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عئاشلاعونلاوهةريغصلاريغايلاخلاوذةئرلاناطرسناك:ثحبلافادهأ
ىلعءاقبلالدعموةلاحنويلم1.8نمبرقيامعمةئرلاتاناطرسنملتاقلاو
ثحبلااذهنمفدهلا.صيخشتلادعبتاونس5لكيف٪20نملقأةايحلاديق
ريغايلاخلاوذةئرلاناطرسايلاخلةلمتحملاةيجلاعلالماوعلاديدحتوه
تاينقتلاضعبمادختساللاخنميمدلأاومنلالماعتلابقتسملةلماحلاةريغصلا
.رتويبمكلاةدعاسمب

طاشنلابلكيهلاةقلاعسيقتيتلاةيئيزجلاةجذمنلاةينقتمادختسامت:ثحبلاقرط
وذةئرلاناطرسىلعةلمتحملاةيجلاعلالماوعلاضعبىلعداعبلأاةيئانثيمكلا
صحفءارجإمت.ةياغلليلاعيؤبنتجذومنريوطتلةريغصلاريغايلاخلا
ةباصلإاتابكرمديدحتلتابكرملاةعومجمسفنىلعيئيزجلاماحتللاليضارتفا
ةيئاودلاةيكرحلاوءاودلابةهيبشلاتازيملامييقتمت،كلذىلعةولاع.ةلمتحملا
ىلع؛"ماسايسيكيبو"يمدأسيوس"بيولامداوخمادختسابجئاتنلالضفلأ
.يلاوتلا

يتلاةيئيزجلاةجذمنلاةينقتربعهؤاشنإمتيذلاجذومنلاىلعروثعلامت:جئاتنلا
ةجردبتانايبلاةعومجمىلعداعبلأاةيئانثيمكلاطاشنلابلكيهلاةقلاعسيقت
،هؤارجإمتيذلايئيزجلاماحتللاليضارتفلااصحفلاددح.ةيؤبنتلانمةيلاع
ءاسرلإاتاجردىلعأىلعتلصحيتلا23و21و15و32و25تابكرملا
غلبتءاسرلإايفةجردىلعأىلعاهنيبنم25بكرملايوتحي.ةجيتنلضفأك
نأدهوش.95.449-ةجردفينصتةداعإولوم/يرولاكوليك138.329-
تاجردوءاسرلإايفىلعأولضفأجئاتناهيدلاهديدحتمتيتلاتابكرملاعيمج
تابكرملضفأنأنمدكأتلامت.9291دزأيسايقلاراقعلانمبيترتةداعإ
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كاهتنانمرثكأدوجومدعللاخنمريقاقعلابةهيبشةعيبطتاذيهةباصلإا
.ريغصءيزجلءاودلاهباشتمييقتيفةمدختسملاحيشرتلاطورشلدحاو
.ةيئاودلاكئارحلاحملامطسوتممهبةصاخلاةيئاودلاةيكرحلاتازيمتضرعو

ةلمتحمةيجلاعلماوعكةروكذملاةباصلإاتابكرملمعتنأنكمي:تاجاتنتسلاا
زايتجادعباهتيلاعفواهتملاسببسبةريغصلاريغايلاخلاوذةئرلاناطرسل
نأنكمي،اضيأو.ماسهنأدجويذلا23بكرملاءانثتسابةيريرسلالبقةبرجتلا
ريغايلاخلاوذةئرلاناطرسلةديدجةيجلاعلماوعميمصتلجذومنةباثمبنوكت
.ةريغصلا

يمكلاطاشنلابلكيهلاةقلاعسيقتيتلاةيئيزجلاةجذمنلاةينقت:ةيحاتفملاتاملكلا
ةئرلاناطرس؛ةيئاودلاةيكرحلا؛ةهيبشلاةيودلأا؛يئيزجلاماحتللاا؛داعبلأاةيئانث
ةريغصلاريغايلاخلاوذ

Abstract

Objectives: Non-small cell lung cancer (NSCLC) is the

most common type of lung cancer, with nearly 2 million

diagnoses and a 17% 5-year survival rate. The aim of this

study was to use computer-aided techniques to identify

potential therapeutic agents for NSCLC.

Methods: The two dimensional-quantitative structure

eactivity relationship (2D-QSAR) modeling was

employed on some potential NSCLC therapeutic agents

to develop a highly predictive model. Molecular docking-

based virtual screening were conducted on the same set of

compounds to identify potential hit compounds. The

pharmacokinetic features of the best hits were evaluated

using SWISSADME and pkCSM online web servers,

respectively.

Results: The model generated via 2D-QSAR modeling

was highly predictive with R2¼ 0.798, R2adj ¼ 0.754,

Q2CV ¼ 0.673, R2 test ¼ 0.531, and cRp2 ¼ 0.627
y. This is an open access article under the CC BY-NC-ND license
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assessment parameters. Molecular docking-based virtual

screening identified compounds 25, 32, 15, 21, and 23

with the highest MolDock scores as the best hits, of

which compound 25 had the highest MolDock score of

�138.329 kcal/mol. All of the identified hits had higher

MolDock scores than the standard drug (osimertinib).

The best hit compounds were ascertained to be drug-like

in nature following the Lipinski’s rule of five. Also, their

ADMET features displayed average pharmacokinetic

profiles.

Conclusion: After successful preclinical testing, the hit

compounds identified in this study may serve as potential

NSCLC therapeutic agents due to their safety and effi-

cacy with the exception of compound 23, which was

found to be toxic. They can also serve as a template for

designing novel NSCLC therapeutic agents.

Keywords: 2D-QSAR; ADMET; Drug-like; Molecular

docking; Non-small cell lung cancer

� 2022 The Authors.

Production and hosting by Elsevier Ltd on behalf of Taibah

University. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Introduction

Stanley Cohen discovered epidermal growth factor recep-
tor (EGFR) in 1956 while working at Vanderbilt University

(Nashville, TN, USA).1 EGFR is a member of the ErbB
family of receptors, which controls crucial cellular functions
such as cell evolution, separation, union, variation,

breakdown, motility, and death.2 EGFR is overexpressed in
several cancer types including gastric, breast, ovarian, colon,
and lung cancers. This overexpression is also seen in

malignances including metastatic colon cancer, head and
neck cancer, and non-small cell lung cancer (NSCLC).
EGFR overexpression has been identified in about 40e85%
of NSCLC patients,3 making it the main and principal target
for treating cancers such as NSCLC.4

Lung cancer remains the leading cause of cancer-related
death globally, and is divided into oat cell lung cancer

(known as small-cell lung cancer), which accounts for 15e
20% of lung cancer cases; and NSCLC, which accounts for
80e85%of cases.5, 6NSCLC is themost common type of lung

cancer with 2 million diagnoses and 5-year survival rates of
17% for all stages and 2% for stage 4 NSCLC.7,8 The main
subtypes of NSCLC are large cell carcinoma,

adenocarcinoma, and squamous cell carcinoma. The main
procedures utilized for the treatment of NSCLC are surgery,
radiotherapy, targeted therapy, and chemotherapy. Despite
the development of treatment modalities, the diagnosis of

NSCLC patients has not meaningfully improved.9

EGFR tyrosine kinase inhibitors (TKIs) targeting
NSCLC can inhibit tumor growth by binding to the EGFR
ATP-binding site. EGFR TKIs have been first-line therapy
for the treatment of NSCLC patients with activating, clas-

sical, and gatekeeper mutations.10,11

Gefitinib and erlotinib are United States Food and Drug
Administration [FDA]-approved first-generation EGFR

TKIs for the treatment of patients with NSCLC harboring
EGFR activating (L858R) and classical (del. E746-A750)
mutations in exon 19 and exon 21,

respectively.12 Furthermore, patients harboring L858R
EGFR mutations usually respond well to gefitinib and
erlotinib. However, the time frame for their efficacy is very
limited due to the resistance established by the EGFRT790M

(gatekeeper mutation), which is present in about 50% of
NSCLC patients with such EGFR mutation
(EGFRT790M).13

Afatinib and dacomitinib (FDA-approved irreversible
second-generation EGFR TKIs) were developed to resolve
the induced EGFRT790M mutation-related resistance to first-

generation EGFR-TKIs.12,14 Unfortunately, their clinical
effectiveness is limited due to serious side effects such as
skin rashes and gastrointestinal toxicity as well as
nonexistence of choices between EGFR mutant and wild-

type (EGFRWT).14,15

AZD9291 (osimertinib) and CO-1686 (rociletinib) (FDA-
approved irreversible third-generation EGFR TKIs) were

designed and established to inhibit the EGFRT790M resis-
tance mutation (second-generation EFGR TKIs) while being
more selective for EGFRWT, and also to overcome the

observed toxicity with irreversible second-generation EGFR-
TKIs. These irreversible third-generation EGFR-TKIs
cannot achieve the stated goal due to emergence of the C797S

mutation.14,16,17

The process of bringing an effective drug to market is a
huge investment in time and money. Specifically, it is pro-
jected to require about $2.6 billion dollars (the cost has

increased in the last decade by almost 150%) to develop and
bring a drug to market and takes an average time of 10e15
years. Similarly, the increase in failure rate is nearly 90%,

which indicates that virtually 70% of funds are invested in
drugs that fail clinical trials due to inadequate efficacy or
adverse effects.18,19

At the present time, advances in computer-aided drug
discovery (CADD) have made it possible to rapidly evaluate,
improve, and screen thousands or millions of molecules and

choose a candidate drug against a target protein, thereby
saving a lot of money and time.19,20 Quantitative structuree
activity relationship (QSAR) is a CADD method that entails
the generation of a mathematical model, which relates the

biological activities of a set of molecules to their molecular
descriptors (physicochemical properties).21 These properties
have a key impact on the drug’s activity. Molecular

docking is also a CAAD technique utilized to reveal the
interaction between a drug (ligand) and a receptor and how
this drug binds to the target. It also contributes to the

virtual screening of a library of compounds at the
preclinical stage of drug development.22 Predicting drug-
likeness and absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) properties of a drug in hit-to-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1: The 1D molecular formula, IC50, and pIC50 of the

dataset.

Entry Formula IC50 pIC50

1 C22H19N5O2 1.47 5.83

2 C23H21N5O3 3.28 5.48

3 C22H18ClN5O2 1.77 5.75

4 C23H21N5O2 3.82 5.42

5 C24H23N5O3 2.9 5.54

6 C23H20ClN5O2 0.83 6.08

7 C22H18ClN5O2 1.47 5.83

8 C23H20ClN5O3 0.44 6.36

9 C22H17Cl2N5O2 0.18 6.74

10 C25H19N7OS 6.02 5.22

11 C27H24N6O3S 4.92 5.31

12 C26H21N7O2S 1.49 5.83

13 C28H26N6O4S 2.48 5.61

14 C25H18ClN7OS 2.42 5.62

15 C27H23ClN6O3S 2.09 5.68

16 C26H21N7OS 4.33 5.36

17 C28H26N6O3S 3.4 5.47

18 C27H23N7O2S 3.59 5.44

19 C29H28N6O4S 6.61 5.18

20 C26H20ClN7OS 2.48 5.61

21 C28H25ClN6O3S 2.82 5.55

22 C25H18ClN7OS 1.82 5.74

23 C27H23ClN6O3S 2.19 5.66

24 C26H20ClN7O2S 0.93 6.03

25 C28H25ClN6O4S 1.89 5.72

26 C25H17Cl2N7OS 0.6 6.22

27 C27H22Cl2N6O3S 0.14 6.85

28 C28H22N6O 5.28 5.28

29 C29H24N6O2 3.97 5.40

30 C28H21ClN6O 1.49 5.83

31 C29H24N6O 2.66 5.58

32 C30H26N6O2 2.27 5.64

33 C29H23ClN6O 2.37 5.63

34 C28H21ClN6O 3.15 5.50

35 C29H23ClN6O2 1.6 5.80

36 C28H20Cl2N6O 3.53 5.45

37 C24H23N5O2 1.07 5.97

38 C25H25N5O3 2.58 5.59

39 C24H22ClN5O2 2.07 5.68

40 C25H25N5O2 1.02 5.99

41 C26H27N5O3 2.39 5.62

42 C25H24ClN5O2 0.8 6.10

43 C24H22ClN5O2 1.88 5.73

44 C25H24ClN5O3 0.8 6.10

45 C24H21Cl2N5O2 0.22 6.66
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lead and lead-optimization programs have played an essen-
tial role in drug research and development.23

This study identified potential NSCLC therapeutic agents
by employing computer-aided techniques such as two-
dimensional (2D)-QSAR modeling, molecular docking-

based virtual screening, and prediction of pharmacokinetic
(drug-likeness and ADMET) features.

Materials and Methods

2D-QSAR methodology

Dataset sourcing and antiproliferative activity

Forty-five sets of tetrahydropyrazolo-quinazoline and
tetrahydropyrazolo-pyrimidocarbazole derivatives, as anti-
prostate cancer agents and Pim-1 proto-oncogene, serine/

threonine kinase inhibitors, were synthesized and assessed
for their antiproliferative activities against six different
cancer cell lines: A549, HT-29, MKN-45, U87MG, SMMC-

7721 and H460.24 Antiproliferative activity (the defined
biological activity for this study) against the A549
NSCLC cell line was selected and used in accordance with
the Organization for Economic Co-operation and Devel-

opment (OECD) principle 1, which specifies that a QSAR
model must have defined biological activities. Anti-
proliferative activities against the A549 NSCLC cell line

(half-maximal inhibitory concentration [IC50]) reported in
micromolar (mM) were subsequently changed to their log-
arithmic form (pIC50) using equation (1) 25. Table 1 shows

the 1D molecular formula, IC50, and transformed pIC50 of
the dataset.

pIC50 ¼ �log (IC50 * 10�6) (1)

Drawing of structure of the sourced dataset and optimization

The ChemDraw software developed by the University of

Cambridge was used to draw the 2D structures of the
sourced dataset.26 In this work, the Merck molecular force
field with the B3LYP/6-311G* density functional theory

were used for the optimal conformational search for all 45
sets of tetrahydropyrazolo-quinazoline and
tetrahydropyrazolo-pyrimidocarbazole derivatives.14,27

Computation, pretreatment, and splitting of molecular descriptors

The Pharmaceutical Data Exploration Laboratory

descriptor tool kit was used for the computation of molec-
ular descriptors in this study.28,29 About 1875 descriptors,
which included 1D, 2D, and 3D molecular descriptors,

were computed in this study. Data pretreatment software
version 1.2 for eliminating uninformative, redundant, and
constant molecular descriptors, which was developed by

the Drug Theoretics and Cheminformatics (DTC)
laboratory, was used to pretreat the computed molecular
descriptors.30 Data division software version 1.2 also

developed by the DTC laboratory was used for splitting
the pretreated molecular descriptors into model building
training and validation test sets.31
Model development and assessment

Model development is of utmost significance and critical

when performing QSAR molecular modeling research. In
this study, the experimentally determined activities (anti-
proliferative activities against the A549 cell line) were

retained as the response parameter and the computed and
treated molecular descriptors were retained as independent
parameters. The genetic algorithm combined with multiple
linear regression was used as the variable selection method

due its high relevance in QSAR molecular modeling, in
accordance with OECD principle 2 (which means an
ambiguous algorithm was avoided).32,33



Figure 1: The WZ4002 in the binding poses of the 3IKA receptor

in 2D view.

Table 2: The statistical parameters of model 1 and accepted values f

Symbol Name

R2 Squared correlation coefficient

R2
adj Adjusted squared correlation coeffici

Q2
cv Cross-validation coefficient

R2 � Q2 Difference between R2 and Q2

N (ext., & test set) Minimum number of external and te

R2
test Squared correlation coefficient of tes

cRp2 Y-scrambling parameter

Selected model: pIC50 ¼ 8.574102927 * SpMax4_Bhs � 1.680588

RDF150m � 0.085108039 * RDF155s � 5.869064737 * P1i � 21.2418.

Table 3: The representation, explanation, category, VIF, and Me of

S/No Representation Explanation

1 SpMax4_Bhs Largest absolute eigenvalue of Burden

matrix � n 4/weighted by relative I-sta

2 FPSA-2 PPSA-2/total molecular surface area

3 RDF155u Radial distribution function �155/unw

4 RDF150m Radial distribution function �150/weig

5 RDF155s Radial distribution function �155/weig

6 P1i 1st component shape directional WHIM

relative first ionization potential

Table 4: Experimental, calculated antiproliferative activities and res

S/No Experimental

antiproliferative activities

1 5.83

2 5.48

3VTS 5.75

4 5.42

5 5.54

6 6.08

7 5.83

8 VTS 6.36

9 6.74

10 5.22

11 VTS 5.31

12 5.83

13 5.61

14 5.62
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A good QSAR model to predict the activities of new
chemicals was not used in building the model. According to

OECD principle 3, the applicability domain (AD) for a
QSAR model must be shown to ensure the quality of pre-
diction of the QSAR model. The leverage method was

implemented in this study to show the chemical space or AD
of the reported QSAR model.34

Assessment/validation of QSAR models remain para-

mount and critical before any QSAR model can be consid-
ered effective and useful (OECD principle 4, which is a model
assessment/validation for productivity). Therefore, it is
necessary to subject any model to various assessments prior

to its consideration as useful, and is expected to pass those
assessments. The several validation parameters employed in
this study include the Rinternal

2 , Qcv
2 , Rexternal

2 , and cR2p.35
or assessment of QSAR models.

Threshold value Selected model

� 0.6 0.798

ent � 0.6 0.754

� 0.5 0.673

� 0.3 0.125

st set � 5 45

t set � 0.5 0.531

� 0.5 0.627

701 * FPSA-2 þ 0.221336263 * RDF155u þ 0.061781318 *

the molecular descriptors contained in the chosen model.

Category VIF ME

modified

te

2D 1.246915 1.237826

3D 2.520802 �0.09515

eighted 3D 4.339996 0.008929

hted by relative mass 3D 1.115442 0.004393

hted by relative I-state 3D 2.886863 �0.00229

index/weighted by 3D 2.058089 �0.1537

idual values.

Theoretical

antiproliferative activities

Residual

5.82 0.009139

5.54 �0.05524

5.82 0.074671

5.48 �0.06292

5.53 0.012415

5.90 0.182519

5.78 0.047877

5.69 �0.6735

6.42 0.324962

5.31 �0.08845

5.43 0.123691

5.51 0.324364

5.55 0.058694

5.76 �0.13513



Table 4 (continued )

S/No Experimental

antiproliferative activities

Theoretical

antiproliferative activities

Residual

15 5.68 5.66 0.019428

16 5.36 5.25 0.112203

17 5.47 5.65 �0.17748

18 5.44 5.41 0.029369

19 5.18 5.21 �0.03385

20 5.61 5.58 0.029188

21 VTS 5.55 5.34 �0.21321

22 5.74 5.94 �0.20044

23 5.66 5.79 �0.1329

24 VTS 6.03 6.10 0.071283

25 5.72 5.54 0.176777

26 6.22 6.21 0.011181

27 VTS 6.85 6.14 �0.71062

28 VTS 5.28 5.32 0.037654

29 5.4 5.62 �0.2184

30 5.83 5.62 0.211837

31 5.58 5.64 �0.05512

32 VTS 5.64 5.89 0.245716

33 5.63 5.59 0.035312

34 5.5 5.48 0.018097

35 5.8 5.78 0.022486

36 5.45 5.68 �0.22764

37 VTS 5.97 5.76 �0.2101

38 5.59 5.52 0.067905

39 5.68 5.97 �0.28752

40 5.99 5.75 0.242506

41 5.62 5.61 0.008074

42 VTS 6.1 6.09 �0.01181

43 5.73 5.97 �0.24292

44 6.1 6.19 �0.08651

45 6.66 6.60 0.060169

VTS, Validation test set.
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Molecular docking-based virtual screening methodology

The investigation of the protein-ligand interactions in
study was established by utilizing Molegro Virtual Docker
(MVD) as a result of the higher precision of the software

compared to other molecular docking software.
Table 5: Randomization chance correlation test.

Model R

Original 0.825977

Random 1 0.245117

Random 2 0.355447

Random 3 0.192702

Random 4 0.366005

Random 5 0.440836

Random 6 0.449798

Random 7 0.445395

Random 8 0.239219

Random 9 0.285254

Random 10 0.243496

Average r: 0.326327

Average r2: 0.115044

Average Q2: �0.40628

cRp2: 0.626736
Ligand preparation

The optimum conformations of the 45 sets of
tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-

pyrimidocarbazole derivatives obtained were saved in Mol2
file format. The 45 sets of tetrahydropyrazolo-quinazoline
and tetrahydropyrazolo-pyrimidocarbazole derivatives
R^2 Q^2

0.682238 0.448129

0.060082 �0.18538

0.126342 �0.29712

0.037134 �0.34844

0.13396 �0.19734

0.194337 �0.48966

0.202318 �0.73032

0.198377 �0.23294

0.057226 �0.7207

0.08137 �0.39411

0.05929 �0.46677



Figure 2: Experimental antiproliferative activities against calculated antiproliferative activities.
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were further prepared using the default setting of the MVD

by selecting “if missing” to all set of the parameters.36,37

Identification of the amino acids in the active site of the 3IKA

receptor

The 3IKA receptor andWZ4002 (its co-crystalized ligand)
were retrieved from the Research Collaboratory for Struc-
tural Bioinformatics Protein Data Bank (PDB) database
(https://www.rcsb.org/), respectively.38 In this work, for

identification of the group of amino acids in the binding
poses of the 3IKA receptor, the native (co-crystalized)
ligand (WZ4002) fused to 3IKA receptor were visualized

with Discovery Studio Visualizer, version 16.1.0.15350. The
Figure 3: Experimental antiproliferativ
group of amino acids recognized in the binding poses of

the 3IKA receptor was ALA743, LEU844, LEU718,
MET793, MET790, and VAL726. The 2D views of the
native ligand in the binding poses of 3IKA receptor are

presented in Figure 1.

3IKA receptor preparation

Before investigating the protein-ligand interactions, the
3IKA receptor was prepared by importing it into the 3D view

space (interface) of the MVD, and then the groups of amino
acids with errors in their structures were reconstructed and
restored. Furthermore, after rebuilding and repairing the

group of amino acids with errors in their structures, the
e activities against residual values.

https://www.rcsb.org/


Figure 4: Williams’ sketch of the best model.

Table 6: Docking results of the investigated compounds.

Name MolDock Score Re-rank Score

25 �138.329 �95.449

32 �133.326 �98.910

15 �131.387 �92.345

21 �129.081 �98.652

23 �128.867 �96.305

Figure 5: 2D interaction between compou
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surface was formed and cavities were noticed (by right
clicking on the 3IKA receptor and clicking the surface as well
as detecting cavities) prior to removal of the WZ4002 from

the 3IKA receptor.

Molecular docking calculations

Implementation of the molecular docking protocol was
completed by choosing the molecular docking algorithm to

be the plant score and the scoring function to be the
nd 25 and the 3IKA EGFR enzyme.



Figure 6: 2D interaction between compound 32 and the 3IKA EGFR enzyme.
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MolDock score. The grid box for defining the binding poses
that consist of the binding cavities in the protein was set to
24 Å. For all other calculations, the default settings were

sustained and preserved.39

Validation of the molecular docking protocol

Justification of the protocol of molecular docking was
performed by re-docking the native ligand (WZ4002) into the
binding poses of the receptor. The groups of amino acids of
Figure 7: 2D interaction between compou
the re-docked native ligand were compared with those of the
investigated molecules in this study.

Drug-like and ADMET/pharmacokinetic studies

The modeling of the drug-like and ADMET features of
these investigated compounds was evaluated using the
SWISSADME (http://www.swissadme.ch/index.php) and
nd 15 and the 3IKA EGFR enzyme.

http://www.swissadme.ch/index.php


Figure 8: 2D interaction between compound 21 and the 3IKA EGFR enzyme.
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pkCSM (http://structure.bioc.cam.ac.uk/pkcsm) online web
servers, respectively.23,26,40

Results

2D-QSAR

The results of the 2D-QSAR modeling on the 45 sets of
tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-
Figure 9: 2D interaction between compou
pyrimidocarbazole derivatives under investigation are
shown in Tables 2e5 and Figs. 2e4.

Molecular docking-based virtual screening

The molecular docking-based virtual screening results of

the top five hit tetrahydropyrazolo-quinazoline and
tetrahydropyrazolo-pyrimidocarbazole derivatives under
investigation are presented in Table 6 and Figs. 5e11.
nd 23 and the 3IKA EGFR enzyme.

http://structure.bioc.cam.ac.uk/pkcsm


Figure 10: 2D interaction between AZD9291 and the 3IKA EGFR enzyme.

Figure 11: 2D interaction between WZ4002 and the 3IKA EGFR enzyme.

Table 7: Drug-like features of the best hit compounds using Lipinski’s RO5 filtering criteria.

S/No. MW No. H-bond

donors

No. H-bond

acceptors

MLOGP Lipinski RO5

violations

Bioavailability Score

25 577.05 3 7 3.68 1 0.55

32 502.57 3 5 3.97 1 0.55

15 547.03 3 6 3.98 1 0.55

21 561.05 3 6 4.18 1 0.55

23 547.03 3 6 3.98 1 0.55
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Table 8: ADMET/pharmacokinetic features of the best hit compounds.

Absorption Distribution Metabolism CYP Excretion Toxicity

Substrate Inhibitors

Intestinal

absorption

BBB

permeability

CNS

permeability

2D6 3A4 1A2 2C19 2C9 2D6 3A4 Total clearance AMES toxicity

25 99.343 �1.316 �2.061 No Yes Yes Yes Yes No Yes �0.058 No

32 100 �0.959 �1.502 Yes Yes Yes Yes Yes No Yes 0.625 No

15 97.823 �1.279 �1.887 No Yes Yes Yes Yes No Yes �0.09 No

21 98.472 �1.143 �1.813 No Yes Yes Yes Yes No Yes �0.147 No

23 98.004 �1.132 �1.887 No Yes Yes Yes Yes No Yes �0.091 Yes
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Drug-like/ADMET prediction and evaluation

The results of the drug-like and ADMET prediction and
evaluation of the 45 sets of tetrahydropyrazolo-quinazoline
and tetrahydropyrazolo-pyrimidocarbazole derivatives un-
der investigation are presented in Tables 7 and 8,

respectively.

Discussion

2D-QSAR

The 2D-QSAR molecular modeling technique was
employed for the 45 sets of tetrahydropyrazolo-quinazoline

and tetrahydropyrazolo-pyrimidocarbazole derivatives un-
der investigation to generate a model with high predictive
capability. The 45 sets of tetrahydropyrazolo-quinazoline

and tetrahydropyrazolo-pyrimidocarbazole derivatives un-
der investigation were split into a training model building set
and test validation set of the data. The training model

building set was utilized to generate four diverse models. In
the four diverse QSAR models generated, model 1 was the
first model selected and used due to its high R2 ¼ 0.798,
R2

adj ¼ 0.754, Q2
CV ¼ 0.673, R2

test ¼ 0.531, and

cRp2 ¼ 0.627 assessment parameters. Then these assessment
parameters (reported values) for the selected model (model 1)
were compared with the accepted threshold values (Table 2),

used for the assessment of QSAR models, and found to be
greater than the accepted threshold values, which clearly
showed the internal predictive capability of model 1 (the

selected model).41,42

The R2 value of model 1 illustrates that it is able to
describe about 79.8% of the gap detected in the anti-
proliferative pIC50 against the A549 NSCLC cell line of the

tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-
pyrimidocarbazole derivatives under investigation. More-
over, the theoretical R2 value of the model was a little bit

better and higher than its equivalent R2
adj, which depicted

the importance of the model and showed that the model was
free from overparameterization.

The variation inflation factor (VIF) values of the molec-

ular descriptors contained in the training model building set
were calculated to determine whether there was an occur-
rence of problems associated with multicollinearity in the

model. These computed values were expected to be less/
smaller than 10, signifying the competence of the model. If
the computed values were less than 10, the molecular
descriptors contained in the model were considered statisti-

cally significant and impertinent/orthogonal (Table 3). The
VIF values of the molecular descriptors contained in the
model computed were all less than 10, which displayed the

goodness of the model. Also, the model was free from
problems associated with multicollinearity, as such a model
can be accepted and used.43

The mean effect on the molecular descriptors contained in

the model building training set was calculated to determine
the impact and significance of a molecular descriptor in
comparison to others in the model on the antiproliferative
activities against the A549 NSCLC cell line. The positive or

negative coefficients of each value of a molecular descriptor
indicated the magnitude of the impact and the significance of
such properties in the main structures of the investigated

compounds on the antiproliferative activities against A549
NSCLC cell line. Based on the calculated mean effect of the
molecular descriptors contained in the model (Table 3),

molecular descriptor with a symbol SpMax4_Bhs had the
highest value of þ1.237826, followed by molecular
descriptor RDF155u with a value of þ0.008929, RDF150m

with a value of þ0.004393, RDF155s with a value
of �0.00229, FPSA-2 with a value of �0.09515, and lastly
P1i with a value of �0.1537. The coefficient and sign of the
SpMax4_Bhs molecular descriptor showed that if such a

property was increased to the main structures of the inves-
tigated compounds, there might be improvement in their
antiproliferative activities against the A549 NSCLC cell line

and vice versa. This applies to all molecular descriptors with
positive signs. For molecular descriptors with negative signs
such as RDF155s, when such a property is reduced from the

main structures of the investigated compounds, there might
be improvement in their antiproliferative activities against
the A549 NSCLC cell line and vice versa. Also, this applies to
all molecular descriptors with negative signs. The order in

terms of the impact and significance of these molecular de-
scriptors is as follows44:

SpMax4_Bhs ˃ RDF155u ˃ RDF150m ˃
RDF155s > FPSA-2 ˃ P1i

Figure 2 depicts the plot of experimental antiproliferative

activities against calculated antiproliferative activities of
both the training model building and test validation sets
for the chosen model, which was used to ascertain the

reliability of the selected model. The internal R2 value of
0.798 of the selected model was observed to agree and be
the same with the one deduced from Figure 2 (R2 value of
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0.798), which further established the reliability of the model.
Figure 3 depicts the plot of experimental antiproliferative

activities against calculated residuals of the training model
building and test validation sets for the chosen model,
which is used to determine the presence of methodological

and systematic error of the chosen model. The chosen and
selected model was further established to be
methodological and systematic error free by unexpected

dispersal/spreading of the calculated residuals on Figure 3.
Figure 4 depicts the Williams’ sketch of the best model,
which clearly portrayed the chemical space (also known as
the applicability domain) of the chosen model. From the

Williams’ sketch, no outlier compound (a compound with
a standardized residuals > �3 d) was identified from the
whole data. Eight (8) influential compounds (leverage of a

compound > h* ¼ 0.6.0 [h*: the threshold leverage]) were
identified in the data used (seven from the test set and one
from the training set). This showed the model’s quality of

estimation and foil the waste of the outcomes acquired by
it (the model).

Table 4 shows the experimental antiproliferative pIC50,
calculated antiproliferative pIC50, and calculated residual

values of the training model building and test validation
sets for the model. The residual values are calculated to
determine the predictive performance and capability of the

model. The model is said to have high predictive
performance if the calculated residuals are very low. Based
on this, the model was seen and established to have high

predictive performance by the low calculated residuals on
Table 4. Table 5 presents the randomization chance
correlation test on the model building training test for the

chosen model. In this randomization chance correlation
test, 10 distinct models were developed by changing the
actual experiment activities while leaving the molecular
descriptors unaffected. The newly randomized models

developed are assumed to have low R2 and Q2 values for
numerous counts. Based on this, the chosen model was
found to be robust with low values of the R2 and Q2 for

numerous counts. Furthermore, the chosen model was not
established by chance since the CR2

P value of 0.626736
obtained was greater than 0.5.

Molecular docking-based virtual screening

MVD was used to carry out virtual screening to investi-

gate the ligandeprotein interactions in this research. This
virtual screening was performed between the 45 sets of
tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-
pyrimidocarbazole derivatives under investigation and

EGFR enzyme crystal structure with PDB entry identifier:
3IKA. The reason for carrying out this virtual screening was
to confirm whether the investigated compounds can have

enzymatic inhibitory activities against the EGFR enzyme
and as well as to identify the best hit that can serve as po-
tential EGFR TKIs. The investigated compounds were

scored based on their MolDock score values. The MolDock
score values of the investigated compounds ranged
between �85.4875 and �138.329 kcal/mol (Supplementary

Table 1).
Based on the virtual screening performed on the investi-

gated compounds, compound 25 with a MolDock score
of �138.329 kcal/mol and re-rank score of �95.449 was
found to be the best hit, followed by compound 32 with a

MolDock score of �133.326 kcal/mol and re-rank score
of �98.910, compound 15 with a MolDock score
of �131.387 kcal/mol and re-rank score of �92.345, com-

pound 21 with a MolDock score of �129.081 kcal/mol and
re-rank score of �98.652, and finally compound 23 with a
MolDock score of �128.867 kcal/mol and re-rank score

of �96.305 (Table 6).
The interactions between compound 25 and the binding

poses of the 3IKA receptor observed were hydrogen bonding
with these set of amino acids ALYS745, ASP855, LYS745

and GLU762; hydrophobic (Pi-alkyl, PiePi stacked, amide-
Pi stacked and alkyl) interactions with these set of amino
acids PHE723, ARG841, PHE723, LYS875, PRO877,

CYS797, LEU799 and ALA722; and electrostatic (Pi-anion)
interactions with amino acids CYS797 and PHE723 as
shown in Figure 5. The interactions of compound 32 with the

binding poses of the 3IKA receptor were via hydrogen bonds
with amino acid residue MET793 and hydrophobic (alkyl
and Pi-alkyl) interactions with amino acids MET790,
ALA743, LEU844, and LEU718 as shown in Figure 6. The

interactions between compound 15 and the active site of
the 3IKA EGFR enzyme were observed to be with these
group of amino acids THR854 and ASP855 through

hydrogen bonds. Hydrophobic (Pi-Sigma, PiePi T-shaped,
alkyl, and Pi-alkyl) interactions with these set of amino acid
residues PHE723, LEU747, ALA743, and LEU844 were also

seen. Electrostatic (Pi-cation) interactions with these set of
amino acids MET790 and PHE723 were respectively seen as
depicted in Figure 7. Molecule 21 interacted with the binding

poses of the 3IKA receptor with amino acids LEU844,
LEU718, MET790, and CYS797 via only Pi-alkyl, Pi-
sigma, and alkyl (hydrophobic interactions), as shown in
Figure 8. The kinds of interactions detected for molecule 23

and the binding poses of the 3IKA receptor were hydrogen
bonds with amino acid residues LYS745, and PHE723, and
hydrophobic interactions with amino acids ALA743,

PHE723, ALA722, MET790, VAL726, LEU844, LEU858,
and LYS745 amino acids, as depicted in Figure 9.

The FDA-approved drug osimertinib (AZD9291) was

also docked into the active site of the 3IKA EGFR receptor
for comparisons between the standard drug (AZD9291) and
the identified best hit compounds. AZD9291 with a Mol-

Dock score of �118.872 kcal/mol and re-rank score
of �91.2323 interacted via hydrogen bonds, and hydropho-
bic and electrostatic interactions with residues VAL726,
LEU844, ALA743, LEU718, GLN791, LYS745 and

PHE723, as presented in Figure 10. All of the identified hit
compounds had better MolDock scores and re-rank scores
than the standard drug (AZD9291). The current NSCLC

drug (AZD9291) was designed and established to inhibit the
EGFRT790M resistance mutation and also to overcome the
observed toxicity with irreversible second-generation EGFR

TKIs. However, it could not achieve the stated goal due to
emergence of resistance by the C797S mutation. Further-
more, these best hit compounds (EGFR NSCLC therapeutic
agents) could act as better therapeutic agents compared to

the current NSCLC drug (AZD9291) by having higher af-
finity towards EGFRT790M mutation and thus, inhibiting the
EGFRT790M/C797S resistance mutation.
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WZ4002 was well re-docked into the binding poses of the
3IKA receptor to successfully validate the molecular docking

procedure.WZ4002with aMolDock score of�103.728 kcal/
mol and re-rank score of �94.249 interacted with amino
acids MET793, ASP855, GLY796, PHE723, LEU718,

GLY719, and VAL726 after successfully re-docking it into
the binding poses of the 3IKA receptor as depicted in
Figure 11. The amino acid LEU718, MET793, and VAL726

were common to the native ligand and the re-docked one.

Drug-likeness, ADMET prediction, and evaluation

The SwissADME web server was utilized to theoretically

predict the drug-like features of the investigated compounds
(Supplementary Table 2) including the best hit compounds
identified by adopting the filtering conditions of the

Lipinski’s rule of five.45 Any small molecule that violates
more than one of the stated conditions may have issues
related to its bioavailability. The drug-like features of the

best hit compounds were first filtered using the Lipinski’s rule
of five filtering criteria. The evaluated drug-like features
showed only one violation for all (that is their molecular

weight was more than 500) (Table 7). All of the best hit
compounds had three hydrogen bond donors, which was
within the accepted range. For the number of hydrogen
bond acceptors, between 5 and 7 is also within the accepted

range. Furthermore, the calculated MlogP value was never
beyond the accepted range. Based on these filtering
conditions, the best hit compounds were ascertained to be

drug-like in nature by not violating the threshold values set
(or by not having more than one violation of the filtering
conditions used). Furthermore, based on the value of their

bioavailability score (all having 0.55), they were all further
confirmed to be orally bioavailable. Generally, these com-
pounds were predicted not to have any issue associated with

their bioavailability as they followed all of the filtering
criteria used.

The online web server pkCSM was used to theoretically
evaluate the ADMET/pharmacokinetic features of the

investigated compounds including the best hit compounds
identified (Supplementary Table 3). The best identified hit
compounds were all observed to have human intestinal

absorption between the range of 98.004% and 100%. The
values of their human intestinal absorption were found to
be greater than the minimum recommended rate of 30%

set for the evaluation of this property, which is an
indication that these small molecules can be absorbed
within the human intestine. The recognized threshold value
set for the blood brain barrier (BBB) permeability is >0.3

to <�1 and that for central nervous system (CNS)
permeability is >�2 to <�3. The BBB permeability for
these small molecules were observed to be >�1 with the

exception of compound 32, which was <�1, indicating that
the compounds poorly infiltrate/penetrate the BBB with
the exception of compound 32. Regarding CNS

permeability value, it was <�2 for all except compound 25
(�2.061), which indicated that they poorly infiltrate/
penetrate the CNS with the exception of compound 25.

The cytochrome (CYP) is regarded as very important in
the enzymatic breakdown/metabolism of small molecules in
the body. As such, it is necessary to take into account the
breakdown/metabolism of these small molecules in the
human body. CYP1A2, 2C9, 2C19, 2D6 and 3A4 are

responsible for the breakdown/metabolism of small
molecules in the body, of which CYP3A4 is the most
significant (a good small molecule is expected to be both a

substrate and inhibitor of CYP3A4). The best recognized
hits were all substrates and inhibitors of CYP3A4. Based
on this, it was further confirmed that these small molecules

can be broken down in the body. Another important factor
is how these small molecules can be removed from the
body, as excretion/total clearance defines the connection/
relationship between the rate of their removal and

concentration within the body. The best identified hit
compounds displayed a greater value of excretion and were
found to be in the accepted threshold for a drug. Based on

the toxicity test, they were all found to be nontoxic except
compound 23. Finally, the general ADMET features of
these best identified hit compounds displayed average

pharmacokinetic profiles (Tale 11).
Conclusion

The 2D-QSAR molecular modeling technique was

employed on the 45 sets of tetrahydropyrazolo-quinazoline
and tetrahydropyrazolo-pyrimidocarbazole derivatives un-
der investigation to generate a model with high predictive

capability. The training model building set was used to
generate four diverse models. In the four diverse QSAR
models generated, model 1 was the first model selected and
was used due its high R2 ¼ 0.798, R2

adj ¼ 0.754,

Q2
CV ¼ 0.673, R2

test ¼ 0.531, and cRp2 ¼ 0.627 assessment
parameters. These assessment parameters for the selected
model (model 1) were compared with the accepted

threshold values used for the assessment of QSAR models
and found to be greater than the accepted threshold values,
which clearly showed the internal predictive capability of

model 1.
Molecular docking-based virtual screening identified

compounds 25, 32, 15, 21 and 23 as the best hit compounds,
as they had the highest MolDock scores among the investi-

gated compounds. The MolDock score values of the inves-
tigated compounds ranged between �138.329 and �128.867.
Compound 25 had the highest MolDock score

of �138.329 kcal/mol and re-rank score of �95.449. All of
the identified hit compounds were better than the reference
drug (AZD9291 with aMolDock score of�118.872 kcal/mol

and re-rank score of �91.2323) in terms of their MolDock
score and re-rank score. Furthermore, these best hit com-
pounds may be better therapeutic agents than the current

NSCLC drug (AZD9291) by having higher affinity towards
EGFRT790M mutation, and thus inhibiting the EGFRT790M/

C797S resistance mutation.
The best hit compounds were found to be drug-like in

nature due to their compliance with the filtering criteria used
for evaluation of the drug-likeness of a small molecule (or by
not having more than one violation of the filtering conditions

used). Furthermore, based on the value of their bioavail-
ability score of 0.55, they were all confirmed to be orally
bioavailable. Their ADMET features displayed their average

pharmacokinetic profiles. These hit compounds can serve as



M.T. Ibrahim and A. Uzairu308
potential NSCLC therapeutic agents because of their safety
and efficacy after successful preclinical trial testing, with the

exception of compound 23 which was found to be toxic.
Also, they can serve as a template for designing new NSCLC
therapeutic agents.
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