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Abstract: Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme
group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1
induction suppresses development of metabolic and neurological disorders. Natural compounds
with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity.
Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson’s
disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1
expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and
medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1
signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive
and therapeutic target for metabolic and neurological disorders.
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1. Introduction

Since the discovery of heme oxygenase-1 (HO-1) by Tenhunen et al. in 1968 [1], three HO
isoenzymes (HO-1, HO-2 and HO-3) have been reported in mammals [2]. Heme oxygenase (HO)
mostly exists in two forms, HO-1, the inducible form, and HO-2, the constitutive form [3]. HO-3 is a
pseudogene derived from the HO-2 transcript, and has any intron [4]. HO-1 and HO-2 degrade heme
in an identical stereospecific manner to biliverdin with the concurrent release of carbon monoxide (CO)
and iron [5]. Among those three proteins, only HO-1 was shown to be inducible by a variety of stimuli
such as oxidative stress [6,7]. On the other hand, the constitutive nature of HO-2 made it less attractive
as a drug target compared to HO-1.

Recent studies utilizing gene knockdown techniques and small molecule inhibitors have shown
that HO-1 induction suppresses development of metabolic disorders and nerve system disorders
including obesity [8], hypertension [9], atherosclerosis [10], Parkinson’s disease [11] and hepatic
fibrosis [12]. A significant body of literature has focused on the mechanism of heme degradation by
HO-1 and there is strong evidence that inducing HO-1 expression is an effective method of suppressing
oxidative dysregulation, inadequate immune response and related disorders [13].
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Chemoprevention is defined as a pharmacological approach used to suppress or reverse the
disease progression [14]. Antioxidants in fruits and vegetables, such as polyphenols, have been
proposed as primary chemopreventive agents [15]. Many of the natural compounds have shown the
ability to induce HO-1 without cytotoxic effects. Although several reviews have dealt with natural
HO-1 inducers [16–18], none of them categorized and visualized their chemical structures of the
up-to-date list of HO-1 inducers. Given the importance of chemical structures of natural compounds on
their antioxidant ability, it is necessary to provide the chemical structure-based classification of HO-1
inducers. Here, we provide a compilation of knowledge on natural antioxidants and anti-inflammatory
compounds in foodstuff or medicinal herbs focusing on the diseases in which HO-1 induction could
exert preventive or therapeutic effects by modulating various signaling pathways.

2. Beneficial Effects of Heme Oxygenase-1 Induction as Preventive Measures against Diseases

HO-1 is involved in a wide range of diseases in many types of mammalian tissue including the
liver, artery and neuron. Although the effect of HO-1 induction is controversial in some types of
diseases, there are several cases showing the benefits of antioxidant and anti-inflammatory effects of
HO-1. Here we introduced five types of diseases in which HO-1 induction is confirmed to be beneficial
by genetic knockout experiments in vitro and in vivo.

2.1. Obesity

Obesity, characterized by increased adipose tissue mass that results from both increased number
and size of fat cells [19], is one of the major metabolic disorders worldwide [20]. Obesity is also
a major risk factor in vascular dysfunction and insulin resistance that leads to hypertension and
diabetes, respectively [21,22]. Decreased level of HO-1 was correlated with the inflammatory cytokine
increase and insulin resistance [8,23]. In animal studies, the beneficial effect of HO-1 induction against
adipocyte morphology was observed in the ob/ob mouse model [8] and Zucker diabetic rats [24].
Administration of 3 mg/kg of cobalt protoporphyrin (CoPP), the HO-1 inducer that causes a sustained
increase in the HO-1 protein level, prevented weight gain by decreasing visceral and subcutaneous
fat content compared with the vehicle group [8]. Upregulation of HO-1 attenuated adipogenesis in
bone marrow by increasing serum adiponectin, and decreasing plasma tumor necrosis factor-alpha
(TNF-alpha), interleukin (IL)-6 and IL-1β levels [8]. Upregulating the HO-system with hemin also
reduced perirenal adiposity in the Zucker rat model by inhibiting several proinflammatory/oxidative
mediators in perirenal fat including macrophage-inflammatory-protein-1α (MIP-1α), endothelin (ET-1),
8-isoprostane, TNF-α, IL-6 and IL-1β [24]. The increase of HO-1 in perirenal fat was confirmed
by enzyme-linked immunosorbent assay (ELISA) showing the involvement of the obesity regulator
in vivo [24]. These results indicate that the HO-1 level is negatively correlated with obesity-related
symptoms and HO-1 induction ameliorates genetically induced obesity in vivo.

2.2. Hypertension

Hypertension, a long-term medical condition where the blood pressure in the artery is persistently
elevated, is now considered as a chronic progressive disease that develops over many years [25].
Hypertension is a major risk factor of stroke, myocardial infarction, left ventricular hypertrophy
and renal disease [26,27]. There are various reports showing the protective role of HO-1 in the
development and progression of pulmonary arterial hypertension. In an animal study, transgenic mice
that overexpress HO-1 in the lung showed reduced incidence of pulmonary hypertension and vessel
wall hypertrophy induced by hypoxia [9]. The levels of proinflammatory cytokines and chemokines
induced by hypoxia were also suppressed in HO-1 transgenic mice [9]. Another in vivo study using a
HO-1 inducer also showed that hemin treatment abrogated the induction of pulmonary hypertension
and pulmonary arterial wall thickening in rats injected with monocrotaline [28]. Adipose tissue-specific
induction of HO-1 also demonstrated the beneficial effect of HO-1 against obesity-related hypertension.



Antioxidants 2020, 9, 1191 3 of 40

Induction of HO-1 lowered blood pressure levels in obese mice similar to that of lean mice [29].
These studies highlight the protective role of the HO-1 signaling in hypertensive models in vivo.

2.3. Atherosclerosis

Atherosclerosis is characterized by the accumulation of lipids and fibrous elements in the large
arteries [30]. Since atherosclerosis was regarded as a chronic inflammatory state, the effect of HO-1
modulation in the disease has been studied extensively. Case reports on deficiency of HMOX1,
a human gene encoding HO-1 enzyme, showed vascular injury and early atherosclerotic changes along
with inflammation and nephropathy, suggesting the importance of HO-1 in vascular health [31–33].
The protective role of HO-1 induction against atherosclerosis was further supported by various
animal studies. HO-1 overexpression by adenovirus-mediated gene transfer successfully inhibited
atherogenesis in a hypercholesterolemic animal model [10]. Induction of HO-1 by pharmacological
inducers also attenuated the development of atherosclerotic lesions in vivo [34,35]. On the other hand,
Hmox1-/- mice reportedly had growth retardation, anemia, iron deposition [36,37] and developed severe
aortitis and coronary arteritis with mononuclear cellular infiltration and fatty streak formation [38].
In sum, these results found in mouse and human show that HO-1 plays a protective role against the
progression of atherosclerosis.

2.4. Parkinson’s Disease

Parkinson’s disease is one of the major neurodegenerative disorders of uncertain pathogenesis
characterized by the loss of the dopaminergic neurons [39]. The deregulation of the HO system has been
associated with many types of neurodegenerative disorders, particularly Parkinson’s disease [5,40].
HO-1 induction showed a neuroprotective role in in vivo models of Parkinson’s disease [11,41].
Hung et al. utilized an adenovirus containing human HO-1 gene and injected it into rat substantia
nigra concomitantly with 1-methyl-4-phenylpyridinium that causes parkinsonism. Overexpression of
HO-1 significantly increased the survival rate of dopaminergic neurons, and reduced the production
of TNF-α and IL-1β in substantia nigra [11]. Another in vivo study revealed that intracerebral
administration of a natural HO-1 inducer also suppressed the dopaminergic neuronal loss and
behavioral dysfunction in the 6-OHDA mouse model. Dopaminergic neurons from oxidative stress
were protected by upregulation of glial expression of HO-1 [42]. Thus, the increase of HO-1 can be
beneficial to suppress neuronal damage and progression of Parkinson’s disease.

2.5. Hepatic Fibrosis

Hepatic fibrosis is overly exuberant wound healing that excessive connective tissue builds up
in the liver [43]. It is an integral part in chronic liver disease progression, ultimately leading to
cirrhosis and hepatocellular carcinoma [44]. HO-1 has been implicated to play an important role in
antioxidative stress and cytoprotective systems in the liver. Increased level of HO-1 induced SIRT1 and
ameliorated fructose-mediated liver fibrosis by decreasing vascular dysfunction in mice [12]. Cobalt
protoporphyrin (CoPP), a HO-1 inducer, was able to suppress oxidative stress markers and negate
HO-1 decrease by fructose intake [12]. On the other hand, HO-1 deficiency in mouse models and
human caused severe chronic hepatic inflammation, iron deposition and oxidative damage in the
liver [45,46]. Most importantly, HO-1 induction reduced liver damage and chronic inflammation by
regulating immune cell infiltration or proliferation and TNF receptor signaling in Mdr2 knockout
mice, a genetic mouse model of chronic liver inflammation and fibrogenesis [47]. Fibrosis progression
was significantly reduced by HO-1 induction with CoPP [47]. Although the therapeutic potential
of HO-1 and its mechanism of action are still largely unknown in patients, upregulation of HO-1
gene expression is a potential future clinical implication to improve metabolic balance and attenuate
hepatic fibrosis.
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3. HO-1 Signaling Pathway

Considering the clinical implications of HO-1 mentioned above, elucidating the signaling pathway
of HO-1 and understanding the molecular mechanism are crucial. Here we categorize HO-1 signaling
pathway into two segments: upstream kinases and transcription factors of HO-1. Key proteins
that regulate transcription factors of HO-1 include extracellular signal-regulated kinase (ERK), c-Jun
N-terminal kinase (JNK), p38 and Akt (Figure 1). Transcription factors that bind to upstream of the
initiation site of HO-1 to stimulate its mRNA expression include nuclear factor erythroid 2-related
factor 2 (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator
protein 1 (AP-1). After expressed by the regulator proteins, HO-1 affects downstream elements such as
Heme, bilirubin and carbon monoxide (CO).
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3.1. Upstream Kinases: ERK, JNK, p38 and Akt

ERK, a member of the mitogen-activated protein kinase (MAPK) family, is involved in cellular
processes including proliferation [48], differentiation [49] and redox regulation [50]. ERK was reportedly
involved in induction of HO-1 by extracellular signals or chemopreventive small molecules [51,52].
Chen and Maines utilized PD98059, a selective ERK pathway inhibitor, and showed that inhibition
of ERK blocked HO-1 induction by a nitric oxide donor in a dose-dependent manner [51]. Wu et al.
also revealed that pretreatment of PD98059 can prevent HO-1 induction by epigallocatechin-3-gallate
(EGCG) [52]. Nrf2 is a well-known transcription factor regulated by ERK to induce HO-1 mRNA
expression [53]. Several studies using phytochemicals showed that the activation of the antioxidant
regulator, Nrf2, is mediated through ERK phosphorylation [53–55].

JNK is another member of MAPK that plays a central role in stress signaling pathways implicated
in gene expression, neuronal plasticity and regulation of cellular senescence [56]. Pharmacological
inhibitor studies showed that JNK regulates the HO-1 expression level [57]. In rat hepatocytes, the JNK
inhibitor SP600125 decreased HO-1 mRNA expression mediated by sodium arsenite [57]. JNK regulates
Nrf2 to reduce oxidative stress [58,59]. Pretreatment of SP600125 suppressed Nrf2 translocation under
the oxidative stress signal [58]. SP600125 suppressed the JNK signaling pathway and resulted in
Nrf2-mediated prevention of diabetic nephropathy [59]. Moreover, JNK also activates NF-κB and
Nrf2 [60]. Tsai et al. found that siRNA of JNK inhibited glucose-induced activation of NF-κB in
cardiomyocytes [60].
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p38, the other member of MAPK family, plays an important role in redox regulation [51], cellular
stress response [61] and autophagy [62] via regulating HO-1. An in vitro study using a p38 inhibitor,
SB203580, revealed that the inhibition of p38 suppressed the induction of HO-1 by nitric oxide in a
dose-dependent manner [51]. Another study also showed that siRNA of p38 MAPK and pretreatment
of SB203580 attenuated HO-1 induction in fisetin-stimulated human umbilical vein endothelial cells [63].
The induction of HO-1 by p38 is also correlated with Nrf2 activation. Khayandirobilide A, a natural
small molecule with anti-inflammatory property, induces HO-1 expression by p38 MAPK/Nrf2 signaling
in RAW264.7 macrophages and BV-2 microglial cells [64].

Akt, a substrate of phosphoinositide 3-kinase (PI3K), is a serine/threonine-specific protein kinase
that plays a key role in oxidative damage response [58], cell cycle progression [65] and survival [66].
PI3K-Akt pathway induces HO-1 expression level as a survival signal against oxidative stress-induced
injuries [67]. Mo et al. found that hydrogen peroxide enhanced phosphorylation of Akt and that
treatment with LY294002, a selective inhibitor of PI3K, suppressed Akt phosphorylation and hydrogen
peroxide-induced HO-1 expression [67]. Another study also confirmed the role of the PI3K-Akt
pathway on HO-1 expression and further elucidated that Nrf2 is involved in the process. Pretreatment
of LY294002 prevented nuclear translocation of Nrf2 and inhibited HO-1 induction in RAW 264.7
cells [58]. In sum, ERK, JNK, p38 and PI3K-Akt pathways govern the HO-1 expression level primarily
by regulating important transcription factors such as Nrf2 and NF-κB.

3.2. Transcription Factors: Nrf2, NF-κB and AP-1

HO-1 gene (Hmox1) is located on chromosome 22q12, and is regulated by several transcription
factors including Nrf2, NF-κB and AP-1 [5]. This feature makes HO-1 a converging node in antioxidant
mechanism [5] and serves as a critical signaling protein of ferroptosis regulating iron and ROS (reactive
oxygen species) homeostasis [68–72]. Nrf2, for instance, is a family member of Cap ‘n’ Collar-basic
leucine zipper transcription factor (CNC-bZIP) and is considered as the most pivotal regulator of HO-1
in the brain and nervous system [73]. Without oxidative stress, Nrf2 is located in the cytoplasm by
its negative regulator Keap1 that induces ubiquitination and proteasomal degradation of Nrf2 [74].
Under oxidative stress conditions, Keap1 is dissociated from Nrf2 and thus Nrf2 moves into the
nucleus, binds to the antioxidant response elements (AREs) sequence of the HO-1 promoter region
and initiates the transcription of HO-1 [75]. Once expressed, HO-1 activates a cascade of antioxidant
signaling that affects the oxidative status of the cells and protects cells from oxidative challenges [23].
Knockdown experiments confirmed that downregulation of Nrf2 significantly inhibited H-Ras-induced
HO-1 transcription [76].

NF-κB and AP-1 also directly regulate HO-1 expression as transcription factors. Unlike evolutionary
conserved Nrf2-HO-1 regulation, the HO-1 regulation by NF-κB and AP-1 is dependent on
lipopolysaccharide (LPS), a prototypical Toll-like receptor 4 (TLR4) agonist [77]. Once TLR4 is stimulated
by LPS or monophosphoryl lipid A, another synthetic TLR4 agonist, it activates NF-κB [78,79] and
AP-1 [80]. Inhibition of the NF-κB pathway with small molecules suppressed LPS-induced HO-1
promoter activity [77]. AP-1 homodimers or heterodimers bind to enhancers of the promoter region of
hmox1 [81]. The expression of HO-1 requires AP-1 activation by LPS [80].

3.3. Transcription Repressor: Bach1

BTB and CNC homology 1 (Bach1) is ubiquitously expressed in mammalian tissues and functions
as a transcriptional suppressor of HO-1 by heterodimerizing with small Maf proteins [82]. While Nrf2
reportedly activates HO-1, Bach1 binds to the enhancers of the Hmox1 to suppress its expression under
normal conditions [83]. Knockout of Bach1 affects oxidative stress damage by HO-1 induction [84].
Bach1 deficiency reduced the severity of osteoarthritis in mice by inducing HO-1 expression [85].
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3.4. Translational Repressor: miRNAs

MicroRNAs (miRNAs) are a class of small non-coding RNA that govern post-transcriptional gene
silencing (PTGS) and affect a wide range of protein expression [86]. There are several miRNAs that
downregulate HO-1 both directly and indirectly. miR-217, miR-377, miR-1254 and miR-24-3p directly
regulate HO-1 translation. miR-217 and miR-377 in combination showed no change in HMOX1 mRNA
levels, but a significant reduction in HO-1 protein expression and enzyme activity [87]. The two
miRNAs were able to bind to the 3′ untranslated region (3′ UTR) of human HMOX1 [87]. miR-1254
suppresses HO-1 expression at the post-transcriptional level by directly targeting HO-1 3′ UTR [86].
Pu et al. found that HO-1 expression was inversely correlated with miR-1254 level in human cells [86].
miR-24-3p also targets the 3′ UTR of HO-1 [88]. miR-122 and miR-494 indirectly regulate the HO-1
expression level. Antagomir of miR-122 induced HO-1 mRNA levels in vitro [89]. In contrast, miR-494
upregulates the HO-1 expression level. Endogenous miR-494 inhibition impaired HO-1 induction in
response to H2O2 [90]. The effect of miRNAs on HO-1 is illustrated in Figure 1.

3.5. Enzymatic Activity of HO-1

Once expressed, HO-1 catalyzes the degradation of heme to yield equimolar amounts of biliverdin,
CO and ferrous iron [91]. The three products have anti-inflammatory and antioxidant activities. First,
biliverdin is converted to bilirubin that functions as a vasoactive and antioxidant molecule [23]. Second,
CO interacts with heme proteins or diffuses to the blood stream, and is transported to the lungs
and cleared by exhalation [92]. CO also participates in intracellular signal transduction, including
production of anti-inflammatory cytokines and upregulation of antiapoptotic effectors [91]. Third,
ferrous iron is an essential requirement for the synthesis of hemoglobin and ferritin, and is involved in
cellular redox reactions [23]. Figure 2 provides a conceptual illustration of heme degradation by HO-1.
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4. Phenolics

Phenolic compounds are present in most food and medicinal plants, and their antioxidant activity
and other pharmacological effects have been reported [93]. The antioxidative effect of phenolics
in edible sources have been regarded that the phenolics retard oxidative degradation of lipids by
direct quenching of ROS [94]. The studies on the molecular mechanism of health promoting effects of
phenolics in edible plants that unraveled the bioactivities are also associated with the antioxidative and
anti-inflammatory cascades involved with HO-1. The phenolic compounds are the largest family of
antioxidative and anti-inflammatory natural products inducing HO-1 to exert a variety of bioactivities
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including hepatoprotective, cardioprotective, neuroprotective, antiobestic, antidiabetic activity and
so on.

4.1. Flavonoid

Quercetin (1) is the most common flavonol present in vegetables, fruits and medicinal herbs
with antioxidant and anti-inflammatory activity [95]. Besides direct hydrogen-donating properties to
quench ROS, the influence of quercetin on signaling pathways and its indirect interaction with the
endogenous antioxidative defense system was investigated. Chen et al. revealed the role of quercetin
(1) as an inhibitor of iNOS gene expression by inducing HO-1 and mediating the inhibition of IκB
kinase, NF-κB and STAT1 [96]. In addition, upregulation of HO-1 expression by activating the nuclear
factor erythroid 2 related factor (Nrf2) to bind with ARE in the ho-1 gene promoter region was also
reported [97,98]. The mechanism of the hepatoprotective effects of quercetin (1) on ethanol-induced
oxidative damage in hepatocytes was involved in ERK activation and HO-1 upregulation [99]. Later,
the signaling pathway of quercetin (1) involved in HO-1 induction was revealed as p38 and ERK
mediated quercetin (1)-derived Nrf2 translocation into nuclei and subsequent induction of HO-1
activity [100]. The hepatoprotective effects of quercetin (1) via induction of HO-1 on ethanol-induced
microsomal oxidative stress were studied in adult male Sprague-Dawley rats [101]. Quercetin (1) also
reduces obesity-induced hepatic inflammation by inducing HO-1, which promotes hepatic macrophage
polarization in favor of the M2 phenotype [102]. Quercetin (1) suppresses microglia-mediated
inflammatory responses via the induction of HO-1, and hence protects against obesity-induced
hypothalamic inflammation [103]. Under obese conditions, muscle atrophy might be induced by
TNFα, but it might be reduced through Nrf2-mediated HO-1 induction accompanied by inactivation
of NF-κB of quercetin (1) [104]. The therapeutic potential of quercetin (1) for inflammatory diseases via
enhancement of mitochondrial biogenesis [105], and reduction of NADPH oxidase-derived superoxide
generation and oxidative stress [106]. The suppression of hydrogen peroxide (H2O2)-induced cell
damage in endothelial cells by quercetin (1) could explain the protective cardiovascular effects of diets
rich in the compound [107]. Hayashi et al. reported quercetin (1) attenuates oxidative epithelial cell
injury in lung inflammation [108]. Another flavonol compound found in common dietary plants,
isorhamnetin (2) also has HO-1 inducing activity, which results in exhibition of the anti-inflammatory
effect [109], attenuation of atherosclerosis [110] and protective effects against oxidative stress-induced
cellular damage [111]. A flavanol found in Moraceae plants and many medicinal herbs, morin
(3) increases induction of HO-1 activity, leading to the anti-inflammatory and antioxidative effects,
which implies the potential as a therapeutic for the prevention of neuroinflammation [112] and
liver injury [113]. Cytoprotective effect against oxidative stress of fisetin (4) treatment resulted from
significantly increased Nrf2 nuclear translocation, and ARE-luciferase activity, leading to upregulation
of HO-1 expression [63]. Myricetin (5) is an anti-inflammatory component that the expression of HO-1
through Nrf2 translocation, found in Diospyros lotus, an oriental herbal medicine used for the treatment
of diabetes, diarrhea, tumor and hypertension [114]. Apigenin (6) and luteolin (7) are structurally
related flavones easily found in dietary plant sources, which activate Nrf2-ARE-mediated gene
expression and induce anti-inflammatory activities with important effects on HO-1 expression [115].
Luteolin (7) has been further investigated in mitigation of acute lung injury [116], inhibition of
viral-induced inflammatory response [117] and protective effect against renal toxicity [118] via the
upregulating Nrf2/ARE/HO-1 pathway. Baicalein (8) is the representative bioactive component found
in Scutellaria baicalensis, an oriental herbal medicine [119]. Its improvement of cardiac contractile
function in endotoxemic rats [120] and protective activity for pancreatic β-cells from inflammation [121]
might attribute to induction of HO-1 expression. Huang et al. investigated the protective action
of three structurally related flavones (chrysin (9), apigenin (6), and luteolin (7)) against oxidative
stress in rat primary hepatocytes [122]. Chrysin (9), apigenin (6) and luteolin (7) upregulated the
protein expression of HO-1 in a dose-dependent manner and glutamate cysteine ligase catalytic and
modifier subunit and increased the intracellular glutathione content and the ratio of glutathione
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to oxidized glutathione [122]. Nobiletin (10), a highly O-methylated flavone isolated from citrus
peels, significantly induces HO-1 to inhibit NO production and exert anti-inflammatory effects on
the crosstalk between adipocytes and macrophages, which implies potential for the prevention of
obesity-related metabolic diseases [123]. Eupatilin (11), the anti-inflammatory flavone derived from
Artemisia plants, protects ileal smooth muscle cells (ISMCs) from cell damage caused by indomethacin,
and that its cytoprotective action could be attributed to eupatilin-mediated HO-1 induction via ERK and
Nrf2 signaling in ISMC [124]. 5-Hydroxy-3,6,7,8,3′4′-hexamethoxyflavone (12) from Hizikia fusiforme
inhibits LPS-stimulated NO production by suppression of iNOS expression and enhancement of HO-1
expression via Nrf2 activation [125]. Structures of the flavonoid natural products (1–12) are presented
in Figure 3.
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Another bioactive O-methylated flavone isolated from the heartwood of Dalbergia odorifera,
6,4′-dihydroxy-7-methoxyflavanone (13) was also proposed as an antioxidative and anti-inflammatory
HO-1 inducer in mouse hippocampal HT22 cells and BV2 microglia cells [126]. Ampelopsin (14),
a flavonoid abundant in Rattan tea (Ampelopsis grossedentata), was investigated as a potent antioxidant
and neuroprotective agent against H2O2-induced apoptosis in PC12 cells via upregulation of HO-1
expression [127]. Naringenin (15), a flavonone present in various species of citrus fruit, tomatoes and
grapes, has anti-inflammatory and antiarthritic properties [128]. Dihydrofisetin (16) is a flavanonol,
dose-dependently inhibited lipopolysaccharide-induced productions of NO and PGE2 in RAW 264.7
macrophage [129]. In addition, dihydrofisetin (16) inhibited the activation of MAPK pathway and
phosphorylation of IκB-α whereas it upregulated the expression of HO-1 [129]. Sophoraflavanone G
(17) and leachianone A (18) are anti-inflammatory components found in an oriental medicinal herb
Sophora flavescens, and the compounds belong to a unique and rare class of prenylated flavonoid [130].
The induction of HO-1 by the prenylated flavonoids was identified as the key mechanism of the
protective effect against glutamate toxicity in HT22 cells [131]. Sophoraflavanone G (17) was also
isolated from another allied species, Sophora alopecuroides, and the prenylated flavonoid showed
potential to treat some inflammatory diseases by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1
pathways [132]. Structures of the flavonoid natural products (13–18) are presented in Figure 4.
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Catechins are flavan-3-ol compounds contained in tea as the most abundant phenolic chemical
species that exert antioxidant and anti-inflammatory activity [133]. Among the flavonoids classified as
catechins in tea, the major green tea catechin, epigallocatechin-3-gallate (19, EGCG) has been intensively
investigated as it was discovered a HO-1 expression inducing agent that helps protect the neuron
against oxidative stress-induced cell death [134], possibly block the pathogenic cycle of Sjögren’s
syndrome [135], inhibit inflammatory responses by suppressing the production of proinflammatory
cytokines during the adipocyte–macrophage interaction [136], protect against contrast-induced
nephropathy by amelioration of oxidative stress and inflammation [137] and mediate beneficial
cardiovascular actions via anti-inflammatory actions in vascular endothelium [138]. Chalcones are one
of the major classes of natural products with widespread distribution in plant foodstuff with interesting
pharmacological activities [139]. Chemically they are characterized of open-chain flavonoids in which
the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system [140]. Compared
to the relevance in nature, chalcones have been identified as a considerably large group of natural
antioxidant and anti-inflammatory agents found in foodstuff or medicinal herbs. Lee et al. reported
H2O2-induced cell death and ROS generation could be inhibited by HO-1 expression induction of
butein (20) [141]. Based on the role of HO-1 in the development of obesity and insulin resistance,
Wang et al. proved that butein (20) activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent
inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity mouse model [142].
3-Deoxysappanchalcone (21, also known as isoliquiritigenin 2′-methyl ether) is a major bioactive
component isolated from Caesalpinia sappan, commonly used herbal medicine for inflammation and to
improve blood circulation [143,144]. The molecular mechanism by which 3-deoxysappanchalcone (21)
exerts anti-inflammatory activity was identified as induction of HO-1 expression at the translational
level via activating the AKT/mTOR pathway [145]. 3-Deoxysappanchalcone (21) also exhibited antioral
cancer effects by HO-1 upregulation via a pathway involving MAP kinases, NF-κB and Nrf2 [146].
The mechanism of anti-inflammatory activity by 4,2′,5′-trihydroxy-4′-methoxychalcone (22) from
Dalbergia odorifera was revealed as inducing the expression of anti-inflammatory HO-1 via the Nrf2
pathway to inhibit proinflammatory mediators such as COX-2 and iNOS [147]. Kil et al. suggested
anti-inflammatory action of okanin (23) by virtue of its α-β unsaturated carbonyl functional group,
reporting that the underlying mechanism is inhibition of NO production and iNOS expression via
Nrf2-dependent HO-1 expression [148]. Cardamonin (24), a chalcone isolated from Alpinia katsumadai,
has been investigated to prove anti-inflammatory mechanisms of cardamonin (24) is related to
the decrease in the level of MDA, iNOS, COX-2, NF-κB and MAPK and induction of the HO-1
expression [149]. Structures of epigallocatechin-3-gallate (19) and the chalcones (20–24) are presented
in Figure 5.
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A prenylated chalcone, xanthohumol (25) is a major flavonoid contained in hop (Humulus
lupulus), which is commonly used in beer brewing [150]. Lee et al. reported that xanthohumol (25)
exerts anti-inflammatory activity through Nrf2-ARE signaling and upregulation of downstream
HO-1, to ameliorate inflammatory responses in the brain [151]. Another prenylated chalcone,
7,9,2′,4′-tetrahydroxy-8-isopentenyl-5-methoxychalcone (26) isolated from Sophora flavescens was
identified as an inducer of HO-1 expression, which in turn HO-1 and/or CO suppresses Th2 chemokine
expressions induced by cytokines in human HaCaT cells [152]. Calycosin (27), an isoflavonoid from
the Chinese medicinal herb Astragalus propinquus, induces Nrf2 that suppresses the expression of
proinflammatory cytokines via p62/Nrf2-linked HO-1 induction in rheumatoid arthritis synovial
fibroblasts [153]. The root of Pueraria lobata has been used for food and various medicinal purposes
in traditional oriental medicine [154]. Puerarin (28, daidzein 8-C-glucoside), the main isoflavone
glycoside found in Pueraria lobate, augments cellular antioxidant defense capacity through estrogen
receptor-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway [155]. Puerarin
(28) also alleviate the high glucose-induced acute endothelium-dependent vascular dysfunction in rat
aortic rings via HO-1 expression induction [154]. Structures of the prenylated chalcones (25–26) and
the isoflavones (27–28) are presented in Figure 6.
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4.2. Non-Flavonoid Phenolics

Curcumin (29) is the main bioactive phenolic compounds present in turmeric, a spice with a
variety of medicinal functions including antioxidant, anti-inflammatory [156], antimutagenic and
antimicrobial [157,158] activity. A number of research groups has reported the induction of HO-1
expression by curcumin (29) and the association with its antioxidant, anti-inflammatory activity,
furthermore, the therapeutic and preventive potential for the related diseases since the first report on its
HO-1 inducing activity [159]. The early investigations on induction of HO-1 by curcumin have markedly



Antioxidants 2020, 9, 1191 11 of 40

contributed to extending the understanding of the molecular mechanism of antioxidant effects exerted
by HO-1. Curcumin (29) was identified as a potent inducer of HO-1 in vascular endothelial cells and the
increased heme oxygenase activity is an important component in curcumin-mediated cytoprotection
against oxidative stress [160]. Hill-Kapturczak et al. elucidated the mechanism of HO-1 induction by
curcumin (29) was involved in the NF-κB pathway in human renal cells [161]. In the course of the study
on antioxidant potential of curcumin (29), it was discovered that stimulation of ho-1 gene activity could
promote inactivation of the Nrf2–Keap1 complex, leading to increased Nrf2 binding to the resident ho-1
AREs [162]. McNally et al. discovered that PKC and p38 MAPK activity are required for full induction
of HO-1 in the course of their study using curcumin (29) [163]. On the basis of the ethnopharmacological
background [164–166], hepatoprotective effects by curcumin (29) pretreatment was involved in the dose-
and time-dependent induction of HO-1 [167]. Furthermore, the HO-1 induction exhibited inhibition
of hepatitis C virus (HCV) replication along with AKT pathway inhibition [168]. The induction of
HO-1 expression by curcumin (29) may protect human retinal pigment epithelial cells against oxidative
stress by reducing ROS levels [169]. The recent study on the hepatoprotective potential of curcumin
demonstrated that hepatic chronic inflammation could be ameliorated through the activation of HO-1
by curcumin (29) [170]. Cisplatin is a standard chemotherapeutic agent for solid malignances, in spite
of the high incidence of side effects including ototoxicity [171]. Fetoni et al. reported that curcumin
(29) treatment attenuated hearing loss induced by cisplatin via curcumin-mediated upregulation
of HO-1 [172]. Curcumin (29) also protected SH-SY5Y cells against appoptosin-induced intrinsic
caspase-dependent apoptosis by upregulating HO-1, attenuating accumulation of intracellular heme
and ROS [173]. Oregonin (30) is a glucose-conjugated diarylheptanoid, which shares the same structural
backbone with curcumin (29). Oregonin (30) is known as the antioxidant and anti-inflammatory agent
isolated from leaves of Alnus formosana [174], and the bioactivities are also involved in the induction of
HO-1 [175]. A diarylheptanoid with cyclic structure, acerogenin A (31) from Japanese folk medicine
Acer nikoense, showed neuroprotective effects and ROS reduction on glutamate-induced neurotoxicity
by inducing the expression of HO-1 [176]. Structures of the diarylheptanoids (29–31) are presented in
Figure 7.
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Caffeic acid phenethyl ester (32, CAPE) is a hydrophobic natural phenolic compounds with a
variety of bioactivities found in a wide range of plants and honeybee propolis [177,178]. CAPE (32) is
one of the first few natural products identified as an inducer of HO-1 expression [179], and a number of
follow-up studies on CAPE (32) involving HO-1 induction and the health promoting-potential have been
published. Wang et al. proposed the cytoprotective potential of CAPE (32) against menadione-induced
oxidative stress in human umbilical vein endothelial cells (HUVEC) via upregulation of HO-1 by
CAPE (32) [180]. Interestingly, caffeic acid, a potential metabolite of CAPE (32) with similar free radical
scavenging ability, however, did not show any cytoprotective effect nor induce HO-1 in the study [180].
Morroni et al. suggested that CAPE (32) could potentially be considered as a promising neuroprotective
agent against progressive neurodegenerative diseases, demonstrating administration of CAPE (32)
counteracted oxidative stress accompanied by an induction of Nrf2 and HO-1 in a mouse model [181].
Kurauchi et al. also investigated the neuroprotective potential of CAPE (32) in vivo, examining the
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expression of HO-1 and the brain-derived neurotrophic factor [182]. High-level glucose-mediated
oxidative stress could be attenuated by HO-1 induction by CAPE (32), and it may be useful in diabetes
and other stress-induced pathological conditions [183]. CAPE (32) is putatively biosynthesized from
caffeic acid and phenethyl alcohol, and it is not difficult to perform studies on chemical synthesis of
derivatives and structure–activity relationship (SAR). Thus, SAR studies for enhancement of HO-1
induction using synthetic derivatives of CAPE (32) were reported as well [183–185]. A caffeic acid
derivatives, caffeoylglycolic acid methyl ester (33) [89] contained in grains of Sorghum bicolor and
3-O-caffeoyl-1-methylquinic acid (34) [186] from bamboo leaves exerted anti-inflammatory effects
by inducing HO-1 expression. Another type of caffeic acid ester derivative found in rosemary and
other foodstuff, rosmarinic acid (35) [187] and a derivative isolated from Perilla frutescens, rosmarinic
acid methyl ester (36) [188] also exert their antioxidant and anti-inflammatory action via induction of
HO-1 expression. Salvianolic acid B (37) is a polyphenolic compounds isolated from Salvia miltiorrhiza
(Danshen), a traditional oriental medicinal herb, which improves vascular function by inhibiting
inflammatory responses and promoting endothelium-dependent vasodilation via induction of HO-1
expression [189]. 2-Methoxycinnamaldehyde (38) is another phenylpropanoid natural product found
in Cinnamomum cassia, which has been used as a spice and medicinal herb for inflammatory disorders.
2-Methoxycinnamaldehyde (38) possibly protects from myocardial I/R-injury due to antioxidant
and anti-inflammatory action by HO-1 induction [190]. Hydroxytyrosol (39) is commonly found
in olive oil and leaves with even stronger antioxidant potential than other natural phenolics but
gallic acid [191]. The cytoprotective action against oxidative injury promotion and wound healing
in vascular endothelial cells by hydroxytyrosol (39) could be explained with Nrf2 activation and
HO-1 induction [192,193]. Glycosides of phenylpropanoids, verbascoside (40), forsythoside B (41),
echinacoside (42) and campneoside I (43) also reported as HO-1 inducing agents [194]. Structures of
the phenolic natural products (32–43) are presented in Figure 8.
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Coumarins are a group of phenolic natural products composed of fused benzene and α-pyrone
rings biosynthesized from cinnamic acid via ortho-hydroxylation, trans-cis isomerization of the
side-chain double bond and lactonization [195]. Peucedanum japonicum has been used as a folk
medicine in East Asia, and the antioxidant and antityrosinase active compounds were found in the leaf
extract [196,197]. A coumarin derivative, pteryxin (44) isolated in P. japonicum was identified as HO-1
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inducing agent through Nrf2-ARE signaling [198]. Another coumarin derivative, corymbocoumarin
(45) from Seseli gummiferum subsp. corymbosum was investigated for its anti-inflammatory effect through
suppression of NF-κB signaling pathway and induction of HO-1 expression [95]. Resveratrol (46) is a
polyphenolic stilbene that is frequently found in grapes and other food products, especially well-known
as principal active component of red wine and grape peel [199,200]. The ability of resveratrol (46)
to attenuate proinflammatory cytokine expression was investigated [201], and then potential of
resveratrol (46) to induce HO-1 expression to exert antioxidant and anti-inflammatory action was
suggested [202]. Resveratrol (46) increased the level of nuclear Nrf2/ARE reporter activity to induce
HO-1 expression, which exerts a preventive effect on vascular occlusive diseases [175,203], potential
neuroprotective action [204,205] and protective effect on cardiomyocyte apoptosis [206]. Piceatannol
(47), structurally almost identical to resveratrol (46), with the exception of an additional hydroxyl
group at the 3′-carbon is also a phytochemical inducer of HO-1 expression [207]. Brassicaphenanthrene
A (48) isolated from common Brassica rapa (turnip) apparently does not look related with resveratrol,
but brassicaphenanthrene A (48) and resveratrol (46) both belong to stilbenoid. Brassicaphenanthrene
A (48) was also identified as a phytochemical inducer of HO-1 expression [208]. Structures of the
phenolic natural products (44–48) are presented in Figure 9.
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Aloin (49) is the major anthraquinone glycoside obtained from the Aloe species and exhibits
anti-inflammatory and antioxidative activities via HO-1 induction and reduced NF-κB-luciferase
activity [209]. A hydrophobic benzenoid isolated from Antrodia camphorate a mushroom used
for pharmaceutical purpose, 4,7-dimethoxy-5-methyl-1,3-benzodioxole (50) has potential anti-
inflammatory activity via increased HO-1 expression that attenuated the LPS-induced proinflammatory
factors and iNOS and TLR4 protein levels [210]. Another type of hydrophobic phenolic derivatives,
4-methoxydalbergione (51) and 4′-hydroxy-4-methoxydalbergione (52) from D. odorifera exhibited
HO-1 induction to exert anti-inflammatory and cytoprotective effects [211]. Punicalagin (53), an
ellagitannin polyphenol found in Punica granatum (pomegranates) with antioxidant activity had
protective effects on H9c2 cardiomyocytes from doxorubicin-induced toxicity [212] and human retinal
pigment epithelium cells from UV radiation-induced oxidative damage [213] through activation of
Nrf2/HO-1 signaling. Another gallic acid derivative from P. granatum, 1,2,3,4,6-pentagalloylglucose
(54) is the pentagallic acid ester of glucose that also induces the expression of HO-1 in the PC12
cells and its regulation in the PC12 cells [214]. Rottlerin (55), isolated from Mallotus philippinensis,
was originally reported to inhibit PKC δ [215], but it seems to induce upregulation of HO-1 via
PKC δ-independent pathway [216]. The bioactive polyphenols in agrimony, agrimonolide (56) and
desmethylagrimonolide (57) induce HO-1 expression, which can be regulated partially by the blockade
of p38 MAPK signaling pathway and inhibiting nuclear translocation of Nrf2 [217]. Lucidone (58)
from the fruits of Lindera erythrocarpa, significantly induced HO-1 production and led to the increase of
its production of biliverdin for inducing an antiviral interferon response and inhibiting HCV NS3/4A
protease activity [218]. A phlorotannin found in an edible alga Ecklonia cava, eckol (59) attenuates
oxidative stress by activating Nrf2-mediated HO-1 induction via extracellular regulated kinase (Erk)
and PI3K/Akt signaling [219]. Malabaricone C (60) is known to exert a variety of pharmacological
activities of nutmeg, and inhibits platelet-derived growth factor-induced proliferation and migration
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of aortic smooth muscle cells through induction of HO-1 [220]. The phenolic glucoside gastrodin
(61), the bioactive component of Chinese herbal medicine Gastrodia elata, has been known to display
antioxidant activity induce HO-1 expression to exert a cytoprotective role in the dopaminergic cell
culture system [221], and alleviate H2O2-induced oxidative stress in mouse liver [222]. Structures of
the phenolic natural products (55–61) are presented in Figure 10.
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5. Terpenoids and Steroids

5.1. Monoterpenes

Thymoquinone (62) is an active constituent that belongs to monoterpenoid isolated from Nigella
sativa that possesses alkylated benzoquinone structure [223]. Thymoquinone (62) induces HO-1
expression in HaCaT cells by activating Nrf2 through ROS-mediated phosphorylation of Akt and
AMPKα [224]. Catalposide (63) belongs to a group of modified monoterpenes, iridoid glycoside that
possesses antimicrobial, antitumoral and anti-inflammatory properties. Catalposide (63) isolated from
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the stem bark of Catalpa ovata is a potent inducer of HO-1 that mediates cytoprotection against oxidative
damage [225]. Structures of the monoterpenes (62–63) are presented in Figure 11.Antioxidants 2020, 9, x FOR PEER REVIEW 15 of 40 
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5.2. Sesquiiterpenes

Desoxonarchinol A (64), isolated form Nardostachys jatamansi, is an effective inducer of HO-1,
which regulates neutrophil infiltration in acute pancreatitis via chemokine (C-X-C motif) ligand
2 inhibition [226]. Kim et al. investigated the antineuroinflammatory effects via upregulation of
Nrf2/HO-1 signaling by desoxonarchinol A (64) along with another derivative narchinol B (65) [227].
Zerumbone (66) is a monocyclic sesquiterpene and the major active phytochemical compound in
Zingiber zerumbet [228] Zerumbone (66) is known to have antioxidant activity, anti-inflammation,
immunomodulatory effect and anticancer activity [11], and Leung et al. suggested the protective
mechanisms of zerumbone (66) on acute lung injury were exerted via upregulation of Nrf2/HO-1
signaling [229]. Shin et al. reported topical application of zerumbone (66) onto dorsal skin of
hairless mice induces activation of Nrf2/HO-1 expression that provides chemopreventive effects on
mouse skin carcinogenesis [230]. Cyperus rotundus has been used as traditional folk medicine for
the treatment of inflammatory diseases, and the possible anti-inflammatory mechanism is, at least,
due to HO-1 induction, in which sesquiterpenes such as nootkatone (67) and valencene (68) play
a crucial role [231]. Pulchellamin G (69) is an amino acid-sesquiterpene lactone conjugate isolated
from Saussurea pulchella, and the anti-inflammatory activity was associated with induction of HO-1
expression [232]. Jeong et al. suggested the α-methylene-γ-butyrolactone moiety in dehydrocostus
lactone (70) is crucial for cytoprotective HO-1 expression through activation of the Nrf2 [233], and Park
et al. suggested that dehydrocostus lactone (70) might be useful for the treatment of sepsis through
the mechanism [234]. Eupatolide (71), a sesquiterpene lactone from Inula britannica could suppress
platelet-derived growth factor-induced proliferation and migration of vascular smooth muscle cells
(VSMCs) through HO-1 induction via the ROS-Nrf2 pathway and may be a potential HO-1 inducer for
preventing or treating vascular diseases [235]. Nardochinoid B (72) is a terpene composed of thirty
carbons and a nitrogen, but not a triterpene. The putative biosynthetic pathway of nardochinoid B (72)
is dimerization of nardosinane sesquiterpenes, and it exerts significant anti-inflammatory activity [236].
The mechanism of anti-inflammatory action by nardochinoid B (72) was revealed as activating the
Nrf2/HO-1 pathway [237]. Structures of the sesquiterpenes (64–72) are presented in Figure 12.
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5.3. Diterpenes

A diterpenoid isolated from the sap of Podocarpus totara, totarol (73) is known for its potent
antimicrobial activity [238]. The neuroprotective activity of totarol (73) by increased Akt and GSK-3β
phosphorylation, Nrf2, HO-1 expressions was investigated in a model of acute cerebral ischemic injury
in the rat [239]. Another phenolic diterpene, carnosol (74), could target ho-1 to induce HO-1 expression,
and increased the nuclear levels of Nrf2 [240,241]. The bioactive diterpene, palbinone (75) in Paeonia
suffruticosa, which has been traditionally employed for vitalizing blood circulation and alleviating liver
and inflammatory diseases could induce HO-1 expression in the hepatic cells [242]. Oridonin (76) is an
ent-kaurene diterpene with an immunosuppressive effect isolated from Isodon serra [243]. According
to the study performed by Hu et al., oridonin (76) had a distinct effect on promoting CD4+/CD25+

Treg differentiation and modulating Th1/Th2 balance, and this effect may be achieved via inducing the
anti-inflammatory target HO-1 [244]. Andrographolide (77) is a well-known diterpene, characterized
of labdane diterpenoid with a five-membered unsaturated lactone moiety, isolated from an oriental
medicinal herb Andrographis paniculata [245]. Yu et al. suggested that stimulation of Nrf2-dependent
HO-1 expression is involved in the suppression of TNF-α-induced ICAM-1 expression exerted by
andrographolide (77) [246]. Another diterpenoid with a five-membered lactone isolated from Euphorbia
fischeriana, 17-hydroxy-jolkinolide B (78) could inhibit COX-2, iNOS in a concentration-dependent
manner. These inhibitory effects were caused by suppression of MAPK phosphorylation and NF-κB
activation and HO-1 induction [247]. Dihydroartemisinin (79) is isolated from Artemisia annua that
has prominent immunomodulatory activity that regulates the Th/Treg balance by inducing activated
CD4+ T cell apoptosis via HO-1 induction in mouse models of inflammatory bowel disease [248].
Rebaudioside A (80) is a commercially used natural sweetener from Stevia rebaudiana, which has been
discovered as a potential candidate hepatoprotective agent that activate Nrf2/ARE, and the expression
of HO-1 and NAD(P)H quinone oxidoreductase 1 (NQO1) [249]. Structures of the diterpenes (73–80)
are presented in Figure 13.



Antioxidants 2020, 9, 1191 17 of 40

Antioxidants 2020, 9, x FOR PEER REVIEW 17 of 40 

 
Figure 13. Structures of the diterpenes (73–80). 

5.4. Titerpenes 

Celastrol (81) is a triterpene isolated from the plant family Celastraceae and these plants have 
been used in traditional Chinese medicine for their anti-inflammatory property [250]. Yu et al. 
investigated the ability of celastrol (81) to attenuate hypertension-induced inflammation and 
oxidative stress in VSMCs via HO-1 induction [251]. The celastrol-mediated HO-1 expression may 
reduce HIV-1 Tat-induced neuroinflammatory responses [252], HCV replication [253] and 
macrophage M1 polarization [254]. Jeong et al. discovered an anti-inflammatory phytochemical, an 
ursane-type triterpene, 23-hydroxyursolic acid (82, 3β, 23-dihydroxyurs-12-en-28-oic acid) from 
flowered fruit-spike of Prunella vulgaris, which increased the expression of HO-1 in a dose-dependent 
manner in human liver-derived HepG2 cells [255]. Another ursane-type triterpene from Cucurbita 
pepo was also found as an inducer of HO-1 expression [256]. The fruiting bodies of Ganoderma lucidum 
(commonly known as the Reishi mushroom) are widely used in China, Japan and Korea as a valuable 
crude drug, especially in the treatment of chronic hepatitis, nephritis, hepatopathy, neurasthenia, 
arthritis, bronchitis, asthma, gastric ulcer and insomnia [257]. Lanostane-type (tetracyclic) triterpenes 
were identified as phytochemicals responsible for the anti-inflammatory activity inducing HO-1 
expression [258]. Glycyrrhizin (83) is a triterpene glycoside, which is responsible for sweet taste and 
pharmacological activity of Glycyrrhiza glabra (licorice) [259]. Kim et al. proposed that glycyrrhizin 
(83) reduces high mobility group box 1 (HMGB1) secretion by p38/Nrf2-dependent induction of HO-
1, which may prevent sepsis [259]. Mou et al. demonstrate that glycyrrhizin (83) protects human 
melanocytes from H2O2-induced oxidative damage via the Nrf2-dependent induction of HO-1, 
providing evidence for the application of glycyrrhizin (83) in the treatment of vitiligo [260]. Another 
triterpene glycoside chiisanoside (84) isolated from Acanthopanax sessiliflorus showed a 
hepatoprotective effect via an antioxidative effect and inflammatory suppression in NF-κB and 
activation of Nrf2/HO-1 signaling [261]. Structures of the triterpenes (81–84) are presented in Figure 
14. 

Figure 13. Structures of the diterpenes (73–80).

5.4. Titerpenes

Celastrol (81) is a triterpene isolated from the plant family Celastraceae and these plants have
been used in traditional Chinese medicine for their anti-inflammatory property [250]. Yu et al.
investigated the ability of celastrol (81) to attenuate hypertension-induced inflammation and oxidative
stress in VSMCs via HO-1 induction [251]. The celastrol-mediated HO-1 expression may reduce
HIV-1 Tat-induced neuroinflammatory responses [252], HCV replication [253] and macrophage
M1 polarization [254]. Jeong et al. discovered an anti-inflammatory phytochemical, an ursane-type
triterpene, 23-hydroxyursolic acid (82, 3β, 23-dihydroxyurs-12-en-28-oic acid) from flowered fruit-spike
of Prunella vulgaris, which increased the expression of HO-1 in a dose-dependent manner in human
liver-derived HepG2 cells [255]. Another ursane-type triterpene from Cucurbita pepo was also found as
an inducer of HO-1 expression [256]. The fruiting bodies of Ganoderma lucidum (commonly known as the
Reishi mushroom) are widely used in China, Japan and Korea as a valuable crude drug, especially in the
treatment of chronic hepatitis, nephritis, hepatopathy, neurasthenia, arthritis, bronchitis, asthma, gastric
ulcer and insomnia [257]. Lanostane-type (tetracyclic) triterpenes were identified as phytochemicals
responsible for the anti-inflammatory activity inducing HO-1 expression [258]. Glycyrrhizin (83) is a
triterpene glycoside, which is responsible for sweet taste and pharmacological activity of Glycyrrhiza
glabra (licorice) [259]. Kim et al. proposed that glycyrrhizin (83) reduces high mobility group box
1 (HMGB1) secretion by p38/Nrf2-dependent induction of HO-1, which may prevent sepsis [259].
Mou et al. demonstrate that glycyrrhizin (83) protects human melanocytes from H2O2-induced
oxidative damage via the Nrf2-dependent induction of HO-1, providing evidence for the application
of glycyrrhizin (83) in the treatment of vitiligo [260]. Another triterpene glycoside chiisanoside (84)
isolated from Acanthopanax sessiliflorus showed a hepatoprotective effect via an antioxidative effect and
inflammatory suppression in NF-κB and activation of Nrf2/HO-1 signaling [261]. Structures of the
triterpenes (81–84) are presented in Figure 14.
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5.5. Steroids

Withaferin A (85) is one of bioactive steroidal phytochemicals, withnolides, which is responsible
for the bioactivities of Withania somnifera, also known as “Ashwagandha”, “Indian ginseng” or “winter
cherry”, a frequently used medicinal herb in Ayurvedic medicine (Indian traditional medicine) [262].
Withaferin A (85) induces HO-1 expression in endothelial cells via upregulation and increased nuclear
translocation of Nrf2 in a time- and concentration-dependent manner [262]. Ginsenosides are unique
steroid glycosides and triterpene saponins that are present exclusively in the genus Panax [263].
More than 150 natural ginsenosides have been reported [264], and they share a common tetracyclic
structure, but the number and position of sugar or hydroxyl moiety may vary among ginsenosides [265].
Ginsenoside Rb1 (86) was reported to have a protective effect against oxidative stress by increasing
HO-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human
dopaminergic cells [266]. Ginsenoside Rg18 (87) attenuated neuroinflammation in BV2 microglia and
amyloid-β-induced oxidative stress in SH-SY5Y neurons via Nrf2/HO-1 induction [267]. Another type
of steroidal glycoside, furotrilliumoside (88), isolated from Trillium tschonoskii also upregulated HO-1
expression via Nrf2 that might act as a natural agent to treat inflammatory diseases [268]. Structures of
the the steroids (85–88) are presented in Figure 15.

Antioxidants 2020, 9, x FOR PEER REVIEW 18 of 40 

 
Figure 14. Structures of the triterpenes (81–84). 

5.5. Steroids 

Withaferin A (85) is one of bioactive steroidal phytochemicals, withnolides, which is responsible 
for the bioactivities of Withania somnifera, also known as “Ashwagandha”, “Indian ginseng” or 
“winter cherry”, a frequently used medicinal herb in Ayurvedic medicine (Indian traditional 
medicine) [262]. Withaferin A (85) induces HO-1 expression in endothelial cells via upregulation and 
increased nuclear translocation of Nrf2 in a time- and concentration-dependent manner [262]. 
Ginsenosides are unique steroid glycosides and triterpene saponins that are present exclusively in 
the genus Panax [263]. More than 150 natural ginsenosides have been reported [264], and they share 
a common tetracyclic structure, but the number and position of sugar or hydroxyl moiety may vary 
among ginsenosides [265]. Ginsenoside Rb1 (86) was reported to have a protective effect against 
oxidative stress by increasing HO-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-
dependent pathway in human dopaminergic cells [266]. Ginsenoside Rg18 (87) attenuated 
neuroinflammation in BV2 microglia and amyloid-β-induced oxidative stress in SH-SY5Y neurons 
via Nrf2/HO-1 induction [267]. Another type of steroidal glycoside, furotrilliumoside (88), isolated 
from Trillium tschonoskii also upregulated HO-1 expression via Nrf2 that might act as a natural agent 
to treat inflammatory diseases [268]. Structures of the the steroids (85–88) are presented in Figure 15. 

 
Figure 15. Structures of the steroids (85–88). Figure 15. Structures of the steroids (85–88).



Antioxidants 2020, 9, 1191 19 of 40

5.6. Other Natural Products from Mevalonate Pathway

Astaxanthin (89) is a blood-red pigment that belongs to xanthophyll, which is present in many
aquatic organisms such as krill, algae, shrimp, salmon and so on [269]. It is produced commercially from
large cultures of microalga, Haematococcus pluvialis as an ingredient for dietary supplements and fish
feeds [176]. Astaxanthin (89) could also ameliorate the chemotherapeutic drug, doxorubicin-induced
liver injury through the Keap1/Nrf2/HO-1 pathway in mice [270]. Solanesol (90) is classified as a
nonaisoprenoid, and it is known to be present in tobacco, potato and tomato [271]. Yao et al. suggested
that the anti-inflammatory activity of solanesol (90) also comes from induction of expression of HO-1 via
p38 and Akt and suppression of proinflammatory cytokines production [272]. Structures of astaxanthin
(89) and solanesol (90) are presented in Figure 16.
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6. Lipids

The bioactive natural products with HO-1 induction that belong to lipids were small in number.
Interestingly, they were all unsaturated fatty acids or fatty acid derivatives. One of the omega-3
essential fatty acids, eicosapentaenoic acid (91, EPA) protects against H2O2-induced oxidative stress in
endothelial cells by activating Nrf2 and inducing HO-1 expression [273]. Another omega-3 fatty acid,
docosahexaenoic acid (92, DHA) also increased HO-1 expression in U937 cells via activation of ERK1/2
and increased Nrf-2 binding to ARE [274]. The major alkamides dodeca-2E,4E,8Z,10Z(E)-tetraenoic
acid isobutylamides (93, 94), isolated from Echinacea purpurea have potential for prevention of acute
hepatic injury through JNK pathway-mediated HO-1 expression [275]. Ethyl linoleate (95) from garlic
was also found to attenuate proinflammatory cytokine production by inducing HO-1 [276]. Structures
of the lipid natural products (91–95) are presented in Figure 17.
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7. Lignan

Sesamin (96) and its stereoisomer episesamin (97) are bioactive lignans found in sesame oil [277].
They are readily metabolized by cytochrome P-450 to yield a series of metabolites, and the metabolites
were screened for antioxidant potential [278]. The most potent antioxidant metabolite, SC-1 (98) was
capable of protecting against oxidative stress-induced neuronal cell death in part through induction of
HO-1 via Nrf2/ARE activation [278]. Honokiol (99), a phenolic lignan originally isolated from Magnolia
obovate, significantly inhibited cyclosporine A-induced and Ras-mediated survival of renal cancer
cells through the downregulations of the vascular endothelial growth factor (VEGF) and HO-1 [279].
It implies honokiol (99) may help to prevent tumor-promoting effects of an immunosuppressant
drug, cyclosporine A in transplant patients [279]. Another phenolic lignan isolated from Magnolia
officinalis, magnolol (100) inhibits Porphyromonas gingivalis LPS-induced inflammation in macrophages,
which is mediated by HO-1 activation, and thereby it is plausible for treatment of periodontitis [280].
Saururus chinensis, an oriental medicinal herb has been used to treat jaundice, pneumonia, edema,
fever and several inflammatory diseases [281]. Sauchinone (101), a diastereomeric lignan isolated
from Saururus chinensis protects vascular inflammation [282] and significantly inhibit NO production
and inflammatory mediators expression [283] via HO-1 induction. Another lignan isolated from
Saururus chinensis, saucerneol D (102) suppresses LPS-induced activation of dendritic cells through the
induction of HO-1 [284]. Lariciresinol (103), isolated from Rubia philippinensis, has a dimeric structure
of a phenylpropanoid with a core structure of tetrahydrofurano ring, and exerts potent antioxidant
activity [285]. The antioxidant potential of lariciresinol (103) is due to the increased transcriptional
and translational levels of antioxidant enzymes by activating Nrf2-mediated HO-1 induction via p38
signaling [286]. Structures of the lignan natural products (96–103) are presented in Figure 18.
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L-Glutamine (104) reduced colonic damage in colitis by the mechanism of the protection associated
with HO-1 induction effects, which were documented by the decrease in NF-κB expression, MDA,
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and caspase-3 levels and concurrent increase in GSH levels and HO-1 overexpression in the colonic
tissue [287]. Melatonin (105) is a neurohormone derived from an amino acid tryptophan and released
by the pineal gland to regulate the circadian rhythm [288]. In vertebrates, melatonin (105) is produced
in darkness, by the pineal gland [289], but it is also ingested from plant foodstuff such as bananas,
grapes, rice, herbs, plums and olive [290]. Beside the circadian regulation, melatonin (105) can prevent
damages of cells from oxidative stress, especially involved with neurodegeneration in aging and
Alzheimer’s disease [291,292]. Clapp-Lilly et al. suggested that melatonin (105) induced redox active
iron and HO-1 immunoreactivity that it may be a potential therapeutic agent in the prevention of
oxidative stress associated with Aβ and Alzheimer’s disease [293]. The HO-1 induction by melatonin
(105) also potentiates the neuroprotective effect of resveratrol against oxidative injury [294], and inhibits
type 1 interferon signaling of TLR4 in hepatic ischemia/reperfusion [295]. Garlic yields a variety of
organosulfuric compounds with health benefits [296]. An unique amino acid derivative present in raw
garlic, S-allylcysteine (106) provided potent anti-inflammatory, antioxidative and mucosa protective
effects against nonsteroidal anti-inflammatory drug (NSAID)-induced damages via induction of
HO-1 [296]. Structures of the amino acid derivatives (104–106) are presented in Figure 19.
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Piperine (107) is a major alkaloid present in black pepper (Piper nigrum), which is known to
possess pharmacological benefits, such as antimicrobial, antipyretic and anti-inflammatory effects [173].
The expression of HO-1 by piperine (107) is mediated by both JNK pathway and Nrf2, and the expression
inhibits cisplatin-induced apoptosis [297]. Sinomenine (108), an alkaloid isolated from an oriental
medicinal herb Sinomenium acutum, which has been used to treat inflammatory diseases including
rheumatism and arthritis [298]. Sinomenine (108) pretreatment was able to induce HO-1 expression in
donor livers in a dose dependent manner and it protected the liver graft from cold ischemia/reperfusion
injury [299]. Higenamine (109) is a bioactive alkaloid in Aconitum carmichaeli, which has been used
as a heart stimulant and anti-inflammatory agent in traditional oriental medicine [300]. Higenamine
(109) promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1
induction and then promotes locomotor function after spinal cord injury [301]. Camptothecin (110)
is a potent anticancer alkaloid isolated from Camptotheca acuminate [302] as a strong inhibitor of the
DNA-replicating enzyme topoisomerase I [303]. Jayasooriya et al. suggested camptothecin (110) also
inhibits the invasion of cancer cells accompanied by suppression of MMP-9 and VEGF production
by suppressing the PI3K/Akt-mediated NF-κB pathway and enhancing the Nrf2-dependent HO-1
pathway [304]. Berberine (111) is an isoquinoline alkaloid from Coptis chinensis with pharmacological
effects such as hypoglycemic, antioxidant and anti-inflammatory activity [305–307]. Berberine (111) can
protect against methotrexate-induced liver injury from oxidative stress and apoptosis, possibly
through upregulating the Nrf2/HO-1 pathway and PPARγ [308]. Capsaicin (112) is a unique
alkaloid that provides spicy flavor of the fruit of the genus Capsicum (peppers) [309]. Joung et al.
found that capsaicin (112) induced expression of HO-1 that resulted in a transient increase in the
phosphorylation of Akt and subsequently nuclear translocation of Nrf2, enhancing its binding to
ARE [310]. Kim et al. suggested the anti-inflammatory activity of capsaicin (112) and another derivative,
dihydrocapsaicin (113) is exerted through NO production and iNOS expression and induction of
HO-1 [311]. Matrine (114) is a quinolizidine alkaloid isolated from S. flavescentis, and possesses
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antioxidant, anti-inflammatory and antitumor activity [312–314]. Matrine (114) may alleviate early
brain injury after experimental subarachnoid hemorrhage in rats possibly via PI3K/Akt-mediated
NF-κB inhibition and Keap1/Nrf2-dependent HO-1 induction [315]. Cordycepin, a bioactive adenosine
derivative, which was found in Cordyceps militarisa known as a rare Chinese caterpillar fungus,
has beneficial activity to circulatory, immune, respiratory and glandular systems [316]. Cordycepin
exhibited protective effects on N-nitrosodiethylamine-induced hepatocellular carcinomas via the
PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice [317]. Chabamide (115) is a dimeric piperine
initially discovered from Piper chaba [318]. Ngo et al. isolated a series of alkaloid with inhibitory activity
on LPS-induced NO production in RAW264.7 from Piper nigrum (black pepper) [319]. Among the
alkaloids, chabamide (115) especially inhibited LPS-induced NO production in bone marrow-derived
macrophages, via inducing HO-1 expression at the transcriptional level and inducing nuclear
translocation of Nrf2 [319]. Piperlongumine (116), an alkaloid from Piper longum (long pepper)
was found to induce apoptosis of human breast cancer MCF-7 cells mediated by upregulation of HO-1
expression [320]. Lu et al. reported that HO-1 induction of piperlongumine (116) may also result in
the inhibitory effect on Zika virus replication [321]. Six isosteroid alkaloids isolated from Fritillaria
cirrhosa bulbus, a Chinese folk herb with antitussive, expectorant, antiasthma and anti-inflammatory
properties demonstrated to protect murine RAW264.7 macrophages against cigarette smoke-induced
oxidative stress [322]. They were cevanine or jervine type alkaloids and decreased the generation of
ROS and increased the level of GSH via Nrf2 nuclear translocation and HO-1 expression via activating
Nrf2 signaling pathway [322]. Peiminine (117, also known as verticinone) has long been studied as a
major bioactive component of anti-inflammatory Chinese medicinal herbs Fritillaria sp. [323]. Luo et al.
reported peiminine (117) ameliorates murine osteroarthritis anti-inflammatory activity induced by
inhibition of Akt phosphorylation, the nuclear transfer of NF-κB and activated Nrf2/HO-1 signaling
pathways [324]. Structures of the alkaloids and nitrogen-containing natural products (107–117) are
presented in Figure 20.
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10. Conclusions

Global life expectancy has been increased in modern times, but healthy life expectancy has not
been so, as most people suffer from chronic diseases, metabolic syndromes, degenerative brain diseases
or cardiovascular diseases in their old age. However, a number of investigations suggest a healthy
lifestyle including moderate exercise, a balanced diet and avoiding stress may improve health, delay
the aging process, prevent chronic diseases and eventually increase healthy life expectancy. Adequate
intake of antioxidant supplements may synergistically work to prevent those diseases as the diseases
are mostly resulted from the accumulation of oxidative stress [325]. HO-1 plays a pivotal role in the
antioxidant and anti-inflammatory system in humans, and it is possibly modulated by a variety of
natural products in edible sources as we discussed so far. The natural products from edible sources
might be promising sources of safe and effective HO-1 inducing agents that help our body protect
from the chronic diseases.
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