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ABSTRACT

Crosslinking or RNA immunoprecipitation fol-
lowed by sequencing (CLIP-seq or RIP-seq) allows
transcriptome-wide discovery of RNA regulatory
sites. As CLIP-seq/RIP-seq reads are short, exist-
ing computational tools focus on uniquely mapped
reads, while reads mapped to multiple loci are dis-
carded. We present CLAM (CLIP-seq Analysis of
Multi-mapped reads). CLAM uses an expectation–
maximization algorithm to assign multi-mapped
reads and calls peaks combining uniquely and multi-
mapped reads. To demonstrate the utility of CLAM,
we applied it to a wide range of public CLIP-seq/RIP-
seq datasets involving numerous splicing factors,
microRNAs and m6A RNA methylation. CLAM recov-
ered a large number of novel RNA regulatory sites
inaccessible by uniquely mapped reads. The func-
tional significance of these sites was demonstrated
by consensus motif patterns and association with al-
ternative splicing (splicing factors), transcript abun-
dance (AGO2) and mRNA half-life (m6A). CLAM pro-
vides a useful tool to discover novel protein–RNA in-
teractions and RNA modification sites from CLIP-seq
and RIP-seq data, and reveals the significant contri-
bution of repetitive elements to the RNA regulatory
landscape of the human transcriptome.

INTRODUCTION

Mammalian genomes encode over a thousand RNA-
binding proteins (RBPs) that play important roles in RNA
processing and metabolism (1,2). RBPs interact with their
cognate sequences and/or structural elements within the
RNA to impact diverse aspects of post-transcriptional reg-
ulation, including splicing, polyadenylation, transport, sta-
bility and translational control, as well as RNA base modi-

fications (3). For example, many RBPs function as splicing
factors through interactions with cis splicing regulatory ele-
ments within the pre-mRNA (4). In recent years, there have
been intense efforts to identify and characterize RBPs using
high-throughput methods. For example, technologies such
as SELEX-seq (5), RNAcompete (1) and RNA Bind-n-Seq
(6) have been developed to define the in vitro binding motifs
of numerous RBPs.

A powerful strategy for transcriptome-wide mapping
of RBP–RNA interactions and RNA regulatory elements
is immunoprecipitation followed by high-throughput se-
quencing (7). Two popular approaches are CLIP-seq
(crosslinking with immunoprecipitation followed by se-
quencing) (8–10) and RIP-seq (RNA immunoprecipitation
followed by sequencing) (11). The standard protocol of
CLIP-seq involves crosslinking protein–RNA interactions
by UV, immunoprecipitating the RBP–RNA complexes by
antibody, then sequencing cDNA library to generate short
reads typically ranging between 35 and 50 bp. Three ver-
sions of CLIP-seq (HITS-CLIP, PAR-CLIP and iCLIP) de-
liver datasets with distinct features due to their technical
differences and biases (12). RIP-seq experiments are per-
formed in similar procedures, but RIP-seq does not in-
clude the UV-crosslinking step, resulting in reduced res-
olution of the binding sites and lower signal-to-noise ra-
tios (13). Besides detecting RBP–RNA interaction sites,
RIP-seq and CLIP-seq have also been utilized for detecting
RNA base modifications, in particular N6-methyladenosine
(m6A) (14), revealing the prevalence and dynamic landscape
of reversible RNA base modifications in the human tran-
scriptome (14,15).

Despite the increasing popularity and widespread use of
CLIP-seq and RIP-seq for mapping RBP–RNA interaction
and RNA modification sites, existing computational ap-
proaches for analyzing these data still have important limi-
tations. As CLIP-seq and RIP-seq reads are short (usually
<50 bp), in a conventional data analysis workflow, reads
are mapped to the genome and transcriptome, uniquely
mapped reads are retained and RBP binding sites are iden-
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Figure 1. Motivation and schematic overview of CLAM. (A) In
immunoprecipitation-based techniques for analyzing RBP–RNA interac-
tions (CLIP-seq, RIP-seq), RNA associated with the target RBP is sub-
ject to fragmentation after the RBP–RNA complex is immunoprecipitated
by specific antibody, followed by high-throughput sequencing to gener-
ate short reads typically ranging between 35 and 50 bp. An appreciable
fraction of reads, such as those originated from repetitive element derived
RBP–RNA interaction sites, are mapped to multiple genomic regions and
subsequently discarded by conventional data analysis pipelines. Shown
here is a read mapped to two genomic copies of a repetitive element (or-
ange boxes), which have identical sequences where the read is aligned but
have mutations elsewhere between these two copies (green vertical lines).
(B) CLAM identifies a set of genomic regions sharing multi-mapped reads.
It then uses an expectation–maximization (EM) algorithm to rescue multi-
mapped reads and assign them to specific genomic regions, followed by a
permutation based procedure for peak calling with gene-specific FDR con-
trol. The rescued peaks are then assessed via downstream analyses of RNA
regulatory features, including enrichment of consensus motifs and evalua-
tions of RBP-specific regulatory features.

tified by appropriate statistical models for peak calling
(12) (Figure 1A). However, by restricting the analysis to
uniquely mapped reads and removing reads mapped to mul-
tiple genomic loci, a potentially large catalog of regula-
tory sites residing in duplicated and repetitive regions of
the transcriptome will be under-detected or inaccessible.
Given that approximately half of the human genome is com-
prised of transposable elements (16), and a variety of RBPs
such as heterogeneous nuclear ribonucleoprotein C (hn-
RNPC), adenosine deaminase, RNA specific (ADAR1) and
staufen double-stranded RNA binding protein 1 (STAU1)
have binding sites derived from highly repetitive transpos-
able elements (17–20), the restriction to uniquely mapped
reads represents a significant source of false negatives in site
identification from CLIP-seq and RIP-seq datasets.

Here, we present CLAM (CLIP-seq Analysis of
Multi-mapped reads), a new computational method for
CLIP/RIP-seq data analysis and peak calling utilizing
multi-mapped reads. We applied CLAM to published
CLIP-seq data of 18 RBPs, as well as RIP-seq data of the
m6A RNA modifications. In all datasets, CLAM recovered
a large number of novel RNA regulatory sites inaccessible
by conventional analyses of uniquely mapped reads. We
further demonstrated the physical and functional relevance
of the identified CLAM sites based on consensus motif pat-

terns as well as correlation with relevant RNA regulatory
features. Altogether, CLAM provides a useful and widely
applicable computational tool to discover novel functional
protein–RNA interaction sites and RNA modification
events from CLIP-seq and RIP-seq data, and reveals the
significant contribution of repetitive elements to the RNA
regulatory landscape of the human transcriptome.

MATERIALS AND METHODS

CLIP-seq/RIP-seq read pre-processing and mapping

A typical CLIP-seq library contains 3′ adaptors due to
the short length of RBP-protected fragments; and 5′ ran-
dom barcodes to discriminate polymerase chain reaction
(PCR) duplicates. The 3′ adaptors were first removed
by fastx clipper from fastx toolbox, available at http://
hannonlab.cshl.edu/fastx toolkit/. Low quality reads were
discarded by requiring the minimum quality threshold of
30 and at least 50% of bases in a read above this quality
threshold. Next, PCR duplicates were removed by collaps-
ing the reads with the same random barcodes and identical
sequences. After removal of PCR duplicates, barcodes were
removed and the reads were aligned by Novoalign (avail-
able at http://www.novocraft.com/) to the human genome
and transcriptome, using the hg19 version of the human
genome as the genomic index and Gencode V19 (http://
www.gencodegenes.org/releases/19.html) as the transcrip-
tome annotations (21). The set of optimized Novoalign pa-
rameters for CLIP-seq data (22) was used. Specifically, the
alignment cost score ‘–t 85’ controls the mismatches as: two
substitutions, two consecutive deletions or one substitution
plus one deletion. The option ‘-l 25’ requires at least 25 high-
quality matches. For multi-mapped reads, reads that map to
<100 genomic loci were retained for downstream analyses.

All mapped reads (uniquely + multi-mapped) were then
merged into genomic regions. Two reads were merged if the
distance between them was smaller than a threshold d. By
default we set d = 50 for CLIP-seq and d = 100 for RIP-
seq to match the size of RBP footprint or RNA fragment.

Expectation–maximization analysis of multi-mapped reads

Distinct genomic regions were connected through multi-
mapped reads as a graph. The connected subgraphs (i.e. re-
gions sharing multi-mapped reads) were extracted and sub-
sequently converted to a compatibility matrix Y represent-
ing the mapping relationships between reads and genomic
regions. Each genomic region corresponded to a column
and each read corresponded to a row of the compatibil-
ity matrix Y. For read i uniquely mapped to genomic re-
gion k, yi,· = 0 except for yi,k = 1. For read i mapped to
multiple genomic regions {kp, . . . , kq}, yi,k = 1, for k ∈
{kp, . . . , kq} and 0 otherwise. Our goal was to resolve the
rows with multiple 1’s in the matrix Y using an EM frame-
work (23).

In other words, our goal is to infer another indicator ma-
trix Z to represent the true origins of mapped reads. As
certain RBPs (e.g. Argonaute 2 or AGO2) could have long
footprints on mRNA transcripts due to multiple overlap-
ping binding sites, the statistical model of CLAM considers

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.novocraft.com/
http://www.gencodegenes.org/releases/19.html


9262 Nucleic Acids Research, 2017, Vol. 45, No. 16

Table 1. Three representative datasets analyzed by CLAM

Dataset Predominant binding region Motif Technology Cell line Accession ID

hnRNPC intronic poly-U iCLIP HeLa E-MTAB-1371
AGO2 3′-UTR microRNA seeds iCLIP LCL GSE50676
m6A 3′-UTR RRACU RIP H1-ESC GSE52600

that for a potential binding site, the probability that a multi-
mapped read originates from this region depends on the
reads mapped to a defined local window surrounding the
binding site. Hence, given the vector �̂ representing the rela-
tive abundance of multiple mapped genomic regions among
RBP-bound RNAs and the compatibility matrix Y, the la-
tent variable ẑi,k that represents the true origin of read i from
region k is computed by taking the expectation at (t+1)-th
iteration as the E-step:

ẑ(t+1)
i,k = E[zi,k|Y, �̂(t), c]

= Pr(zi,k = 1|Y, �̂(t), c) = yi,k·θ̂ (t)
k,ci,k

∑
k yi,k·θ̂ (t)

k,ci,k

where ci,k is the center position of read i on region k, θ̂
(t)
k,ci,k

is the relative abundance of multiple mapped genomic re-
gions estimated at the locus ci,k on region k in the previous
iteration. From the starting condition t = 0, the EM model
converges to the optimal point regardless of its initial val-
ues, since the objective function to be maximized is concave
(https://arxiv.org/abs/1104.3889). For simplicity, �̂ was ini-
tialized uniformly for all regions.

Next in the (t+1)-th iteration of the M-step, for any par-
ticular column yk in Y corresponding to a specific genomic
region, we estimate its relative abundance θ̂

(t+1)
k, j locally at

each position j among multiple mapped regions using the
true origin Ẑ(t+1) within the (2w+1) window:

θ̂
(t+1)
k, j =

∑
i ẑ(t+1)

i,k · 1 ( j − w ≤ ci,k ≤ j + w)

N

where N is the total number of reads (uniquely mapped
and multi-mapped) in these regions sharing multi-mapped
reads, w is the window size defining the local window, ci,k

is the center position for read i on region k, ẑ(t+1)
i,k is the es-

timated true origin of read i from region k and 1(·) is the
indicator function. By default we set w = 50 for CLIP-seq
data and w = 100 for RIP-seq data to match the size of RBP
footprint or RNA fragment.

The E-step and M-step are iterated until convergence.

Peak calling

Peak calling was performed on a gene-by-gene basis, in or-
der to control for the expression variability among genes
as in previous work (19,24,25). Briefly, CLAM was ap-
plied to genes with multi-mapped reads. For a given gene,
the mapped reads could be divided into two sets: uniquely
mapped reads with probability of origin p = 1, and multi-
mapped reads with p ∈ [0, 1). We used a random permuta-
tion procedure to obtain the background read count dis-
tribution. Specifically, uniquely mapped reads were ran-
domly assigned a location along the gene for 1000 times. For

multi-mapped reads, a uniform random variable u ∈ [0, 1]
was first drawn; if u ≤ p, this multi-mapped read was ran-
domly assigned a location in the same manner as uniquely
mapped reads; otherwise, this read was discarded in the cur-
rent permutation. For position j with height hj>0, P-value

=
∑

k 1(k≥h j )·nk∑
k nk

, where nk is the number of positions with
peak height k ∈ (1, 2, . . .) in permutation derived null dis-
tribution, and 1(·) is the indicator function. For each gene,
multiple testing was corrected by the Benjamini–Hochberg
False Discovery Rate (FDR) procedure (26). Positions with
gene-specific FDR < 0.001 were called as significant loci,
and peaks were called as the most significant loci within
50 bp windows. If a peak was <50 bp, the peak was ex-
tended symmetrically to 50 bp. For downstream analyses,
the common or rescued peaks in individual replicates were
then merged by taking the union respectively.

Analysis of m6A RIP-seq data

We employed a slightly different processing pipeline as well
as parameters for the m6A data, given the differences be-
tween RIP-seq (for m6A) and CLIP-seq. We first mapped
the human m6A RIP-seq reads using STAR (27) v2.4.2 to
the hg19 genome with the Gencode v19 transcript annota-
tions (21), retaining reads mapped to <100 loci. Then we
ran CLAM with parameters: maximum distance for col-
lapsing reads d = 100; local window size w = 100; P-value
correction using the more stringent Bonferroni correction
given the lower signal-to-noise ratio of RIP-seq, and peaks
were called as the most significant loci within 500 bp win-
dows and extended to 100 bp symmetrically.

Analysis of RNA motif and regulatory features

We applied CLAM to publicly available CLIP-seq/RIP-seq
datasets listed in Table 1. We analyzed two iCLIP datasets,
hnRNPC iCLIP on the HeLa cell line from Zarnack et al.
(19), and AGO2 iCLIP on the GM12878 lymphoblastoid
cell line (LCL) from Wan et al. (28). We also analyzed one
m6A RIP-seq dataset on the H1 human embryonic stem
cell (ESC) line from Batista et al. (29). For each dataset, we
analyzed RNA motif and regulatory features based on the
known properties of the RBP or RNA modification. Anno-
tations of repetitive elements for the hg19 human genome
were downloaded from the UCSC RepeatMasker track,
available at the UCSC table browser.

Motif finding for hnRNPC peaks was performed using
Zagros (30), a specialized de novo motif finder for CLIP-
seq data. For m6A sites, motif finding was performed using
HOMER (31) as in our previous m6A work (29) on the top
1000 peaks ranked by enrichment ratio over input control.

To assess the functional impact of hnRNPC CLAM
sites on hnRNPC-dependent alternative splicing, hnRNPC

https://arxiv.org/abs/1104.3889
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shRNA knockdown followed by RNA-seq dataset in the
same HeLa cell line (19) was analyzed by rMATS (32) (ver-
sion 3.2.5) to detect differential alternative splicing events.
The alternative exons were filtered by read counts (inclu-
sion counts + skipping counts ≥20) and then ranked by �ψ
values (control − knockdown) from the most hnRNPC re-
pressed exons (�ψ =−1) to the most hnRNPC enhanced
exons (�ψ = 1). Each exon was extended symmetrically by
250 bp on both sides to include the proximal intron regions.
We applied a Gene Set Enrichment Analysis (GSEA)-like
analysis (33) to test if exons with CLAM sites overlapping
with the extended exon regions were enriched toward the
top or the bottom of the �ψ ranked hnRNPC-dependent
differential alternative splicing events. Specifically, enrich-
ment score (ES) was calculated as described previously (33)
on the exons with CLIP-seq peaks as hits in this ranked
exon list, and Kolmogorov–Smirnov test (K–S test) was per-
formed to test for statistical significance.

To assess the effect of AGO2 CLAM sites on microRNA-
mediated mRNA repression, microarray gene expression
data of human cell lines upon ectopic expression or in-
hibition of two microRNAs were downloaded from GEO
with accession number: GSE37213 (miR-21, T lympho-
cytes) and GSE42823 (miR-107, H4 glioneuronal cells).
We selected these two microRNAs because they were both
abundantly expressed in the GM12878 cell line profiled by
AGO2 iCLIP, based on small RNA-seq profiling data of
microRNA abundance in the original study by Wan et al.
(28). For each AGO2 peak, we predicted the targets of
these two microRNAs using TargetScan (34) (http://www.
targetscan.org/vert 71/). AGO2 target genes were then sep-
arated into two categories based on whether they had com-
mon or rescued peaks. Background genes were chosen as
genes without any AGO2 peaks. Affymetrix microarray
probesets were matched to corresponding transcripts using
BiomaRt (35).

To assess the influence of m6A modification on mRNA
half-life, we used transcript half-life time measured in iPS
cells as in our previous m6A work (36). Genes were clas-
sified similarly as in the AGO2 analysis. We performed a
meta-gene analysis to obtain the m6A peak distributions in
5′-UTR, coding sequence (CDS) and 3′-UTR by binning
the corresponding transcript region into 10 equal-sized bins
then counting in each bin the frequency of top 1000 com-
mon or rescued m6A peaks respectively.

Analyses of ENCODE CLIP-seq and RNA-seq data on 17
splicing factors

We applied CLAM to 17 splicing factors with matching
CLIP-seq (eCLIP) and shRNA knockdown followed by
RNA-seq datasets in the HepG2 cell line from the EN-
CODE project. We followed the ENCODE SOP pipeline
to remove adapters. We developed an in-house script for
collapsing PCR duplicates based on the ENCODE SOP
but preserved multi-mapped reads. Since eCLIP employed
paired-end sequencing, only the second mate was extracted
and fed into CLAM after mapping, following the same
strategy adopted by the ENCODE consortium (37). CLAM
was run using the same parameter set as in our analyses of
the hnRNPC and AGO2 iCLIP data.

The CLAM sites for each splicing factor were validated
in two aspects: enrichment of consensus motif (if available)
and enrichment of splicing factor-dependent alternative ex-
ons upon shRNA knockdown of the splicing factor. Known
consensus motifs of 12 splicing factors were retrieved from
the RNAcompete database (1). Motif enrichment analysis
was performed using a Z-score method as described pre-
viously (38), with minor modifications. Specifically, given
a motif regular expression and a set of n CLIP-seq peaks,
we first computed the number of peaks (sequences), de-
noted by X, containing the motif. Then we estimated the
background frequency p of the given motif in a large col-
lection of random genomic sequences of the same length
as CLIP-seq peaks. The expected motif occurrence in the
CLIP-seq peaks was hence n · p, with the variance being
n · p · (1 − p). We applied the Z-transformation as Z =

X−np√
np(1−p)

. To account for the over-dispersion in the above

Z-score, we computed the Z-scores for an additional m
= 1000 randomers of the same length as the given motif,
and estimated the sample standard deviation s of the ran-
domer Z-scores. Hence the final t-statistic is t = Z

s with de-
gree of freedom m-1, and P-value was given by Student’s
t-distribution.

RNA-seq data of splicing factor knockdown was pub-
licly available in the ENCODE data portal and we used
our rMATS pipeline (32) (version 3.2.5) to quantify the
exon inclusion level (ψ) of cassette exon skipping events.
We applied a read count filter to remove exon skipping
events with <20 combined (inclusion plus skipping) reads.
As there were many more common peaks than rescued
peaks, to account for the difference in statistical power
in calculating the GSEA-like (33) K–S enrichment statis-
tics, for each splicing factor we down-sampled the common
peaks to the same number of rescued peaks and repeated
the down-sampling procedure 20 times. For each exon, three
non-overlapping regions were considered: upstream 250 bp
flanking intron, exon body and downstream 250 bp flank-
ing intron. The rescued peaks and each set of down-sampled
common peaks were tested for enrichment in each of these
three regions separately, based on a ranked list of splicing
factor-dependent exons ranked by difference in exon inclu-
sion levels (�ψ) between control and knockdown, follow-
ing the same procedure for calculating the K–S statistic as
described above for the hnRNPC iCLIP data.

Code availability

The CLAM software and user manual can be downloaded
from https://github.com/Xinglab/CLAM. All datasets used
in this paper are publicly available in public repositories, i.e.
SRA and ArrayExpress, with accession numbers listed in
Table 1.

RESULTS

CLAM statistical model for multi-mapped reads in CLIP-seq
and RIP-seq data

To utilize multi-mapped reads in CLIP-seq and RIP-seq
data and improve peak calling in highly repetitive regions,
we developed CLAM, which assigns multi-mapped reads

http://www.targetscan.org/vert_71/
https://github.com/Xinglab/CLAM
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using an EM framework, followed by peak calling with a
permutation-based procedure commonly used for CLIP-
seq and RIP-seq data (‘Materials and Methods’ section).
The statistical model of CLAM was inspired by previ-
ous work on resolving multi-mapped reads in RNA-seq
(23,39,40) and ChIP-seq data (41,42), while features spe-
cific for CLIP-seq and RIP-seq data were incorporated in
the model. Below we briefly illustrate the CLAM algorithm,
using one read mapped to two genomic regions as the exam-
ple (Figure 1B). CLAM first collapses reads into genomic
regions. The two genomic regions in Figure 1B have six
and two uniquely mapped reads respectively, while sharing
one multi-mapped read which will be resolved by CLAM.
As certain RBPs (e.g. AGO2) could have long footprints
on mRNA transcripts due to multiple overlapping binding
sites (43), we designed the EM algorithm in CLAM to as-
sign a multi-mapped read based on the mapping status of
other reads (uniquely + multi-mapped) within a defined lo-
cal window surrounding the read of interest (‘Materials and
Methods’ section). The algorithm iterates between inferring
the expected true origins of multi-mapped reads and de-
riving the Maximum Likelihood Estimates (MLE) for the
probabilities of reads derived from specific regions, until it
reaches convergence. In the hypothetical example in Figure
1B, for the multi-mapped read CLAM will assign 0.75 and
0.25 read to the left and right regions respectively to achieve
the maximum likelihood. Once multi-mapped reads are re-
assigned, a permutation test will be performed for peak call-
ing combining uniquely mapped reads and CLAM assign-
ment of multi-mapped reads (‘Materials and Methods’ sec-
tion).

To systematically evaluate the behavior of the CLAM
EM framework for re-assigning multi-mapped CLIP-seq
reads, we generated a benchmark dataset by truncating
the hnRNPC iCLIP (19) reads by 10 bp from the 3′ end
then remapping the truncated reads to the genome. This
strategy enabled us to assess the algorithm performance
on ‘gold-standard’ reads that were uniquely mapped in the
full-length dataset but became multi-mapped in the trun-
cated dataset. For comparison, we implemented and eval-
uated two alternative models: (i) assigning multi-mapped
reads uniformly with equal weights for all mapped regions
(‘uniform’ model) and (ii) assigning multi-mapped reads
weighted by local counts of uniquely mapped reads, which
corresponds to the first iteration of EM (‘one-iter’ model).
Then we assessed the accuracy of re-assigning these reads
to the known originating loci (positive loci) over the rest
of multi-mapped loci (negative loci) by Area Under Re-
ceiver Operating Characteristic curve (AUROC), Area Un-
der Precision-Recall curve (AUPR) and the median/mean
weight for positive versus negative loci. As illustrated in Ta-
ble 2, uniform assignment of multi-mapped reads resulted
in the poorest performance. Although the CLAM model
and the One-iter model achieved comparable AUROC and
AUPR values, detailed analyses indicated that the CLAM
model as compared to the One-iter model assigned higher
weights to positive loci (0.62 versus 0.50) and lower weights
to negative loci (0.02 versus 0.13), demonstrating its supe-
rior performance.

In sum, CLAM is a two-stage algorithm that first re-
assigns the multi-mapped reads using a statistical model

(i.e. EM), followed by peak calling using the information
of both uniquely mapped reads and multi-mapped reads.
Compared to conventional CLIP-seq/RIP-seq peak calling
procedures of using only uniquely mapped reads, CLAM
can discover a large number of novel sites inaccessible by
conventional methods, as demonstrated by our systematic
assessments using multiple datasets below. It should also be
noted that while EM and permutation test could be slow,
we used computational techniques to boost the speed of
CLAM. For EM-based probabilistic read assignment, we
implemented Binary Indexed Tree (BIT) for faster read-
ing and updating of weights. For permutation-based peak
calling, we implemented a multi-threading framework for
parallel peak-calling on a gene-by-gene basis. As a result,
CLAM has reasonable running time that scales well to the
total library size (Supplementary Table S1).

CLAM rescues multi-mapped reads and discovers novel sites
in CLIP-seq and RIP-seq data

To assess the utility of CLAM, we first applied it to three
published datasets on hnRNPC, AGO2 and m6A (Table
1). We chose these three datasets because they were asso-
ciated with distinct RNA regulatory processes (alternative
splicing, microRNA targeting and m6A methylation respec-
tively), and included both CLIP-seq (hnRNPC, AGO2) and
RIP-seq (m6A) data. Each dataset had two biological repli-
cates. After pre-processing and adapter trimming, the aver-
age read lengths were 40, 44 and 50 for the three datasets
respectively. We then calculated the percentage of multi-
mapped reads among all mapped reads. As shown in Fig-
ure 2A, ∼10–18% of reads were multi-mapped across the
six samples. Using CLAM, we were able to rescue the vast
majority (83–92%) of multi-mapped reads, representing a
significant gain in read coverage especially in repetitive re-
gions of the transcriptome (see below). A small propor-
tion (∼10%) of multi-mapped reads were not analyzed by
CLAM because they did not cluster to genomic regions
(i.e. singleton reads with no other reads in vicinity), or
were mapped to too many (≥100) regions and therefore dis-
carded (see details in ‘Materials and Methods’ section).

The rescued multi-mapped reads were significantly en-
riched in repetitive regions. We obtained the annotation
of repetitive elements in the human genome from the
UCSC RepeatMasker track then calculated the percentage
of uniquely mapped and multi-mapped reads within differ-
ent classes of repeats as well as non-repeat regions (Sup-
plementary Figure S1). In all three datasets, the percent-
age of multi-mapped reads was much higher in repetitive
regions as compared to non-repeat regions, thus creating a
challenge for peak calling within repetitive regions. For ex-
ample, in the hnRNPC dataset, 37% of reads mapped to
antisense Alu elements were multi-mapped, as compared
to only 3% for reads mapped to non-repeat regions. Over-
all, only 8% of multi-mapped reads in the hnRNPC dataset
were mapped to non-repeat regions, while 60% of multi-
mapped reads were mapped to antisense Alu elements (Sup-
plementary Figure S1), consistent with a previous report
on widespread hnRNPC binding within antisense Alu el-
ements (19). When we ranked the repeat family by their to-
tal number of multi-mapped reads, Alu, L1 and simple re-
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Table 2. Performance of CLAM and two alternative models on a synthetic benchmark dataset

Model AUROC AUPR Positive loci weight (median, mean) Negative loci weight (median, mean)

CLAM 0.88 0.79 0.62, 0.65 0.02, 0.15
One-iter 0.88 0.78 0.50, 0.54 0.13, 0.20
Uniform 0.75 0.48 0.50, 0.42 0.20, 0.25

Figure 2. Summary statistics of CLAM results on three CLIP-seq/RIP-
seq datasets. (A) Percentage of multi-mapped reads (blue) and percent-
age of multi-mapped reads rescued by CLAM (orange) among all mapped
reads in analyzed datasets. (B) Sensitivity analysis at various FDR thresh-
olds. The majority of lost peaks can be recovered using the combination of
uniquely and multi-mapped reads at higher (more relaxed) FDR thresh-
olds (bar graphs on the left), while a significantly smaller fraction of res-
cued peaks can be identified using only uniquely mapped reads at higher
FDR thresholds (bar graphs on the right). (C) Fraction of rescued and
common peaks derived from various types of repetitive elements. A signifi-
cantly higher fraction of rescued peaks are derived from repetitive elements
across all three datasets.

peat were consistently among the top families with the high-
est number of multi-mapped reads across the three datasets
(Supplementary Figure S1).

We next assessed CLIP-seq/RIP-seq peak calling by
CLAM. We adopted a commonly used permutation pro-
cedure for CLIP-seq or RIP-seq peak calling (19,24,25),
and defined genomic loci with gene-specific FDR < 0.001
as peaks. We performed peak calling using: (i) uniquely
mapped reads only and (ii) uniquely mapped reads plus
CLAM assignments of multi-mapped reads. We classified
peaks called from the above procedures into three distinct
categories: ‘common peaks’ that were called in both pro-
cedures, ‘rescued peaks’ that were called only with multi-
mapped reads incorporated and ‘lost peaks’ that were called
using uniquely mapped reads but not with multi-mapped
reads incorporated.

Compared to a naı̈ve read mapping and peak calling
procedure using only uniquely mapped reads, a substan-
tial number of rescued peaks were identified from all three
datasets by CLAM (Table 3). While a certain number of
peaks called by the naı̈ve peak calling procedure were lost
in the CLAM results, these lost peaks were much smaller

in number as compared to rescued peaks called with incor-
porating multi-mapped reads (Table 3). For example, in the
hnRNPC dataset, we had 26 594 rescued peaks on average
in the two samples, as compared to 6898 lost peaks on aver-
age. Moreover, the majority of these lost peaks can be recov-
ered from the CLAM results of multi-mapped reads simply
by using a relaxed (higher) FDR cutoff (Figure 2B), sug-
gesting that these peaks were lost due to random statisti-
cal fluctuations. For example, by relaxing the gene-specific
FDR cutoff from 0.001 to 0.005 in the hnRNPC dataset,
we were able to recover 94% of lost peaks. The reverse
was not true––only 25% of rescued peaks could be identi-
fied using only uniquely mapped reads at this higher FDR
cutoff, demonstrating the importance of modeling multi-
mapped reads in CLAM. We observed the similar trend in
the AGO2 and m6A datasets, in which we could recover a
much higher percentage of lost peaks by relaxing the FDR
cutoff, but much less so on rescued peaks if using only
uniquely mapped reads (Figure 2B). We also noted that in
the AGO2 and m6A datasets, a number of ‘lost peaks’ were
the only visible peaks in their respective genes when only
uniquely mapped reads were considered, but could not pass
the gene-specific FDR cutoff when multi-mapped reads in
these genes were rescued by CLAM.

As expected, the rescued peaks were strongly enriched in
repetitive elements as compared to common peaks across all
three datasets (Figure 2C). For example, rescued peaks for
hnRNPC were strongly enriched in antisense Alu elements,
consistent with previous findings about hnRNPC binding
sites within antisense Alu (19). We noted that 76% of res-
cued peaks for hnRNPC were located in antisense Alu ele-
ments, as compared to only 36% for common peaks. Simi-
larly, Alu elements also showed a significant enrichment in
rescued peaks for AGO2 and m6A.

Rescued peaks for hnRNPC were associated with alternative
splicing

Next, we assessed the functional relevance of rescued
CLAM peaks, by correlating these peaks with relevant
RNA regulatory features. We first analyzed the rescued
CLAM peaks for hnRNPC, a splicing factor known to bind
to poly-U tracts within the pre-mRNA to regulate alterna-
tive splicing. Using the Zagros de novo motif finder (30) for
CLIP-seq data, we found a significantly enriched poly-U
motif within both common peaks and rescued peaks (Fig-
ure 3A), suggesting that the rescued peaks have the same
binding properties with hnRNPC as the common peaks.
We then evaluated the potential functions of these res-
cued peaks, by investigating whether they were in the vicin-
ity of alternative exons regulated by hnRNPC. To iden-
tify hnRNPC-dependent exons, we re-analyzed the RNA-
seq data of hnRNPC knockdown in the same cell type
(19) using rMATS (32), and ranked all exon-skipping cas-
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Table 3. Summary of CLAM peak calling on the hnRNPC, AGO2 and m6A datasets

Dataset Replicate Rescued Common Lost

hnRNPC #1 24 976 99 890 6027
#2 28 211 133 708 7769

AGO2 #1 2169 32 494 546
#2 2243 29 774 536

m6A #1 3598 36 000 1790
#2 3702 39 153 2151

Figure 3. Functional evaluation of CLAM on the hnRNPC CLIP-seq
data. (A) Identification of the known consensus hnRNPC motif by de novo
motif discovery in rescued and common hnRNPC peaks. (B) Enrichment
analysis of hnRNPC-dependent alternative exons for rescued and common
hnRNPC peaks. X-axis represents alternative exons ranked by rMATS �ψ

values (the difference in exon inclusion levels between control and knock-
down). Y-axis is the enrichment score (ES) calculated via the Kolmogorov–
Smirnov statistic. Both rescued and common hnRNPC peaks are strongly
enriched for hnRNPC-repressed alternative exons. (C) Example of a res-
cued hnRNPC peak in DDIAS. (D) Example of a rescued hnRNPC peak
in SNHG17.

sette exons with sufficient RNA-seq coverage for differential
splicing by their rMATS �ψ values (i.e. the difference of
exon inclusion level between hnRNPC control and knock-
down; see ‘Materials and Methods’ section). We defined
an alternative exon as being associated with a CLIP-seq
peak, if the peak was located within the exon body or in
intronic regions within 250 bp of the exon. We hypothe-
sized that if rescued CLAM peaks indeed represented func-
tional protein–RNA interaction sites, we would observe an
enrichment of exons associated with rescued peaks among
hnRNPC-dependent alternative exons identified by RNA-
seq. Specifically, as hnRNPC is known to repress exon inclu-
sion (19), its direct target exons should have higher splicing
levels upon hnRNPC knockdown. To test this hypothesis,
we performed a Kolmogorov–Smirnov statistical test sim-
ilar to the GSEA algorithm (33), by comparing the rank-
ings of exons with or without hnRNPC peaks within the
�ψ ranked list of hnRNPC-dependent exons. Indeed, ex-
ons with rescued peaks were strongly enriched toward the
left side (�ψ < 0) of the list (P-value < 2.2e-16, Figure 3B,
top panel), with the enrichment score (ES) peaked around

RNA-seq �ψ of 0 then decreased gradually. We observed
an almost identical trend for exons associated with com-
mon peaks (Figure 3B, bottom panel). Two representative
examples of hnRNPC-dependent exons associated with res-
cued peaks were shown in Figure 3C and D. In Figure 3C
(DDIAS), RNA-seq data revealed an exon with significantly
elevated splicing upon hnRNPC knockdown, but no peak
was observed in the vicinity of this exon using uniquely
mapped CLIP-seq reads. However, this exon had a num-
ber of multi-mapped reads. These reads mapped to distinct
sets of other genomic loci, while all of them mapped to this
DDIAS exon. Therefore, CLAM rescued and assigned these
multi-mapped reads to this exon, resulting in the identifica-
tion of a strong hnRNPC peak. Another example was pro-
vided for SNHG17, in which CLAM discovered a strong
hnRNPC peak within an hnRNPC-dependent alternative
exon, while the coverage by uniquely mapped CLIP-seq
reads was low and no peak can be identified within the exon
(Figure 3D). Of note, in both genes the rescued peaks were
located within a primate-specific Alu retrotransposon, in-
dicating the creation of species-specific splicing regulatory
sequences from repetitive elements.

Rescued peaks for AGO2 were associated with microRNA-
mediated mRNA repression

Next, we used CLAM to analyze a CLIP-seq dataset
of AGO2 in the GM12878 LCL (28). AGO2 belongs to
the Argonaute (AGO) protein family and plays a criti-
cal role in RNA silencing including microRNA-mediated
mRNA repression (44). CLIP-seq analysis of AGO2 al-
lows transcriptome-wide identification of microRNA bind-
ing sites (45). CLAM rescued >2000 peaks from the AGO2
CLIP-seq data (Table 3), with over half of these rescued
peaks located within repetitive elements (Figure 2C).

To assess if these rescued peaks represented functional
microRNA target sites, we ran TargetScan (34) to predict
the microRNA target sites within each CLIP-seq peak. We
then selected two microRNAs (miR-21 and miR-107) for
detailed analyses of the predicted TargetScan microRNA
target sites. These two microRNAs were selected because
they both were abundantly expressed in the GM12878 LCL
cell line according to small RNA sequencing data, and
global microarray data of mRNA expression following ec-
topic expression or inhibition of the microRNA were avail-
able in the published literature (see ‘Materials and Methods’
section for details). For each microRNA, we obtained three
categories of genes: genes with common peaks containing
microRNA target sites, genes with rescued peaks contain-
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Figure 4. Functional evaluation of CLAM on the AGO2 CLIP-seq data.
For each microRNA, three classes of genes are compiled: genes with com-
mon peaks containing microRNA target sites (common, blue), genes with
rescued peaks containing microRNA target sites (rescued, red) and back-
ground genes without AGO2 CLIP-seq peaks (background, black). Cumu-
lative density function is plotted for the log2 gene expression fold change
upon (A) inhibition of miR-21 or (B) ectopic expression of miR-107. For
both microRNAs, rescued and common target genes show the same sig-
nificant shift in cumulative density function as compared to background
genes.

ing microRNA target sites and background genes with no
AGO2 CLIP-seq peaks. We then calculated the fold change
of gene expression level upon ectopic expression or inhibi-
tion of the microRNA, then plotted the cumulative density
function of the log2 fold change values for the three cate-
gories of genes (Figure 4). For miR-21, genes with commons
peaks and rescued peaks both had a significant increase in
expression levels as compared to background genes follow-
ing microRNA inhibition (P-value < 2.2e-16 and P-value <
2.2e-16 respectively, Kolmogorov–Smirnov test), consistent
with de-repression of target mRNA levels (Figure 4A). By
contrast, for miR-107, genes with common peaks and res-
cued peaks both had a significant decrease in expression lev-
els as compared to background genes following microRNA
overexpression (P-value = 4.8e-7 and P-value < 2.2e-16 re-
spectively, Kolmogorov–Smirnov test), consistent with re-
pression of target mRNA levels (Figure 4B). These data are
characteristic of microRNA’s effects on target genes (46),
suggesting that the rescued AGO2 peaks provide functional
target sites for microRNA-mediated mRNA repression.

Rescued peaks for m6A were associated with mRNA stability
control

To test CLAM on RIP-seq data, we applied it to our pub-
lished RIP-seq data of N6-methyladenosine (m6A) in the
H1 human ESCs (29). The m6A modification involving the
addition of a methyl group to the N6 position of adeno-
sine is a widespread reversible RNA modification in mam-
malian cells. RNA immunoprecipitation by m6A-specific
antibody followed by sequencing is a popular strategy to
identify m6A sites across the transcriptome (47). CLAM
rescued >3500 peaks from the m6A RIP-seq data. Follow-
ing an established procedure to identify the consensus m6A
motif from m6A RIP-seq data (29), we ranked common or
rescued m6A peaks by the ratio of normalized read counts
in the m6A RIP-seq data versus the RNA-seq data of the in-
put control, then performed de novo motif discovery using

Figure 5. Functional evaluation of CLAM on the m6A RIP-seq data. (A)
Identification of the known consensus m6A motif by de novo motif discov-
ery in rescued and common m6A peaks. The conserved m6A RRACU mo-
tif in (B) anti-sense and (C) sense sequences of major Alu subfamilies. (D)
Cumulative density function of mRNA half-life in iPSCs. Both genes with
common and rescued m6A peaks have significantly lower mRNA half-life
as compared to background genes without m6A peaks. Topological dis-
tribution of (E) rescued and (F) common m6A peaks across the 5′-UTR,
CDS and 3′-UTR of protein-coding genes. (G) Example of a rescued Alu-
derived m6A peak in the 3′-UTR of NME6.

HOMER (31) in the top 1000 common or rescued peaks.
We identified a significant GGACU motif that matched the
known consensus m6A motif (Figure 5A). Consistent with
the observation that Alu elements were enriched in the res-
cued m6A peaks (Figure 2C), we identified the consensus
RRACU m6A motif in the antisense and sense sequences
of Alu subfamilies (Figure 5B and C). To test if these res-
cued CLAM peaks contained functional m6A sites, we cor-
related the CLAM sites of human ESCs to published data
of mRNA half-life in human induced pluripotent stem cells
(iPSCs) (36). As m6A has a well-established role in reg-
ulating mRNA degradation and stability (48), we previ-
ously observed that genes with functional m6A sites had
reduced m6A half-life (29). We classified genes into three
categories: genes with common m6A peaks, genes with res-
cued m6A peaks and background genes without m6A peaks.
Genes with common or rescued m6A peaks both had signif-
icantly lower mRNA half-life as compared to background
genes (P-value < 2.2e-16 and P-value = 1.3e-12 respectively,
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Kolmogorov–Smirnov test; see Figure 5D and Supplemen-
tary Figure S2), suggesting that the rescued peaks contained
functional m6A sites. Furthermore, we observed significant
enrichment of both common and rescued m6A sites near the
stop codon (Figure 5E and F), demonstrating the similar
topological feature of common and rescued m6A sites that
matched the previously reported pattern (47). An example
of a rescued m6A site was shown in the 3′-UTR of NME6,
in which a strong RIP-seq peak derived from an Alu retro-
transposon was identified by CLAM combining uniquely
mapped and multi-mapped reads (Figure 5G).

CLAM analysis of ENCODE CLIP-seq data of 17 splicing
factors

To demonstrate the broad applicability of CLAM, we an-
alyzed 17 splicing factors (Supplementary Table S2) with
matching eCLIP (enhanced CLIP) data and shRNA knock-
down followed by RNA-seq data on the HepG2 cell line
from the ENCODE consortium (Figure 6). The ENCODE
investigators have systematically performed eCLIP exper-
iments on a large number of RBPs in the HepG2 cell
line (37), along with RNA-seq analysis following shRNA
knockdown of individual RBPs. For each of the 17 splicing
factors, CLAM rescued thousands to tens of thousands of
peaks (Supplementary Table S2). Twelve of the seventeen
splicing factors had known consensus motifs defined pre-
viously using the RNAcompete technology (1). For these
splicing factors, we calculated the enrichment P-values of
known consensus motifs within common or rescued peaks
using a t-statistic procedure (‘Materials and Methods’ sec-
tion). The rescued and common peaks exhibited highly sim-
ilar patterns of consensus motif enrichment in general for
all 12 splicing factors (Figure 6A), despite that the P-value
calculation could sometimes be skewed for rescued peaks
due to their high content of repetitive elements and biased
sequence compositions (Figure 2C).

To assess the functional relevance of rescued CLAM sites
for these 17 splicing factors, we intersected the common
and rescued eCLIP peaks with splicing factor-dependent
alternatively spliced cassette exons, identified from RNA-
seq data of the HepG2 cell line following shRNA knock-
down of the splicing factor. For each exon, we defined three
non-overlapping regions as the 250 bp upstream intronic re-
gion, the exon body and the 250 bp downstream intronic
region. We then tested if exons containing eCLIP peaks
(common or rescued) in these regions were significantly en-
riched toward the top or bottom of the �ψ ranked list of
splicing factor-dependent exons using the GSEA algorithm
(see ‘Materials and Methods’ section). As the number of
common peaks was generally substantially larger than the
number of rescued peaks across all splicing factors (Sup-
plementary Table S2), in order to control for the differ-
ence in statistical power in calculating the enrichment P-
value, we used a down-sampling strategy to randomly sam-
ple a subset of common peaks for the enrichment analy-
sis. Our data show that across the 17 splicing factors, splic-
ing factor-dependent alternative exons generally had simi-
lar patterns of enrichment for rescued and common peaks,
and the −log10 enrichment P-value of rescued peaks in ap-
proximately half of the tested regions was within the mean

Figure 6. CLAM analysis of 17 splicing factors with ENCODE eCLIP
data and matching RNA-seq data following splicing factor knockdown
in the HepG2 cell line. In visualizing the negative log10 of nominal P-
values, we added a pseudo-count of 1e-3 to all P-values to truncate the
−log10 (P-value) at an upper limit of 3, while the same pattern was ob-
served for pseudo-count of 1e-4 and 1e-5. (A) Negative log10 enrichment
P-values of known splicing factor motifs within common (blue) and res-
cued (red) peaks. The frequency of motif occurrences were compared to
randomly sampled genomic sequences and Student’s t-distribution was fit-
ted to measure the statistical significance of enrichment. (B) Barplots of
negative log10 P-values of GSEA test on the enrichment of splicing factor-
dependent alternative exons for common or rescued peaks within the up-
stream 250 bp intronic region (blue), the exon body (red) and the down-
stream 250 bp intronic region (orange). For common peaks, the −log10
P-value of enrichment was calculated as the average from 20 random itera-
tions of down-sampling to the same number of rescued peaks. If the −log10
P-value of rescued peaks is within the mean ± standard deviation of that
of common peaks, an asterisk is added next to the bar. (C) Enrichment
analysis of hnRNPC-dependent exons for common and rescued hnRNPC
exon-overlapping peaks in the ENCODE HepG2 data. Both common and
rescued hnRNPC peaks are strongly enriched for hnRNPC-repressed ex-
ons. (D) Enrichment analysis of U2AF2-dependent exons for common and
rescued U2AF2 exon-overlapping peaks. Both common and rescued peaks
are strongly enriched for U2AF2-enhanced exons in the ENCODE HepG2
data.

± standard deviation of that of common peaks generated
by 20 rounds of down-sampling (marked with an asterisk
next to the bar, see Figure 6B), suggesting that rescued and
common peaks had similar functional effects on regulat-
ing alternative splicing. Two detailed examples were pro-
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vided for hnRNPC and U2AF2 (Figure 6C and D). For hn-
RNPC, we observed significant enrichment of common and
rescued peaks around hnRNPC-repressed exons in the EN-
CODE HepG2 cells (Figure 6C), consistent with the pat-
tern observed in the HeLa cells (Figure 3B). For U2AF2,
we observed significant enrichment of common and rescued
peaks around U2AF2-enhanced exons (Figure 6D), consis-
tent with the well-established role of U2AF2 as a positive
regulator of exon splicing (49).

DISCUSSION

We report CLAM, a new computational method and soft-
ware program for CLIP-seq/RIP-seq peak calling incor-
porating multi-mapped reads. Multi-mapped reads consti-
tute an appreciable fraction of reads in CLIP-seq/RIP-seq
experiments (Figure 2A), but conventional analytic tools
for CLIP-seq/RIP-seq data do not properly handle multi-
mapped reads. In contrast to naı̈ve approaches of discard-
ing multi-mapped reads or distributing fractional counts
of multi-mapped reads equally to all mapped loci (20),
CLAM utilizes an EM framework to assign reads based
on the local information of all mapped reads in the vicin-
ity of multi-mapped reads. Our evaluation using a syn-
thetic benchmark dataset demonstrates that the CLAM EM
model outperforms alternative models (Table 2). It should
be noted that while the EM algorithm is widely used for re-
solving multi-mapped RNA-seq reads (23,39,40), existing
RNA-seq-based tools are not suitable for CLIP/RIP-seq
data. Specifically, RNA-seq-based tools only consider reads
mapped to annotated transcript regions and ignore reads in
intronic regions, where a large number of CLIP/RIP-seq
peaks reside. By contrast, CLAM is designed to account
for unique features of CLIP/RIP-seq data. For example,
CLAM assigns multi-mapped reads and calls peaks in lo-
cal windows that match the size of RBP footprints. Collec-
tively, CLAM provides a comprehensive and rigorous com-
putational solution for CLIP/RIP-seq peak calling utiliz-
ing multi-mapped reads, and its performance is supported
by comprehensive analyses of diverse datasets.

To demonstrate the utility of CLAM, we applied it to a
wide range of public CLIP-seq/RIP-seq datasets involving
splicing factors, microRNAs and m6A RNA methylation.
Consistently across all datasets, CLAM rescued the vast
majority of multi-mapped reads in CLIP-seq/RIP-seq li-
braries, and identified a large number of novel peaks that
would otherwise be missed using only uniquely mapped
reads. These rescued peaks show expected patterns of con-
sensus motif enrichment. Moreover, analyses of RNA reg-
ulatory features suggest that these rescued CLAM peaks
are functional, as evidenced by association with alterna-
tive splicing (hnRNPC and other splicing factors in EN-
CODE), steady-state transcript abundance (AGO2) and
mRNA half-life (m6A).

An important application of CLAM is to comprehen-
sively discover novel RNA regulatory sites originating from
transposable elements in the genome. Extensive research
in the past few decades have demonstrated that transpos-
able elements, initially considered as ‘genomic parasites’ or
‘junk DNAs’, play important roles in essentially all aspects
of gene regulation from transcription to RNA process-

ing to protein synthesis (50). At the RNA level, transpos-
able elements can contribute functional elements for post-
transcriptional gene regulation (51). The CLIP-seq/RIP-
seq technologies in principle should enable large-scale dis-
coveries of RNA regulatory sites derived from transpos-
able elements, but the repetitive nature of these sequences
combined with the short length of CLIP-seq/RIP-seq reads
creates computational challenges for peak identification.
CLAM provides a statistically rigorous approach to identify
CLIP-seq/RIP-seq peaks in repetitive regions of the tran-
scriptome. Across multiple datasets, a significantly higher
fraction of ‘rescued peaks’ identified by CLAM are de-
rived from transposable elements, as compared to ‘com-
mon peaks’ that are readily identifiable using only uniquely
mapped reads (Figure 2C). Of note, we identified numer-
ous protein–RNA interaction events and RNA modifica-
tion sites derived from Alu elements. As Alu elements are
primate-specific retrotransposons (52), these Alu derived
RNA regulatory sites have the potential to re-wire lineage-
specific post-transcriptional regulatory networks, thus con-
tributing to transcriptome diversification during primate
and human evolution. For example, m6A RNA methylation
has recently emerged as a key player in RNA metabolism
(47). While our previous m6A RIP-seq analysis of human
and mouse ESCs indicated significant conservation of m6A
patterns, we also discovered species-specific m6A sites in
over a thousand genes (29). However, the molecular mecha-
nism and evolutionary source for these species-specific m6A
sites were unknown. In this work, using CLAM we iden-
tified 3218 Alu-derived m6A sites in human genes, reveal-
ing the significant contribution of Alu elements to human-
specific m6A sites and potentially m6A-associated regula-
tory effects.

A potentially very valuable feature of CLIP-seq data is
the presence of diagnostic signals in CLIP-seq reads (e.g.
read truncations and base substitutions) that may allow
single-nucleotide-resolution mapping of protein–RNA in-
teraction and RNA modification sites (10,22,53). For exam-
ple, iCLIP was designed to have single nucleotide resolution
through read truncation at the crosslinking sites (10). How-
ever, recent literature (54–56) as well as our analysis of the
ENCODE data suggest that the robustness of the trunca-
tion signals in iCLIP/eCLIP data varies among datasets as
well as among individual sites in a single experiment, and
could depend on various experimental, technical and bio-
logical factors. One important future direction for CLAM
is to model CLIP-seq diagnostic signals in a rigorous prob-
abilistic framework to further improve read re-assignment
and site identification for CLIP-seq data.

In summary, by modeling and analyzing multi-mapped
reads, CLAM provides a more comprehensive solution for
CLIP-seq/RIP-seq peak identification beyond commonly
used existing methods that focus on uniquely mapped
reads. The CLAM software and user manual can be down-
loaded from https://github.com/Xinglab/CLAM. With the
widespread application of CLIP-seq/RIP-seq technologies
as well as the rapid accumulation of datasets in the public
domain (7), we expect CLAM will be of broad interest to
biomedical researchers studying post-transcriptional gene
regulation in diverse biological and disease processes.

https://github.com/Xinglab/CLAM
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