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Abstract: With the gradual maturity of driverless and automatic parking technologies, electric vehicle
charging has been gradually developing in the direction of automation. However, the pose calculation
of the charging port (CP) is an important part of realizing automatic charging, and it represents
a problem that needs to be solved urgently. To address this problem, this paper proposes a set of
efficient and accurate methods for determining the pose of an electric vehicle CP, which mainly
includes the search and aiming phases. In the search phase, the feature circle algorithm is used to
fit the ellipse information to obtain the pixel coordinates of the feature point. In the aiming phase,
contour matching and logarithmic evaluation indicators are used in the cluster template matching
algorithm (CTMA) proposed in this paper to obtain the matching position. Based on the image
deformation rate and zoom rates, a matching template is established to realize the fast and accurate
matching of textureless circular features and complex light fields. The EPnP algorithm is employed
to obtain the pose information, and an AUBO-i5 robot is used to complete the charging gun insertion.
The results show that the average CP positioning errors (x, y, z, Rx, Ry, and Rz) of the proposed
algorithm are 0.65 mm, 0.84 mm, 1.24 mm, 1.11 degrees, 0.95 degrees, and 0.55 degrees. Further, the
efficiency of the positioning method is improved by 510.4% and the comprehensive plug-in success
rate is 95%. Therefore, the proposed CTMA in this paper can efficiently and accurately identify the
CP while meeting the actual plug-in requirements.

Keywords: DC charging port for electric vehicles; unmanned charging; pose estimation; non-
cooperative features; cluster template matching algorithm

1. Introduction

With the reduction of petroleum energy amounts, new energy-based vehicles have
become more important [1]. Electric vehicles have the advantages of producing no harmful
gas emissions, being clean and environmentally friendly, having fast acceleration and
low cost, and not consuming petroleum energy. Therefore, they have received significant
financial support from the governments of many countries and have become the future
development direction of most automobile manufacturers. Due to all of these factors,
electric vehicles have been developing rapidly in recent years [2–5], and automatic parking
and driverless technologies have gradually matured [6]. Accordingly, electric vehicle users
do not need to reach parking spaces and garages. It should be noted that manual charging
is impractical, the fast-charging connector cable is heavy and thick, and the plugging force
is large. In addition, manual insertion also has potential safety hazards [7]. Therefore, a
method for the automatic charging of new-energy electric vehicles is urgently needed.

The main solution to the problem of electric car charging is that a robot realizes an
automatic connection between the charging gun and the electric car charging port (CP).
At present, a number of research institutions and companies have proposed their own
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implementation plans for overcoming the mentioned problem [8–12]. Currently, the main
strategy for the automatic charging of electric vehicles includes the recognition of a charging
port’s pose and robotic insertion machinery. Thus, the recognition and positioning of a CP
denote a prerequisite for a robot to complete the charging, and thus ensuring the accuracy
and stability of CP recognition is an important guarantee for successful robot charging.
Therefore, the realization of rapid and high-precision identification and positioning of a CP
is crucial to the automatic charging technology of electric vehicles.

The CP identification methods can be roughly divided into feature recognition-based
identification methods and non-feature recognition-based identification methods. Feature
recognition means adding a specific mark to a CP to reduce the difficulty of identification,
but the CP needs to be modified. In the identification methods without feature recognition,
the original CP features are recognized directly without changing the CP. In terms of feature
recognition, in [13], the authors added white labels to the four fixed-point positions of a
CP, and based on monocular vision, they used feature matching to achieve preliminary
positioning and adjusted the visual error according to the six-dimensional force sensor data
to achieve the plug-in. However, they did not provide information on positioning accuracy.
In [14], five white circular features around a CP were used, and based on the principle
of the farthest distance from the center to the contour, the distance from the center of the
ellipse was obtained. In addition, the geometric solution method was used to obtain the
pose information on the CP. Under the light intensity of 4 klux, the positioning error of this
method was 1.4 mm, the angle error was 1.6◦, and the insertion success rate was 98.9%.
In [15], Halcon commercial vision software and template matching were used to obtain
the location of features, and the least square fitting method was employed to calculate the
perspective transformation to obtain information on the CP pose, with a successful insertion
rate of 80%. In [16], the authors used the surf feature point matching method to perform an
indoor target positioning and insertion experiment. The specific positioning accuracy was
not given, and the obtained insertion success rate was 96%. Further, in [17], the positioning
error of an indoor CP was tested by Halcon commercial vision software using the template
matching algorithm based on binocular positioning. The average position error was 2.5 mm,
and the average angle error was 0.8◦. In [18], the authors used the Hough circle to obtain
the contour features of a CP by the monocular vision method. However, the recognition
time was long, and the positioning distance was strict. The position error was ± 1 mm,
and the angle error was ± 1◦. In [19], the recognition accuracy was tested in different
scenarios based on monocular vision. The position coordinates of the characteristic points
were obtained by the quadratic curve standardization method. In all test scenarios, the
average position error was 0.88 mm, and the average angle error was 0.89◦.

According to the above-presented research, the positioning of feature points is a key
step for obtaining the CP pose. As a common feature acquisition method, a template
matching algorithm has been applied to various areas of production and life. However,
light, background, and occlusion can affect the accuracy of template matching. When the
object size and rotation angle change, the number of templates increases, thereby increasing
the template matching time and affecting the matching efficiency. In recent years, a number
of studies have achieved certain contributions to the efficiency and robustness of template
matching [20–27]. In [20], a template matching algorithm that combines the Gaussian
pyramid transform and a particle swarm optimization algorithm, and which can improve
the algorithm matching efficiency, was proposed. In [21], the authors proposed an edge
template matching algorithm, which uses gradient contour information, adopts a strategy
of a directional guide pixel difference, and can reduce the interference of image noise on the
matching result. In [22], the authors developed a block matching algorithm, which is based
on voting strategy, to reduce the computational burden and a block matching algorithm
according to the characteristics of spatial intensity distribution, which can improve the ro-
bustness to speckle noise and occluded targets. In [23], a fast template matching algorithm
based on the network control, which uses down-sampling to ensure the original accuracy
and to improve the matching efficiency, was proposed. Further, in [24], a robust objective
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function based on the maximum correlation criterion was defined to match features, and
then it was optimized for translation and rotation parameters; the effectiveness and ro-
bustness of the proposed method were verified. A non-texture target recognition method,
which uses the edge layered template matching method to detect and recognize, and thus
improves the detection efficiency, was proposed in [25]. In [26], a detector that can detect
straight-line contours was proposed for recognition of non-textured parts. The geometric
feature gray-scale inversion invariance algorithm based on straight-line contours was used
to improve the accuracy and robustness of template matching.

However, the current research on the automatic charging of electric vehicles has still
been in the laboratory phase, and the recognition speed of the algorithm is slow. By adding
identification, a vehicle has to be modified, which is not conducive to large-scale application.
Therefore, this study uses a method of featureless identification. In the search phase, the
round recognition positioning method based on the characteristic root is used for rough
positioning, and the EPnP algorithm is used to calculate the CP pose. In the aiming phase, for
template matching algorithms, most of the above-mentioned algorithms are for images with
texture features and linear contour positioning without texture. However, for untextured
circular feature images, it is difficult to improve the efficiency and accuracy of the matching
algorithm due to the lack of locating corners. Based on the CP characteristics, this paper
proposes a cluster template matching algorithm (CTMA) which improves the efficiency and
robustness of recognition in a complex-light field and provides a guarantee for accurate
positioning of the EPnP algorithm, thereby realizing efficient and accurate CP recognition.

2. Materials and Methods
2.1. CP Structure and Complex Scene Description

This study considers the fast-charging ports of electric vehicles. The national standard
number is GBT20234.3-2011. A CP is shown in Figure 1. The relative position coordinates
of a CP are also shown in Figure 1. A CP consists of a total of nine cylindrical holes, which
correspond to charging terminal communication 1 (S+), charging terminal communication 2
(S−), vehicle connection confirmation 1 (CC1), vehicle connection confirmation 2 (CC2),
DC power supply positive (DC+), DC power supply negative (DC−), low voltage auxiliary
power positive (A+), low voltage auxiliary power negative (A−) and DC protective ground
(PE). Although the CP considered in this study is of a standard size, the actual use of
a CP shows different degrees of wear. In addition, factors such as the manufacturer’s
differentiation and surface reflection can interfere with the identification and positioning of
a CP. A CP’s surface will also be differentiated under different environments and lighting,
which introduces severe difficulties to identification and positioning.
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2.2. Experimental Platform

The data acquisition and experiment plug-in platform mainly include the control
module, vision module, and robot plug-in actuator. The CP image data collection platform
is shown in Figure 2. According to the plug-in requirements, the actuator used an AUBO-i5
articulated robot, and the repeat positioning accuracy was 0.02 mm. The camera, from
Daheng Image Vision Co., Ltd. (Haidian District, Beijing), was model number MER-
125-30GM/C-P, and the resolution was 1292 × 964 pixel. The camera lens model was
M0814-MP2 from Combada Company, with a lens size of 8 mm. We used the camera
calibration method of Zhang [28], and hand–eye calibration was done using Axelrod’s
method [29].
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2.3. Image Data Collection

To verify the reliability of the algorithm, the weather was divided into sunny and
overcast weather, and the time was divided into four time periods: time 1: 8:30–11:30,
time 2: 11:30–14:30, time 3: 14:30–17:30, and time 4: 18:00–21:00. Since the indoor daytime
test environment was relatively stable, it was subdivided into six situations according
to actual scenes, as shown in Tables 1 and 2. Further, to improve the actual positioning
accuracy, the positioning process was divided into two phases, the search phase and the
aiming phase, as shown in Figure 3.

Table 1. Data information in the search phase.

Scenes Weather TimePeriod
Min Light
Intensity

(Klux)

Max Light
Intensity

(Klux)

Number of
Samples

Indoor Sunny/Overcast Time 1/2/3 3.1 4.8 100

Outdoor

Sunny Time 1/3 7.4 43.8 100
Sunny Time 2 12.9 52.3 100

Overcast Time 1/3 7.3 15.4 100
Overcast Time 2 5.4 22.8 100

Indoor/Outdoor Sunny/Overcast Time 4 0.7 3.0 100

Table 2. Data information in the aiming phase.

Scenes Weather TimePeriod
Min Light
Intensity

(Klux)

Max Light
Intensity

(Klux)

Number of
Samples

Indoor Sunny/Overcast Time 1/2/3 4.5 5.4 100

Outdoor

Sunny Time 1/3 8.3 43.5 100
Sunny Time 2 12.6 52.4 100

Overcast Time 1/3 6.9 17.1 100
Overcast Time 2 7.2 21.7 100

Indoor/Outdoor Sunny/Overcast Time 4 2.9 3.5 100
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The function of the search phase was to find the CP target and to perform rough
CP positioning. According to the actual application scenario, the ranges of the x, y, and z
directions were set to [−150, 150] mm, [−100, 100] mm, and [250, 550] mm, respectively, and
the angular ranges in the Rx, Ry, and Rz directions were set to [−15, 15]◦, [−15, 15]◦, and
[−15, 15]◦. The function of the aiming phase was to locate near the focal length. According
to the actual application scenario, the ranges of the x, y, and z directions were set to [−5, 5]
mm, [−5, 5] mm, and [245, 275] mm, respectively. The angular ranges of the Rx, Ry, and Rz
directions were set to [−5, 5]◦, [−5, 5]◦, and [−5,5]◦.

2.4. Identification and Positioning Methods
2.4.1. Technical Route

As mentioned above, the recognition process was divided into two phases, the search
phase and the aiming phase. In the search phase, the complexity of positioning was high,
but the requirements for positioning accuracy were low. Therefore, in this phase, a more
adaptable recognition and positioning algorithm was selected. In contrast, in the aiming
phase, the complexity of positioning was low, but the requirements for positioning accuracy
were high, so in this phase, an algorithm with high positioning accuracy was selected. Based
on these requirements, the CP identification process in this paper is shown in Figure 4.

The specific steps presented in Figure 4 are described within the description of the
phase they belong to, as set out below.

In the search phase, the following operations are conducted:

(1) The image data are collected and converted into a gray image, and bilateral filtering
is performed on the obtained gray image.

(2) The canny algorithm is used to obtain contours, and the smaller contours are elimi-
nated. We will re-screen the outline based on the length breadth ratio of the minimum
outer rectangle.

(3) The characteristic root method is used to fit the contour to an ellipse, and eliminate
irrelevant ellipses according to the discrimination conditions.

(4) When the number of qualified feature points is not less than six, the qualified fea-
ture information is converted into a pixel position matrix, the corresponding three-
dimensional space position information is formed into a space position matrix, and
the EPnP algorithm is used to solve the pose so as to obtain the pose information on
the CP relative to the camera.
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In the aiming phase, the following operations are conducted:

(1) Before the recognition, the robotic arm is inserted into the CP in the robot teaching
mode, and then, according to the result of the hand–eye calibration, the robot arm is
controlled to pull out the CP.

(2) Images are collected in front of the CP as a template, and the developed template
extraction software is used to make the feature template and gradient feature template
of the CP.

(3) During recognition, image information is collected at the aiming position. First, the
bilateral filtering is performed on the image, and then the image contour information
is extracted using the canny operator.
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(4) To improve the accuracy and efficiency of template matching, this paper proposes a
method based on the CTMA. In the proposed method, the area of each feature point
is matched according to the contour information, thereby reducing the matching time
and improving the robustness of the template matching algorithm in an unstable light
field environment.

(5) Effective features are selected according to decision-making conditions; the effective
feature center point position is converted into a pixel position matrix, and the position
corresponding to the effective feature is transferred into a spatial position matrix. The
EPnP algorithm is used to obtain the CP pose relative to the camera.

The robot is guided to complete the plug-in according to the positioning result.

2.4.2. Feature Recognition Method of a CP in Search Phase

In the search phase, a CP has a large deflection angle relative to the camera, and
this study uses the characteristic root method to fit the ellipse based on the mathematical
characteristics of the ellipse. Namely, the characteristic root method is used to fit the ellipse
using the principle of coordinate transformation between the ellipse coordinate system
and the measurement coordinate system. The ellipse can be expressed in the standard
coordinate system as follows:

Xe

[
λ1 0
0 λ2

]
XT

e = Xe

[
a−2 0
0 b−2

]
XT

e = 1, (1)

where Xe = ( xe ye )
T denotes the ellipse coordinate and a and b are the semi-major and

semi-minor axes of the ellipsoid, respectively.
The conversion relationship between the measurement coordinate X and the ellipse

coordinate Xe is given by:
Xe =

[
X0 Y0

]T
+ R(α)X (2)

where (X0 Y0) represents the translation between the ellipse coordinate system and the
measurement coordinate system and R(α) is the rotation matrix, which is defined as:

R(α) =
[

cos α − sin α
sin α cos α

]
(3)

The part where the coordinate of the measuring point does not satisfy the elliptic
equation denotes a residual, and the residual equation is given by:

vi = XT
ei AXi − 1 (4)

The Taylor series expansion and linearization are used to obtain the following relationship:

vi =
∂vi
∂X0

dX0 +
∂vi
∂A

dΛ +
∂vi
∂α

dα− li (5)

The error equations for all the characteristic points are listed and iteratively solved
under the principle of least quadratic, and the characteristic parameters of the ellipse are
obtained. By using Equation (2), the conversion relationship between the measured coordi-
nates and the ellipse coordinates can be obtained; in addition, by substituting (0, 0)T into
the left side of Equation (2), the coordinates of the center of the ellipse in the measurement
coordinate system are obtained by using the calculated parameters.

Thus, the position of the ellipse of the CP and the center point of the ellipse can be
fitted. The result is shown in Figure 5.

In the aiming phase, the deflection angle and deflection position of a CP are relatively
small, and the complexity of this phase is low, but the requirements for positioning accuracy
and efficiency are high. Based on the above situation, a template matching algorithm is
used to locate the feature points in the aiming phase. Since the accuracy of the template
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matching algorithm is sensitive to light, rotation, and object size, the CTMA is developed
to improve the accuracy and adaptability of template matching.
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(1) Template design
The camera is kept at the focal length of the CP so that the axis of the camera is parallel

to the axis of the CP. The camera’s exposure is adjusted to obtain stable image information.
In the actual exposure algorithm, the average measurement value of an image is adjusted
to between 110–140. The specific operation flowchart is shown in Figure 6.
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The collected CP images are taken as the original template data, and the self-made
template-making software is used to extract the template of each feature, as shown in Figure 7.
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Figure 7 shows the preprocessed original image template and the gradient map tem-
plate, which are stored in the matching file directory. The above step completes the template
production process.

(2) Recognition process based on CTMA
To improve the efficiency and accuracy of template matching, the CTMA uses the

location information on feature points to match the location information on the feature
contour, and then matches the search area. Based on the coordinate system in Figure 1,
this study defines DC−, DC+, S−, CC2, S+, CC1, A−, PE, and A+ as features 1–9, re-
spectively. The position and radius information of each feature point are obtained as
(xon, yon, ron), where n = 1, 2, · · · , 9.

In this study, an image was obtained in the aiming phase, and the contour information
was obtained after image preprocessing. The three special features obtained from all contours
are feature 1, feature 2, and feature 8. The specific implementation process is as follows.

The feature points that meet the primary selection conditions are screened out, and
all the contour pixel positions and the circumscribed rectangle contour information are
defined as

(
xpn, ypn, wpn, hpn

)
, where n = 1, 2, · · · , n, thereby establishing feature 1. The

contour matching function between features 2 and 8 is given by:

Dnm =

[√
(yon − yom)

2 + (xon − xom)
2 − (rom + ron)

]
· cpnwpn+cpnhpn

2ron√(
xpn − xpm

)2
+
(
ypn − ypm

)2
= clengthnm

[(
cpnwpn + cpnhpn + cpmwpm + cpmhpm

)
/4 + Dnm

]
√(

xpn − xpj
)2

+
(
ypn − ypj

)2
= clength_nj(cpnwpn + cpnhpn + cpjwpj + cpjhpj)/2

loga

(
1−

∣∣∣1− clengthnm

∣∣∣)+ loga

(
1−

∣∣∣1− clengthnj

∣∣∣) = R(n)

, (6)

where Dnm denotes the shortest distance between the circumscribed surfaces of features
n and m; clengthnm is the deviation coefficient of features n and m; clengthnj

is the deviation
coefficient of features n and j; cpn, cpm, and cpj denote the contour adjustment factors of fea-
tures n, m, and j, respectively; a represents the coefficient for adjusting the matching trend,
which is 10 here; and R(n) represents the matching degree under the nth combination.

According to all obtained contour information, Equation (6) is used to perform contour
matching. Based on the contour matching degree R(n),

(
xp1, yp1, wp1, hp1

)
,
(
xp2, yp2, wp2, hp2

)
,
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and
(

xp8, yp8, wp8, hp8
)

are obtained, and thus the matching preselected positions can be
determined. The specific implementation equations are as follows:

xpn = sin

[
arccot

(
yon
xon

)
− arccot

(
2
√
(xp1−xp2)

2
+(yp1−yp2)

2

xp2−xp1

)
·s + arccot

(
2do1

xo2−xo1

)
·s
]
·
√

xon2 + yon2

ypn = cos

[
arccot

(
yon
xon

)
− arccot

(
2
√
(xp1−xp2)

2
+(yp1−yp2)

2

xp2−xp1

)
·s + arccot

(
2do1

xo2−xo1

)
·s
]
·
√

xon2 + yon2

(7)

where s is the direction of the feature point; the value of s for features 1, 3, 4, and 6–8 is one
and for features 2, 5, and 9 it is −1.

Thus, the position
(
xpn, ypn

)
of the characteristic points of the template matching can

be obtained. Then, the area information of the feature can be calculated by:

lop =

√
(xp1−xp2)

2
+(yp1−yp2)

2
+
√
(xp1−xp8)

2
+(yp1−yp8)

2√
(xo1−xo2)

2+(yo1−yo2)
2+
√
(xo1−xo8)

2+(yo1−yo8)
2

xrn ∈
[

xpn − c f ·ronlop, xpn + c f ·ronlop

]
yrn ∈

[
ypn − c f ·ronlop, ypn + c f ·ronlop

] , (8)

where lop is the density of pixels; xrn and yrn are the matching ranges in the x and y
directions, respectively; and c f is the matching area coefficient.

Before template matching, a suitable template needs to be obtained, and the template
scaling factors in the x and y directions are established as follows:

cmx =

√
(xp1−xp2)

2
+(yp1−yp2)

2√
(xop1−xop2)

2
+(yop1−yop2)

2

cmy =

√
(xp1+xp2−xp8)

2
+(yp1+yp2−yp8)

2√
(xop1+xop2−xop8)

2
+(yop1+yop2−yop8)

2

, (9)

where xop1, yop1, xop2, yop2, xop8, and yop8 denote the coordinate information on the
templates of features 1, 2, and 8 in the original image, respectively, and cmx and cmy are the
scaling factors of the template in the x and y directions, respectively.

In this way, the rotation angle and zoom factor of the template are obtained, thereby
providing the best conditions for template matching. This study uses the normalized square
method for the evaluation of template matching. The matching decision conditions are
given by Equation (10):

R(x, y) =
∑x′y′ [T(x′, y′) · I(x + x′, y + y′)]2√

∑x′ ,y′ T(x′, y′)2 ·
√

∑x′ ,y′ I(x + x′, y + y′)2
, (10)

where T(x′, y′) is the pixel value of the template image at (x′, y′) and I(x + x′, y + y′) is the
original image’s pixel value at (x + x′, y + y′).

By performing the above-presented operations on the preprocessed and gradient
images, the position information on the feature points is obtained. The final matching
decision condition is given by:

xapn =
xhpn+xgpn

2

∣∣∣xhpn − xgpn

∣∣∣ < ∆error1

yapn =
yhpn+ygpn

2

∣∣∣yhpn − ygpn

∣∣∣ < ∆error1∣∣xpn − xapn
∣∣ < ∆error2∣∣ypn − yapn
∣∣ < ∆error2

, (11)
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where (xhpn, yhpn) is the matching coordinate value of the feature point in the original image,
(xgpn, ygpn) is the matching coordinate value of the feature point in the gradient image,
(xapn, yapn) is the final coordinate value of the feature point; (xpn, ypn) is the coordinate
value of the contour feature point, ∆error1 is the allowable error range of a single matching
degree, and ∆error2 is the allowable error range of the final matching degree.

The specific operation process and results of the CTMA are shown in Figure 8.
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2.4.3. CP Pose Calculation

By using the above-mentioned algorithm, the pixel position information of the effective
feature points can be obtained, and when combined with the space coordinate position of
a CP, it can be transformed into a PNP problem [30]. This study uses the pixel coordinates(

xapn and yapn
)

and the corresponding spatial position coordinates (xon, yon, and zon) to obtain
the position information

(
xpos, ypos, and zpos

)
and angle information

(
xang, yang, and zang

)
.

To solve the PNP problem, different solving methods require different effective feature points.
Therefore, to improve the positioning accuracy, based on at least six feature points

in the space, the space coordinate point vector and the pixel coordinate point vector are
established, and the position of a coordinate point in the space can be expressed by setting
the weighting factor as follows: 

pw
m =

n
∑

n=1
αmncw

n

n
∑

n=1
αmn = 1

, (12)
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where pw
m is the known three-dimensional coordinate point in the world coordinate system, cw

n
is the nth feature point of pw

m in the world coordinate system, and αmn is the weighting factor.
The positioning process of the EPnP algorithm is as follows:

(1) Select at least four feature points in the world coordinate system;
(2) Calculate the weighting factor αmn;
(3) Calculate the feature points in the camera coordinate system;
(4) Calculate the minimum error by the Gauss–Newton algorithm and define the error

as follows:
error = ∑

(m,n)s· t·m<n

(
||cc

m − cc
n||2−||cw

m − cw
n ||2

)
, (13)

where cc
m is the nth feature point of cw

m in the camera coordinate system;
(5) Obtain the three-dimensional coordinates of the feature in the camera coordinate system;
(6) Calculate the translation vector T and rotation matrix R of the CP pose;
(7) The x, y, and z values of the CP pose are the components of the translation vector T; and
(8) Solve Equation (14) to obtain the rotation values of the CP pose, namely, Rx, Ry, and Rz: cos Rz − sin Rz 0

sin Rz cos Rz 0
0 0 1

 cos Ry 0 sin Ry
0 1 0

− sin Ry 0 cos Ry

 1 0 0
0 cos Rx − sin Rx
0 sin Rx cos Rx

 = R3×3. (14)

3. Results
3.1. CP Pose Error

During data collection, to obtain the actual pose information on a CP relative to the
camera, the specific operations were performed:

(1) The world coordinates of the robot base and the CP were kept unchanged.
(2) When the robot was in the state of teaching, the charging gun was moved into the CP,

and this pose was used as the robot’s zero pose.
(3) The charging gun was moved out of the CP, and the robot moved randomly within

the recognition range to obtain image information.
(4) Based on the zero-pose information and pose information of the robot, the pose

information of the camera relative to the CP was obtained, which denoted the actual
pose information of the camera relative to the CP.

(5) The absolute value of the difference between the actual pose information and the
theoretical pose was used as a basis for error judgment.

3.2. Search-Phase Pose Accuracy Test

The search phase can be roughly divided into CP feature recognition and pose calcu-
lation. The recognition effect results of feature points are presented in Figure 9. The pose
error results of the CP are given in Table 3.

Table 3. Pose solution errors in the search phase.

Scenes Weather Time Period x, mm y, mm z, mm Rx,
Deg

Ry,
Deg Rz, Deg

Indoor Sunny/Overcast Time 1/2/3 1.62 1.77 1.98 2.10 2.19 1.65

Outdoor

Sunny Time 1/3 2.12 2.17 2.45 2.44 2.48 1.94
Sunny Time 2 2.31 2.36 2.71 2.61 2.87 1.99

Overcast Time 1/3 1.73 1.89 2.11 2.07 2.16 1.85
Overcast Time 2 1.76 1.82 2.21 2.13 2.21 1.88

Indoor/Outdoor Sunny/Overcast Time 4 1.51 1.82 2.05 1.82 2.15 1.69
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According to the results in Table 3, it can be concluded that the errors could be divided
into three categories: (1) indoor–night pose errors that were small; the positioning accuracy
was the highest and the average pose errors in the directions of (x, y, z, Rx, Ry, and Rz)
were 1.57 mm, 1.80 mm, 2.02 mm 1.96◦, 2.17◦, and 1.67◦, respectively; (2) outdoor–overcast
condition pose errors; the error at noon was relatively large and the overall pose error was
small. The average pose errors in the directions of (x, y, z, Rx, Ry, and Rz) were 1.75 mm,
1.86 mm, 2.16 mm, 2.10◦, 2.19◦, and 1.87◦, respectively; (3) outdoor–sunny day pose
errors that were the largest, especially at noon; the average outdoor pose errors in the
directions of (x, y, z, Rx, Ry, and Rz) were 2.22 mm, 2.27 mm, 2.58 mm, 2.53◦, 2.68◦, and
1.97◦, respectively. According to the obtained results, the change and intensity of light
had a significant impact on the position and orientation of the CP. Under strong light, the
CP surface and the light form a certain angle, making the illumination uneven, and thus
causing errors in feature positioning or even resulting in unrecognizable situations.

3.3. Aiming-Phase Pose Accuracy Test

The aiming phase can be mainly divided into feature recognition and pose calculation.
The recognition effect results of feature points in different scenarios are presented in
Figure 10. The theoretical pose information was obtained by the pose calculation algorithm,
and the actual pose error information was obtained based on the error judgment basis. The
pose errors of the CP in different scenarios are shown in Table 4.

Table 4. Pose errors in the aiming phase.

Scenes Weather Time Period x,
mm

y,
mm z, mm Rx,

Deg
Ry,

Deg Rz, Deg

Indoor Sunny/Overcast Time 1/2/3 0.52 0.67 1.04 1.07 0.77 0.41

Outdoor

Sunny Time 1/3 0.74 1.05 1.32 1.21 1.23 0.7
Sunny Time 2 0.85 1.11 1.51 1.26 1.34 0.75

Overcast Time 1/3 0.62 0.75 1.22 1.04 0.79 0.44
Overcast Time 2 0.68 0.84 1.26 1.13 0.89 0.57

Indoor/Outdoor Sunny/Overcast Time 4 0.51 0.64 1.06 0.94 0.69 0.43
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Based on the results in Table 4, it can be concluded that the errors could be divided
into three categories: (1) indoor–night pose positioning errors that were relatively small,
achieving the highest positioning accuracy; the average pose errors in the directions
of (x, y, z, Rx, Ry, and Rz) were 0.52 mm, 0.66 mm, 1.05 mm, 1.01◦, 0.73◦, and 0.42◦,
respectively; (2) outdoor–overcast condition pose positioning errors; the error at noon
was relatively large; the overall pose error was small; the average pose errors in the di-
rections of (x, y, z, Rx, Ry, and Rz) were 0.65 mm, 0.80 mm, 1.24 mm, 1.09◦, 0.84◦, and
0.51◦, respectively; (3) sunny–outdoor condition pose positioning errors; the overall pose
error increased significantly, especially at noon; the average outdoor pose errors in the
directions of (x, y, z, Rx, Ry, and Rz) were 0.80 mm, 1.08 mm, 1.42 mm, 1.24◦, 1.29◦, and
0.73◦, respectively. Based on the presented results, it can be concluded that during the
aiming phase, the external light caused great interference to the positioning. The influence
of the external light on the aiming phase was much greater than the influence on the search
phase, and it was the dominant affecting factor of pose positioning.

3.4. Charging Gun Insertion Test Verification

As the above-presented test results show, the indoor and night test results were
basically the same, the outdoor overcast test results were basically the same, and the
outdoor sunny test results were basically the same, and thus the test was divided into three
cases: (1) indoor case (sunny/overcast time 1/time 2/time 3/time 4); (2) outdoor–sunny
case (time 1/time 2/time 3); and (3) outdoor–overcast case (time 1/time 2/time 3). We
tested 100 sheets for each condition, as shown in Table 5.

Table 5. Plug-in data information.

Positioning
Phase Scenes Weather Time

Period

Min Light
Intensity

(Klux)

Max Light
Intensity

(Klux)

Number of
Samples

Search
phase

Indoor Sunny/Overcast Time 1/2/3/4 1.74 3.68 100

Outdoor
Sunny Time 1/2/3 10.23 48.09 100

Overcast Time 1/2/3 6.29 18.90 100

Aiming
phase

Indoor Sunny/Overcast Time 1/2/3/4 3.92 4.59 100

Outdoor
Sunny Time 1/2/3 10.48 48.12 100

Overcast Time 1/2/3 6.95 19.36 100
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Aiming at the above test plan and using the proposed identification and localization
method, the test was conducted using an AUBO-i5 robot as an actuator. The results are
shown in Table 6.

Table 6. Results of the plug-in experiment.

Positioning
Phase Scenes Weather Time

Period

Successfully Iden-
tified/Plugged

(Times)

Successful Recog-
nition/Plugging

Rate (%)

Search/Aiming
phase

Indoor / / 99 99

Outdoor
Sunny AM/PM 92 92

Overcast AM/PM 94 94

Based on the test results, for the indoor case (sunny/overcast time 1/time 2/time 3/
time 4), the average plug-in rate of the CP was 99%; for the outdoor–sunny case (time 1/
time 2/time 3), the average plug-in rate of the CP was 92%; and lastly, for the outdoor–
overcast case (time 1/time 2/time 3), the average plug-in rate of the CP was 94%. The
positioning accuracy is positively correlated with the success rate of plug-in.

4. Discussion
4.1. Results Comparison

To evaluate the performance and advanced nature of the proposed method, the al-
gorithm was compared with the two most advanced CP pose positioning methods. The
method was implemented in Python programming language with PyCharm 2017 on a
personal computer equipped with an Intel® Core™ i5-6300HQ processor and 16 GB of
memory. The running time was the average time of all test data. The comparison results
are given in Table 7.

Table 7. Comparison of pose positioning results.

Positioning
Phase Method x, mm y, mm z, mm Rx, Deg Ry, Deg Rz, Deg Running

Time (s)

Search
phase

Our + AP3P 2.24 2.46 3.15 6.56 4.21 2.01 0.27
Our + P3P 2.23 2.47 3.14 5.67 4.11 1.99 0.27

Our + UPNP 1.88 1.97 2.28 2.34 2.39 1.88 0.27
Our + ITERATIVE 1.91 1.99 2.34 2.39 2.41 1.91 0.27

Our + EPNP 1.84 1.97 2.25 2.20 2.34 1.83 0.27
Quan [18] 2.27 2.53 2.67 / / / 1.72
Yinkai [19] / / / / / / 1.14

Aiming
phase

Our + AP3P 1.13 1.32 2.13 4.45 2.34 0.71 0.21
Our + P3P 1.10 1.34 2.11 4.16 2.15 0.69 0.21

Our + UPNP 0.66 0.85 1.26 1.13 0.98 0.55 0.21
Our + ITERATIVE 0.81 0.89 1.33 1.25 1.13 0.61 0.21

Our + EPNP 0.65 0.84 1.24 1.11 0.95 0.55 0.21
Quan [18] 0.67 0.88 1.26 1.24 1.01 0.58 1.21
Yinkai [19] 0.89 1.11 1.31 1.23 1.14 0.63 6.75

Based on the results in Table 5, the combination of the feature recognition algorithm
based on this paper and the EPNP algorithm has the highest positioning accuracy, and
the proposed CP identification and positioning method overperformed the comparison
methods regarding the identification efficiency. In terms of positioning accuracy, the overall
positioning accuracy of the proposed method was improved during the search phase.
In the aiming phase, the average positioning accuracy of the proposed algorithm was
improved compared with that of Yin’s algorithm [18] and was basically the same as that of
Quan’s algorithm [19]. In the two phases, the overall recognition efficiency is 510.4% higher
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than the current optimal method. The proposed algorithm achieved obviously higher
recognition accuracy and efficiency than the other two algorithms.

4.2. System Error

The system error can be mainly divided into two parts. The first part is the error
generated by a robot, and the repeated positioning accuracy of the robot in this study was
about 0.05 mm. The second part is the error of the photographing process—the disturbance
of the base and the impact during plug-in can affect the zero-position pose, thus reducing
the positioning accuracy.

4.3. Feature Point Recognition Deviation
4.3.1. Feature Point Recognition Deviation in Search Phase

In the search phase, the main factors that affect the location of feature points are kernel
selection during bilateral filtering and selection of contour height and low thresholds when
obtaining contour information. When the inclination angle was too large, the characteristic
arc chamfers overlapped; due to the CP contour deformation and wear, the contour fitting
deviation occurred.

4.3.2. Feature Point Recognition Deviation in Aiming Phase

In the aiming phase, the proposed CTMA was used for feature point recognition.
Based on the exposure algorithm proposed in this paper, the image can be quickly adjusted
to the appropriate exposure, and the logarithmic function evaluation standard is used to
match the position of contour features, which can reduce the large deviation of template
matching position caused by uneven illumination of the image, as shown in Figure 11.
It should be noted that conventional template matching methods had large matching
errors under both gradient and gray map matchings. The main reason for this was that
under the external light, the inclination of the light source and the similarity of features
caused the failure of the conventional template matching methods. Compared with the
current advanced matching methods, our method improves the matching efficiency and
accuracy in the complex light field environment, and the matching robustness is also
significantly improved.
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matching before improvement. (b) Gray map template matching before improvement. (c) Template
matching method after improvement.

The influence of the type and inclination of the light source on the recognition result is
shown in Figure 12. In the actual environment, the light source characteristics of a CP are
mainly defined by three factors: direct sunlight (A), ambient scattered light (B), and lighting
(C). D, E, F and O represent the vertices that make up the sun’s altitude angle θ1 and the
sun’s deflection angle θ2. At night, the light mainly comes from lighting (C). In the case of
indoors and outdoors under overcast conditions, the light source mainly comes from the
scattered light (B) of the environment. When it is sunny outdoors, the light source mainly
comes from direct sunlight (A), while the light from lighting (C) is covered, and thus a CP
will be affected by the sun’s altitude angle θ1 and the sun’s deflection angle θ2. The angles
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θ1 and θ2 cause different degrees of shadows in CP features, which is the main reason for
the recognition deviation; particularly, in the template matching method, the matching
accuracy is relatively significantly lower in this than in other recognition scenarios. This
causes a severe problem for template matching algorithms. Although the mentioned factors
can affect the matching effect, compared with the results before the improvement, the
accuracy of feature matching is significantly improved under the proposed CTMA, which
can successfully solve the problem of poor robustness of the template matching algorithms
in complex scenarios.
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4.4. Feature Point Pose Calculation Error

When solving the pose by using the EPnP method, the positioning accuracy mainly
depends on the three-dimensional space position of the feature point and the coordinate
position of the feature point pixel. During the plug-in process of a CP, different degrees
of deformation and wear can be caused, resulting in changes in the three-dimensional
space position of the CP. In the process of pose calculation, the spatial mapping relationship
changes, which affects the pose calculation accuracy.

4.5. Calibration Influence on Result Accuracy

The positioning process involves camera parameter calibration and hand–eye parame-
ter calibration. The camera calibration accuracy is mainly affected by the calibration board,
calibration picture definition, and calibration method. This part of the impact is very small.
The hand–eye calibration error is mainly the error of the matrix conversion between the
end of the robot arm and camera position, and this error is relatively small.

Therefore, the location of feature points is the major factor that affects the pose identi-
fication accuracy.

5. Conclusions

In this paper, an identification and positioning system of a CP of an electric vehicle
is proposed, and the positioning accuracy of the proposed system is tested in different
scenarios. The plugging test of the charging gun is completed under the drive of the
robotic arm. Compared with the advanced CP positioning methods, in the search phase,
the proposed method uses the feature root algorithm to fit the gradient map and the
preprocessed image contour to obtain the position information of the feature points. In the
aiming phase, based on the proposed CTMA, the logarithmic function discriminant method
is used to achieve contour matching, and precise matching is performed in the contour
area to obtain the position information on feature points. The CP poses were calculated
using the EPnP algorithm, and the manipulator is adjusted to complete the insertion work
according to the obtained CP pose.
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According to the test results, it can be concluded that the indoor, night pose accuracy
is the highest, and the pose accuracy is the worst in the outdoor environment on sunny
days. The average positioning accuracy values in the directions of (x, y, z, Rx, Ry, and Rz)
are 0.65 mm, 0.84 mm, 1.24 mm, 1.11◦, 0.95◦, and 0.55◦, respectively. The results show
that the success rate of insertion in different scenarios is positively correlated with the
positioning accuracy. The success rates of indoor and outdoor insertions are 99% and 93%,
respectively. Compared with the advanced recognition methods, while improving the
recognition accuracy, the proposed method achieves significantly improved recognition
efficiency, which provides a guarantee for efficient and accurate CP recognition.

In the future, the proposed recognition algorithm could be optimized to achieve a good
recognition effect even on a sunny day outdoors and to further improve the positioning
efficiency and robustness of the proposed algorithm.
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