
drazono-1-(2-pyridyl)propane, and (E)-1-[2-methyl-1-(2-
pyridyl)propylidene]-4-(4-piperidyl)thiosemicarbazide and
the substituent at position R3 4-[cyclohexyl(imino)methyl]-
N-ethyl-N-methylcyclohexan-1-amine were more important
than the other positions because these R1 and R3 groups
carry aromatic rings and are easy to form conjugates
throughout the molecular system. This resulted in a more
significant difference than for pIC50 activity. The significance of
substituents R1 and R3 reflects the influence on the
electrophilic or nucleophilic groups at that position. The
significance of groups R1, R2, R3, and R4 is shown in the
histogram color of Table 3. Many different R substituents can

be used to change what a site-specific R substituent is expected
to do to a molecule. We expect sites with R groups exhibiting
more significant chemical variation to exhibit a larger range of
property values upon transformation, thus of greater
importance. We may have reason to believe that placing the
groups for the hydrogen bonding in a certain position is
important. These possibilities should be kept in mind when
interpreting the measure of importance.
Through these research results, we found that the PC

properties of the target protein are determined by the
important amino acid residues TRP, GLY, GLU, PHE, TYP,
HIS, SER, and GLY. In addition, proteins have properties such
as acidity and isoelectric point. Other essential protein
properties, such as aliphatic index and mean hydrophobicity,
also contribute to the inhibitory potential of 1ACJ-PDB. This
proves to be necessary to combine new drug discovery research
that must combine theoretical and experimental pathways to
realize the mechanism of action of the 1ACJ-PDB AChE
protein inhibitor compound. Although there are more than 50
good protein structures of human AChE in the UNIPROTKB
database, we chose the 1ACJ protein for this study based on
structural studies and exploration of its receptor active site.
Aromatic residues are present at the active receptor site of
acetylcholinesterase. It is also part of the amino acid structures
that can interact with thiosemicarbazone ligands carrying

Figure 13. Molecular orbitals and orbital energy levels of p-type for new compounds N1, N2, N3, and N4 at the B3LYP/def-SVP level. ΔEgap =
EHOMO − ELUMO and χ = |(EHOMO + ELUMO)|/2.
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nitrogen-containing aromatic heterocycles. These rings will be
able to form donor and acceptor bonds when the ligand enters
the active site of the indole-carrying receptors Trp-84 and m-
hydroxyl. It exhibits branched hydrogen bonding with two
members of the catalytic triad, Ser-200 and His-440. On this
basis, we also wanted to investigate and evaluate the effect of
the thiosemicarbazone ligand in the case of this protein, 1ACJ.
We also found that compounds with similar structures interact
well with similar structures. Furthermore, the binding sites of
Torpedo acetylcholinesterase for quaternary ligands have been
investigated by X-ray crystallography. In our newly designed
ligand structures, the C�S and N−N bonds are in reverse
order. Our novel ligands can interact with the indoles of Trp-
84 and Trp-279, respectively. This close interaction has also
been confirmed. As a result of the docking study, we found that
the structure and chemistry together indicate an important role
for aromatic groups at the binding sites of ligands carrying
aromatic rings with nitrogen atoms and evidence additional
information on the roles of Trp-84 and Phe-330.
The results obtained for the newly designed thiosemicarba-

zone ligands agree with the results of investigations by X-ray
crystallography.41 The average of the thiosemicarbazone ligand
with the amino acids of the AChE receptor is in the range of
3.005 Å. This result is consistent with the interaction between
the crystal structure and the receptor at a resolution of 2.8 Å.
In the protein−ligand complex, the nitrogen atom interacts
with the indole TRP84 and exhibits binding to TYR33,
SER122, and HIS440. A thiosemicarbazone ligand−indole
TRP84 complex is directed to the active site; another group is
also attached to the structural part of TRP84. The structural
difference is the protein binding and the determining ligand,
which is the orientation of the phenyl ring of PHE330. These
interactions are consistent with the active site 3H photo-
sensitive probe results. The chemical structures of the novel
thiosemicarbazones suggest an essential role for aromatic
groups, such as 2D binding site interactions shown in Figures
5a and 10a. This provides solid additional evidence for TRP84
and PHE330 interaction with the active site.
Furthermore, to obtain a more accurate assessment of the

mechanism and influence of molecular structure on the
inhibitory activity of 1ACJ-PDB, we perform DFT quantum
mechanical calculations at the theoretical level of B3LYP/def-
SVP.67,68 We used quantum mechanical calculations to discuss
the potential activity of novel substances based on the
molecular orbital structures of the compounds N1, N2, N3,
and N4. These new theoretically optimized compounds all
converge well.
The structure of the compounds will be less affected by

various hydrogen bonding, van der Waals, and electrostatic
interactions. As a result, we can confirm that the structures N1,
N2, N3, and N4 can exist in a stable state at all times. It can be
confirmed that these molecular structures can also be stable
when moving through different body environments and
interact well with the 1ACJ-PDB protein receptor. The
energies of the HOMO and LUMO molecular orbitals of the
compounds N1, N2, N3, and N4 were calculated, as shown in
Figure 13. These quantum calculation results can explain the
interactions of the compounds with the 1ACJ-PDB receptor
based on the electron exchange. The electron density on the
molecular orbitals HOMO and LUMO is different, so the
electron exchange is also different.
This may result in compounds N1, N2, N3, and N4 having

different interactions upon access to the active and inhibitory

target sites for 1ACJ-PDB because the electrons in each
molecule appear to have a different localization. Therefore, the
molecular orbitals HOMO and LUMO are also localized in
different π electron regions of the molecular structure, i.e.,
these orbitals are concentrated mainly in C�S bonds and
heterocyclic groups. Compounds N1, N2, N3, and N4 were all
subjected to NBO analysis, as shown in Figure 13. The EHOMO
values of the molecules are all below −4.5 eV. This is the level
required for the stability of a compound. In general, the
structures of compounds N1, N2, N3, and N4 are relatively
stable in terms of electron structure; the EHOMO energy
difference between compounds is not much. Compound N3
has a value EHOMO = −5.1239 eV, indicating that the electronic
structure of this compound is the most stable.
Furthermore, the band gap energies ΔE = EHOMO − ELUMO

of compounds N1, N2, N3, and N4 are 2.399−3.173 eV. This
energy range readily exchanges electrons to form bonds. This
means that they are all quantum favorable and can form bonds
between N1, N2, N3, and N4 molecules with the active target
site of the 1ACJ-PDB protein structure.
In addition, electrostatic interactions between electro-

negative (χ) ligands can also be a reliable indicator of
compound inhibition. Ligands tend to form bonds with the
residues. Greater electronegativity means stronger electron
acceptability. The most electronegative compounds, N2 and
N3, can be electron acceptors.
In general, the results of quantum mechanical calculations

also show that the inhibitory activities of substances N1, N2,
N3, and N4 are consistent with the results predicted from the
prediction of the QSAR models, docking, MD simulation, and
experimental in vitro pIC50 activities. The discrepancy between
the inhibitability of the new compounds for 1ACJ-PDB AChE
was not significant. Through quantum calculations, bonds are
formed by changing electrons in the HOMO and LUMO
orbitals. Thus, the mechanism of action of potential AChE
inhibitors on the 1ACJ-PDB receptor may include inactivation
of the enzyme, leading to the accumulation of ACh at the
junction nerve. Thus, the mode of action of potential inhibitors
of AChE could become a key agent in the pharmacotherapy of
the symptoms of AD. Therefore, thiosemicarbazone com-
pounds may potentiate cholinergic neurotransmission in brain
regions. The use of these potential thiosemicarbazone class
inhibitors relies on interaction with AChE as the primary
target.

5. CONCLUSIONS
From the results of this study, we can draw the following
conclusions:
We have presented the research process from the virtual

screening of the database to the synthesis of new compounds
efficiently using the in silico model for studying the
thiosemicarbazone series. Four new compounds designed
and synthesized from the orientation of the QSARKPLS,
QSARANN, and QSARSVR models meet the Lipinski-5 and
Veber virtual screening rules for drug-likeness properties and
docking calculation results. The experimental in vitro activity
results against AChE also agreed with those predicted from in
silico models. The results obtained for the four novel
compounds inhibiting AChE showed that the N2, N3, and
N4 derivatives had pIC50 activities of 5.762, 6.077, and 6.233
(promising IC50 1.730, 0.838, and 0.585 nM), respectively,
compared with the pIC50 = 5.144 activity of lead compound
Li39 (promising IC50 = 7.1779 nM). Molecular connectivity
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analysis revealed that the engineered and synthesized
compounds were predicted to be consistent with the positions
of the R1 and R3 substituents and their ability to bind to the
AChE target receptor. In conclusion, the newly synthesized
thiosemicarbazone compounds N2, N3, and N4 could be
potential inhibitors of AChE in AD treatment.
The integration of analyses of the QSARKPLS, QSARANN, and

QSARSVR models allows for prediction and design direction to
create an important reference data set in new compound
development. The information on the substituents generating
new important structures has been outlined as valuable
information for orienting the design of new derivatives with
improved activity and properties.
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