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Abstract: Mozambique introduced monovalent rotavirus vaccine (Rotarix®) in September 2015. We
evaluated the effectiveness of Rotarix® under conditions of routine use in Mozambican children
hospitalized with acute gastroenteritis (AGE). A test negative case-control analysis was performed
on data collected during 2017–2019 from children <5 years old, admitted with AGE in seven sentinel
hospital sites in Mozambique. Adjusted VE was calculated for ≥1 dose of vaccine vs. zero doses
using unconditional logistic regression, where VE = (1 − aOR) × 100%. VE estimates were stratified
by age group, AGE severity, malnutrition, and genotype. Among 689 children eligible for analysis,
23.7% were rotavirus positive (cases) and 76.3% were negative (controls). The adjusted VE of ≥1
dose in children aged 6–11 months was 52.0% (95% CI, −11, 79), and −24.0% (95% CI, −459, 62)
among children aged 12–23 months. Estimated VE was lower in stunted than non-stunted children
(14% (95% CI, −138, 66) vs. 59% (95% CI, −125, 91)). Rotavirus vaccination appeared moderately
effective against rotavirus gastroenteritis hospitalization in young Mozambican children. VE point
estimates were lower in older and stunted children, although confidence intervals were wide and
overlapped across strata. These findings provide additional evidence for other high-mortality
countries considering rotavirus vaccine introduction.
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1. Introduction

Rotavirus is the most important cause of moderate to severe gastroenteritis in children
under five years old [1]. In 2019, about 128,500 deaths by rotavirus were reported world-
wide, of which 81.5% (104,733) occurred in sub-Saharan Africa [1]. In Mozambique, the
average annual number of deaths due to rotavirus gastroenteritis (RVGE) among children
under five from 2017 to 2019 was 1126, and the mortality rate varied from 27 to 19 per
100,000 children [2].

The introduction of rotavirus vaccine in 82 countries contributed to the reduction of
rotavirus prevalence among hospitalized paediatric AGE from 38% to 23% between 2008
and 2016 [3]. However, vaccine effectiveness (VE) is lower (<80%) in low-income countries
than in developed countries [4], and similarly, vaccine efficacy was also notably lower in
clinical trials conducted in this setting [5]; malnutrition is one possible explanation [6]. The
burden of malnutrition is high in sub-Saharan African countries [7] and particularly in
Mozambique, where more than 40% of children less than five years old suffer from chronic
malnutrition [8]. Lower rotavirus VE in malnourished children was observed in studies
conducted in African countries such as Botswana, Malawi, Kenya, and Zimbabwe [9–12].
Therefore, assessing rotavirus vaccine performance in countries with a high burden of
malnutrition is important given that this condition may reduce protection in children [6].

As a strategy to estimate the burden of rotavirus in Mozambique, two surveillance
systems were implemented in the country. Vigilância Nacional de Diarreias—ViNaDia
(National Surveillance of Diarrhoea) was launched by the Instituto Nacional de Saúde (INS)
in one hospital in 2014 and extended to five others in 2015, all in urban areas [13]; another
diarrhoea surveillance system was established by Centro de Investigação em Saúde de
Manhiça (CISM) in September 2015, in the rural district Manhiça.

In September 2015, Mozambique introduced monovalent rotavirus vaccine
(Rotarix®/GSK, Rixensart, Belgium) through the Expanded Program of Immunization,
with doses scheduled at 2 and 3 months of age. Following vaccine introduction, RVGE cases
reduced from an average of 39% of paediatric hospitalizations to 13% [13], suggesting that
the vaccine has reduced rotavirus disease burden. However, no data are available on the
effectiveness of the vaccine in routine use among Mozambican children, which is important
to demonstrate the performance of the vaccine in the country. In this analysis, we estimate
rotavirus VE against hospitalization in the context of a high burden of malnutrition.

2. Materials and Methods

The ViNaDia system was implemented in six urban referral hospitals covering the
three regions of the country (southern, central, and northern) in four provinces: Ma-
puto (Hospital Central de Maputo, Hospital Geral de Mavalane, and Hospital Geral José
Macamo), Sofala (Hospital Central da Beira), Zambézia (Hospital Geral de Quelimane),
and Nampula (Hospital Central de Nampula). ViNaDia’s methodology was previously
described elsewhere [14,15]. The CISM diarrhoeal diseases surveillance platform was
implemented in Manhiça, a rural area located 80 km north of Maputo province [16], at the
Manhiça District Hospital, which is the reference hospital for the whole district; all inclusion
criteria and sample collection procedures were based on previously described work [17].

2.1. Enrolment and Eligibility Criteria

ViNaDia surveillance included children from 0 to 14 years old (paediatric age in
Mozambique), and CISM Surveillance enrolled children 0 to 59 months of age. At both sites,
children were recruited if they presented at sentinel sites with diarrhoea, defined as the
passage of three or more loose or liquid stools in the last 24 h before seeking healthcare [18].
For eligible children, sociodemographic and clinical data were collected in a structured form
by interviewing the parents/caregivers. As confirmation and validation of vaccination
status, a copy of each child’s healthcare card was taken. For the present analysis, we
included children who were 6–59 months of age, had a valid stool result for rotavirus, were
age-eligible to have received rotavirus vaccine (infants born on or after July 2015), did not
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have chronic or bloody diarrhoea, and had a valid source of vaccination data (health card).
Data were restricted to children admitted from January 2017 through December 2019, since
vaccine card capture was inconsistent before this period.

2.2. Sample Collection and Laboratory Procedure

At least one stool specimen (10 mL) was collected for each eligible child and sent to the
INS (samples from ViNaDia) or CISM (from Diarrhoeal Diseases Surveillance) laboratory
for rotavirus diagnosis using the commercial enzyme-immunoassay (ELISA) kit ProSpecT
Rotavirus Microplate Assay (Oxoid Ltd., Basingstok, UK). Samples were tested following
the manufacturer’s instructions, and all positive samples were genotyped using procedures
that were previously described [19–21].

2.3. Exposure and Outcomes Definition

The controls were children with acute diarrhoea who tested negative for rotavirus,
while the cases were children that tested positive. The vaccination status was defined as
unvaccinated (children that received zero doses of Rotarix vaccine), partially vaccinated
(children that received one dose of Rotarix), or fully vaccinated (children that received two
doses of Rotarix). Each dose had to be administered at least 14 days prior to admission
to count towards vaccination status. Vaccination data were obtained from the child’s
vaccination card, and children without any acceptable vaccination record (no record or only
maternal report) or with an incomplete vaccination record (record available but rotavirus
status marked as unknown) were excluded. The control group was used to estimate
rotavirus vaccination coverage among the target population.

2.4. Statistical Analysis

Data analysis was performed using R version 4.0.5. Chi-square, Fisher’s exact (cate-
gorical variables), and Mann–Witney U tests (ordinal or continuous variables) were used
to compare sociodemographic and clinical characteristics between cases and controls. Un-
conditional simple and multiple logistic regression models were used to estimate crude
and adjusted VE, respectively, as (1 − aOR) × 100%, where vaccination status was the
exposure. Models were adjusted for child age, rural location of hospital, and season of
admission (January–June versus July–December). These potential confounders were cho-
sen a priori based on literature review. Vaccination status was dichotomized as any doses
(partially or fully vaccinated) or zero doses (unvaccinated), due to low sample size. Wald
95% confidence intervals (CI) are presented for all VE estimates. A p-value < 0.05 was
considered significant.

2.5. Definitions of Covariates

Diarrhoea severity was estimated by using the 20-point clinical modified Vesikari
score, dichotomized into less severe <11 and severe ≥11 (Supplementary Table S1). The
nutritional status was calculated using WHO software Anthro version 3.2.2. Height-for-age
Z-score (HAZ) was used to classify children as non-stunted (−2 ≤ HAZ ≤ +2) or stunted
(−6 ≤ HAZ < −2) [22]. The genotype used for stratification in this analysis was G1P[8],
which is a commonly circulating genotype and also the genotype of the Rotarix vaccine.

2.6. Ethical Statement

The ViNaDia protocol was approved by the National Health Bioethics Committee of
Mozambique (CNBS) under number IRB00002657, reference number: 348/CNBS/13. The
CISM Diarrhoeal Disease Surveillance platform was approved by the same Committee
under the reference number 209/CNBS/15; IRB00002657.

3. Results

From January 2017 through December 2019, about 1412 children with acute diarrhoea
were enrolled in the two surveillance systems. A total of 689 (48.8%) children aged between
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6 and 59 months hospitalized with AGE met the inclusion criteria for VE analysis, with the
majority from urban hospitals (84.5%; 582/689) and 15.5% (107/689) from a rural hospital.
Overall, 23.7% (163/689) of children were positive for rotavirus (cases), and 76.3% (526/689)
were negative (controls) (Figure 1).
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Figure 1. Flowchart of enrolled children included in rotavirus VE analysis by age, 2017–2019.

The largest number of children in the analysis was enrolled in 2017 (Table 1), and the
distribution of enrolment by year differed between cases and controls (p-value = 0.003).
Rotavirus infection was higher in male children (55.2% cases, and 44.8% controls were
male). Children in the case group tended to live in larger households than children in the
control group (median five (cases) vs. four members (controls), p-value < 0.001), and a
similar pattern was seen for the number of children in the home (two for cases vs. one for
controls, p-value = 0.002).

Table 1. Vaccination, anthropometric and sociodemographic characteristics of cases and controls,
Mozambique 2017–2019.

Characteristic Cases (n = 163) Controls (n = 526) p Value *

RV Vaccination Status
Unvaccinated 14 (8.6%) 38 (7.2%) 0.84

Partially Vaccinated 13 (8%) 44 (8.4%) -
Fully Vaccinated 136 (83.4%) 444 (84.4%) -

Year of Admission
2017 91 (55.8%) 216 (41.1%) 0.003
2018 40 (24.5%) 193 (36.7%) -
2019 32 (19.6%) 117 (22.2%) -
Sex

Female 73 (44.8%) 196 (37.3%) 0.10
Male 90 (55.2%) 330 (62.7%) -

Age Group
6–8 months 42 (25.8%) 114 (21.7%) 0.45
9–11 months 53 (32.5%) 153 (29.1%) -

12–17 months 43 (26.4%) 153 (29.1%) -
18–23 months 17 (10.4%) 59 (11.2%) -
24–35 months 6 (3.7%) 40 (7.6%) -
36–47 months 2 (1.2%) 7 (1.3%) -
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Table 1. Cont.

Characteristic Cases (n = 163) Controls (n = 526) p Value *

Number Persons in HH (median) 5.0 (4.0, 7.0) 4.0 (3.0, 6.0) 0.001
Number Children in HH (median) 2.0 (1.0, 2.0) 1.0 (1.0, 2.0) 0.003

Anthropometrics
Normal height for age 75 (63.6%) 234 (63.8%) 1.00
Stunted (HAZ < −2) 43 (36.4%) 133 (36.2%) -

Missing 45 159 -
Surveillance Site <0.001

Centro de Saude da Manhica 27 (16.6%) 80 (15.2%)
Hospital Central da Beira 5 (3.1%) 34 (6.5%) -

Hospital Central de Maputo 13 (8.0%) 79 (15.0%) -
Hospital Central de Nampula 59 (36.2%) 112 (21.3%) -
Hospital Gera Jose Macamo 17 (10.4%) 59 (11.2%) -
Hospital Geral de Mavalane 25 (15.3%) 137 (26.0%) -

Hospital Geral de Qualimane 17 (10.4%) 25 (4.8%) -
Electricity

Yes 108 (66.7%) 422 (80.7%) <0.001
No 54 (33.3%) 101 (19.3%) -

Unknown 1 3 -
House Type
Reed house 12 (7.4%) 31 (6%) <0.001
Mud house 57 (35%) 96 (18.4%) -
Brick house 94 (57.7%) 394 (75.6%) -

Missing 0 5 -
Fridge

Yes 67 (41.1%) 286 (54.5%) 0.004
No 96 (58.9%) 239 (45.5%) -

Unknown 0 1 -
Cell Phone

Yes 124 (76.5%) 445 (84.8%) 0.021
No 38 (23.5%) 80 (15.2%) -

Unknown 1 1 -
* p-values calculated using Mann–Whitney U for number of people or children in households and Chi-Squared or
Fisher’s Exact (for expected cell size < 5) for all categorical variables. Bold: overall characteristic measured, with
response options immediately below.

There were similar proportions of stunted children (cases 36.1% and controls 37.2%)
(Table 1). Most of the stunted children (48.4%) were enrolled from Hospital Central de
Nampula in northern Mozambique (Supplementary Table S2).

There was a significant geographical difference in distribution of rotavirus (p-value < 0.001).
Regarding the economic factors, children in the case group were less likely to live in
households with electricity, refrigerator, or cell phone than children in the control group
(Table 1).

3.1. Rotavirus Vaccine Coverage

Rotavirus vaccination among eligible children was high (84.4%) among controls, and
most of the children received the first and second doses within 1 month of the recommended
age (2 and 3 months, respectively) (Supplementary Figure S1).

3.2. Vaccine Effectiveness

The adjusted effectiveness of at least one dose of rotavirus vaccine against RVGE
hospitalization in all age groups was 35% (95% CI, −30, 66). Among children <12 months of
age, adjusted VE was 52% (95% CI, −11, 79), and among children from 12 to 23 months, it
was −24% (95% CI, −459, 62). VE was not calculated in children between 24 and 59 months
due to low sample size (Table 2).
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Table 2. Vaccine effectiveness estimates by different characteristics of the children, 2017–2019.

Model Cases Controls Crude Adjusted *
Vaccinated/Total

(%)
Vaccinated/Total

(%) VE 95% CI p-Value VE 95% CI p-Value

6 to 59 months 148/162 (91.4%) 488/526 (92.8%) 18 (−61, 56) 0.55 35 (−30, 66) 0.20
6 to 8 months 37/42 (88.1%) 107/114 (93.9%) 52 (−72, 85) 0.24 56 (−65, 88) 0.21

9 to 11 months 47/53 (88.7%) 141/153 (92.2%) 33 (−100, 76) 0.44 46 (−70, 82) 0.27
6 to 11 months 84/95 (88.4%) 248/267 (92.9%) 41 (−32, 73) 0.18 52 (−11, 79) 0.078
12 to 23 months 56/59 (94.9%) 195/212 (92%) −63 (−615, 48) 0.45 −24 (−459, 62) 0.74

Severe: Modified Vesikari
Score ≥ 11 51/58 (87.9%) 73/81 (90.1%) 20 (−141, 73) 0.68 54 (−58, 87) 0.21

Less severe: Modified
Vesikari Score < 11 25/28 (89.3%) 69/78 (88.5%) −9 (−419, 70) 0.91 −18 (−510, 71) 0.82

Stunted (HAZ < −2) 36/43 (83.7%) 114/133 (85.7%) 14 (−134, 65) 0.75 14 (−138, 66) 0.76
Not Stunted (HAZ ≥ −2) 72/75 (96%) 226/234 (96.6%) 15 (−296, 76) 0.81 59 (−125, 91) 0.27

G1P[8] Rotavirus 21/23 (91.3%) 488/526 (92.8%) 18 (−423, 77) 0.79 30 (−355, 81) 0.64
Non-G1P[8] Rotavirus # 127/139 (91.4%) 488/526 (92.8%) 18 (−69, 57) 0.58 35 (−35, 67) 0.22

* Adjusted for age, rural location of hospital, and season of admission (January–June vs. July–December). # The
five most-common non-G1P[8] genotypes with high frequency were: G3P[4] (19.1%), G3P[8] (16.8%), G9P[4]
(14.5%), G9P[6] (9.9%), and G9P[8] (8.4%). Other genotypes observed with lower frequency included G2P[4]
(6.9%), G1G3P[8] (3.1%), G8P[4] (2.3%), G12P[4] (0.8%), G12P[8] (0.8%), G1P[4] (0.8%), G3P[6] (0.8%), and G4P[4]
(0.8%). Partially non-typeable genotyped samples included GNTP[4] (7.6%), G3P[NT] (1.5%), GNTP[8] (3.1%),
GNTP[6] (1.5%), G9P[NT] (0.8%), and GNTP[10] (0.8%).

Stratifying within the first year of age of children, a higher VE was observed in
children 6 to 8 months of age (56% [95% CI −65, 85]), with a reduction in children aged 9
to 11 months (46% [95% CI, −70, 82]). The estimate of VE against more severe rotavirus
infection was 54% (95% CI, −58, 87), and for less severe, lower at −18% (95% CI, −510,
71). Regarding nutritional status, rotavirus VE was higher in children not stunted (59%
[95% CI, −125, 91]), and notably lower among stunted children (14% [95% CI, −138, 66]).
VE stratified by genotype showed a 30% (95% CI, −355, 81) for G1P[8] genotype and 35%
(95% CI, −35, 67) for non-G1P[8] rotavirus genotype (Table 2). Analyses of VE for full and
partial vaccination are presented as Supplementary Table S3, again stratified by age group,
severity status, malnutrition, and genotype.

4. Discussion

The present analysis describes the “real-world” VE of monovalent rotavirus vaccine
in Mozambican children hospitalized with AGE during 2017–2019. In this setting with a
high burden of chronic malnutrition, the adjusted estimate of VE for at least one dose of
rotavirus vaccine against admission for RVGE was 35% (95% CI, −30, 66) in children from 6
to 59 months of age. The estimated VE was higher, 52% (95% CI, −11, 79), in children from
6 to 11 months of age, which, although non-significant, is similar to the point estimates
reported in other low-income countries with high child mortality: 52–86% with a median
of 58% [4]. Our VE point estimate is very similar to that reported in Botswana, which
was the lowest in the region at 52%, followed by neighbouring countries such as South
Africa (54%), Tanzania (56%), and Zimbabwe (61%) [9,10,23,24]. In contrast, rotavirus VE
in high-income countries is higher (83–91%) [4]. Similar discrepancies were reported for
results from randomized clinical trials conducted in low- as compared with high-income
countries. Rotarix vaccine clinical trials conducted in low-income countries reported a
lower vaccine efficacy in countries such as Malawi (49.4%) and South Africa (76.9%) [25],
and the same was seen in a clinical trial conducted in Ghana (55.5%), Kenya (63.9%), and
Mali (17.6%) using pentavalent rotavirus vaccine [26]. In contrast, trials in high-income,
low child mortality countries mostly found vaccine efficacy to be >90% [5].

The lower estimates in low-income countries may be due to factors such as greater
and earlier exposure to the risk of rotavirus infection, early and co-infection with other
enteropathogens [27], interference caused by other vaccines (such as oral polio vaccine) [28],
nutritional deficiency [6], interference from maternal antibodies [29], genetic diversity of
the virus [30], and others.

A stratified analysis of VE by age showed a higher protection in children from 6 to
11 months of age (52% (95% CI, −11, 79)), compared with older children ≥12 months of
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age (−24.0% (95% CI, −459, 62)). Lower VE in children ≥12 months were also found in
12 studies conducted in countries with medium and high mortality [31]. Our findings
may be due to the waning of protection of rotavirus vaccine [32], but we cannot rule out
the major limitation of small sample size and the resulting lower power, which might
have contributed to the lower VE and large confidence intervals in this age group. As a
strategy to improve VE in low income countries, an additional dose has been suggested
for children at 9 months of age [27]; however, a recent analysis hypothesized that if the
first two doses failed to generate an immune response, the third or additional will also
probably fail [33]. On the other hand, a systematic review found that vaccines given in
two and three doses confer a similar level of protection at the final dose. However, since
the last dose of a two-dose vaccine is given earlier, at 4 months, the decline in protection
begins earlier than with three-dose vaccines, which have the last dose given at 6 months of
age [32]. Further studies are needed to better understand the reasons for lower VE in older
children, particularly those living in high-mortality countries. This is important since if the
vaccine has high effectiveness in the youngest ages, then a shift in the age distribution of
RVGE may occur.

The estimate of VE against more severe rotavirus infection was higher compared with
less severe infection, 54% versus −24%, respectively. Although CI were wide and over-
lapping, this finding suggests that rotavirus vaccine may be most impactful in preventing
severe infection in Mozambican children. This result is similar to that reported in nine
countries with medium- and high-mortality, where the median VE among children with
Vesikari score ≥ 11 points was 54% [31]. Our results should be interpreted with caution
due to wide and overlapping CI, and we cannot rule out the possibility that this was a
chance finding. Additionally, the especially wide CI around the VE estimate for less-severe
AGE make that result difficult to interpret.

In Mozambique, more than 40% of children less than five years old suffer from chronic
malnutrition [8]. Malnutrition may cause immune deficits and increase the risk of severe
infections, thus affecting the vaccine efficacy and effectiveness in children from poor
settings [34,35]. Lower rotavirus VE in malnourished children was observed in studies
conducted in African countries such as Botswana, Malawi, Kenya, and Zimbabwe [9–12].
In our data, nutritional stratification analysis of VE showed a much higher protection for
well-nourished children (59%) versus stunted children (14%), although confidence intervals
overlapped due to small sample size. Similar differences in well-nourished versus stunted
children were found in some African countries, such as Botswana (72% vs. −20% for at
least one dose), Malawi (78.1% vs. 27.8% for two doses of vaccine), and Zimbabwe (71%
vs. 45% in children < 12 months) [9–12]. Patterns from an analysis in Kenya were less
clear: non-stunted children showed the highest VE (75%), and children that presented
with moderate-to-severe stunting showed VE of 28%, but VE among the subset of children
with severe stunting showed a VE of 69% [12]; given the wide and overlapping confidence
intervals and the very small number of severely stunted rotavirus cases, this unexpected
trend may have been due to chance. Despite small sample size and limited statistical power,
the lower VE point estimate in stunted children in the present study is informative and
suggests that interventions to improve nutritional status and immunization coverage may
be beneficial. Indeed, prior evidence suggests that interventions in the areas of nutrition
and immunization may have synergistic effects. Evidence from Bangladesh and Zambia
found that zinc combined with vaccination reduced the risk of rotavirus diarrhoea [36,37].

The low estimate of overall VE in Mozambique compared with other countries may
be related to the fact that Mozambique has the highest prevalence of chronic malnutrition
(>40%) in children less than 5 years old compared with other African countries (27.0–34.0%),
according to the latest community surveys of each country [8,38–40]. The burden of
malnutrition in Mozambique may be concentrated in specific geographies. Almost half
of stunted children of this study were admitted to Hospital Central de Nampula (48.4%,
Supplementary Table S2), a poor resource setting in northern Mozambique. Our previous
analysis reported that the Hospital Central de Maputo and Hospital Central de Nampula
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had a high frequency of children with a “triple condition” (undernutrition, HIV, and
rotavirus infection) [41]. Another study conducted in Manhiça, a rural area, identified
malnutrition as one of the risk factors for death in children with diarrhoea [42].

Rotavirus G1P[8] was the most common circulating genotype during the study period,
and this is the principal component of the monovalent vaccine Rotarix. In the present
analysis, the VE was similar for G1P[8] (30%) and non-G1P[8] (35%) rotavirus genotypes,
which is not concordant with results reported in Kenya in which they found 60% VE against
G1P[8] and only 31% for G2P[4] [12]. Other previous studies have also demonstrated that
the rotavirus VE against vaccine strains is somewhat higher in comparison to that against
nonvaccine strains; however, limited data are available in low-income countries [30]. The
findings of the present analysis should be interpreted with caution, as the sample size
was small, which limited power to detect differences between VE against G1P[8] and
non-G1P[8] rotavirus genotypes. The non-G1P[8] corresponded to 85.1% (131/154) of the
genotypes, and the five most-common were G3P[4], G3P[8], G9P[4], G9P[6], and G9P[8].
Other genotypes observed in lower frequency included G2P[4], G1G3P[8], G8P[4], G12P[4],
G12P[8], G1P[4], G3P[6], and G4P[4]. Partly non-typeable genotyped samples included
G3P[NT], G9P[NT], GNTP[10], GNTP[4], GNTP[6], and GNTP[8].

The present analysis had some limitations. A major limitation was a low sample size
combined with high vaccination coverage, which limited statistical power, especially in
children ≥12 months, and made it difficult to control potential confounders such as markers
of socioeconomic status. Achieved statistical power to detect a VE of 50% was <80% for
our sample size, and lower for stratified analyses. For this reason, it is not surprising that
none of the estimates of VE were statistically significant, and that confidence intervals were
wide. We also had to exclude 83 children from the analysis because they did not have
confirmed vaccination status. Our inability to include data from immediately following
vaccine introduction (i.e., data from 2016), due to the inconsistent collection of vaccination
cards, was another limitation. However, a strength of this analysis is the breadth of data
available, which allowed us to stratify VE estimates by many characteristics of interest, to
identify factors that may play a role in the lower VE estimate in the country. Additionally,
although estimates were imprecise, the general findings and patterns are in line with
previous research, suggesting that our conclusions are reasonable despite the limitations of
the data.

In conclusion, at least one dose of rotavirus vaccine was estimated to have 52% effec-
tiveness against rotavirus admissions among children aged 6–11 months old in Mozam-
bique, a country with a high burden of chronic malnutrition. The VE estimate from
Mozambique is lower than that seen in many other African countries, possibly due to the
high burden of chronic malnutrition in children under five years old. This analysis was
not powered to detect statistical differences in VE stratified by nutritional status, although
stunting appeared to diminish VE. It would be important to understand the role of stunting
in vaccine efficacy/effectiveness in Mozambican children using studies with appropriate
design and adequate sample size. Despite our inability to detect significant differences,
our findings are generally in line with other studies showing the benefits of rotavirus
vaccination under conditions of “real-world” usage.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/vaccines10030449/s1, Figure S1: Cumulative percentage of vac-
cinated children by age (in weeks); Table S1: Modified 20-point clinical modified Vesikari score;
Table S2: Distribution of stunted children by sentinel sites (2017–2019); Table S3: Vaccine effectiveness
estimates by different characteristics of the children in fully vaccinated vs. unvaccinated and partially
vaccinated vs. unvaccinated children, 2017–2019.
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