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Abstract A polyphasic study was designed to

determine the taxonomic provenance of a strain,

isolate PRKS01-29T, recovered from an Indonesian

sand dune and provisionally assigned to the Strepto-

myces violaceusniger clade. Genomic, genotypic and

phenotypic data confirmed this classification. The

isolate formed an extensively branched substrate

mycelium which carried aerial hyphae that differen-

tiated into spiral chains of rugose ornamented spores,

contained LL-as the wall diaminopimelic acid, MK-9

(H6, H8) as predominant isoprenologues, phos-

phatidylethanolamine as the diagnostic phospholipid

and major proportions of saturated, iso- and anteiso-

fatty acids. Whole-genome sequences generated for

the isolate and Streptomyces albiflaviniger DSM

41598T and Streptomyces javensis DSM 41764T were

compared with phylogenetically closely related

strains, the isolate formed a branch within the S.

violaceusniger clade in the resultant phylogenomic

tree. Whole-genome sequences data showed that

isolate PRKS01-29T was most closely related to the

S. albiflaviniger strain but was distinguished from the

latter and from other members of the clade using

combinations of phenotypic properties and average

nucleotide identity and digital DNA:DNA hybridiza-

tion scores. Consequently, it is proposed that isolate

PRKS01-29T (= CCMM B1303T = ICEBB-02T-

= NCIMB 15210T) should be classified in the genus

Streptomyces as Streptomyces sabulosicollis sp. nov.

It is also clear that streptomycetes which produce

spiral chains of rugose ornamented spores form a well-

defined monophyletic clade in the Streptomyces

phylogenomic tree., the taxonomic status of which

requires further study. The genome of the type strain

of S. sabulosicollis contains biosynthetic gene clusters

predicted to produce new natural products.
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Introduction

The classification of Streptomyces species is espe-

cially challenging given the high number of validly

published species (https://www.bacterio.net.

streptomyces.html), the limited resolution of 16S

rRNA gene sequences in their delineation (Labeda

et al. 2012, 2017) and evidence that the genus is

underspeciated (Yamac et al. 2011; Hamm et al.

2017). However, multi-locus sequence analyses

(MLSA) of concatenated protein-coding house-keep-

ing genes (Ayed et al. 2018; Kusuma et al. 2020; Li

et al. 2020; Martinet et al. 2020) and comparative

surveys of whole-genome sequences (Nouioui et al.

2018) provide invaluable data for the circumscription

of novel Streptomyces species. MLSA analyses have

revealed a correlation between the delineation of

phylogenetic clades and associated phenotypic prop-

erties (Rong and Huang 2014; Labeda et al. 2014), as

exemplified by the assignment of streptomycetes with

spiral chains of rugose ornamented spores to a well

supported taxon (Labeda et al. 2017), known as the

Streptomyces violaceusniger clade (Sembiring et al.

2000; Kumar and Goodfellow 2008, 2010). Repre-

sentatives of this clade show the same pattern of

HPLC-detected metabolites (Ward and Goodfellow

2004; Goodfellow et al. 2007), give a characteristic

amplification product with taxon-specific primers

(Kumar et al. 2007) and form a characteristic grey

aerial spore mass and a greyish yellow substrate

mycelium on oatmeal agar (International Strepto-

myces Project medium 3 [ISP 3]., Shirling and Got-

tlieb 1966) (Sembiring et al. 2000; Kumar and

Goodfellow 2008, 2010; Goodfellow et al. 2007)

Improvements in the classification of the S. vio-

laceusniger clade (Rong and Huang 2012; Komaki

et al. 2017; Labeda et al. 2017; Zhou et al. 2017) led to

the recognition of 16 species which include Strepto-

myces albiflaviniger (Goodfellow et al. 2007, Euzéby

2008), Streptomyces himastatinicus (Kumar and

Goodfellow 2008), Streptomyces hygroscopicus (Jen-

sen 1931) Waksman and Henrici 1948, Streptomyces

iranensis (Hamedi et al. 2010), Streptomyces javensis

(Sembiring et al. 2000, 2001), Streptomyces

malaysiensis (Al-Tai et al. 1999), Streptomyces

melanosporofaciens (Arcamone et al. 1959), Strepto-

myces rapamycinicus (Kumar and Goodfellow 2008),

Streptomyces rhizosphaericus (Sembiring et al.

2000, 2001), Streptomyces solisilvae (Zhou et al.

2017) and Streptomyces violaceusniger corrig (Waks-

man and Curtis 1916) Pridham et al. 1958, as emended

by Labeda and Lyons (1991), the earliest validly

published species in the taxon. An additional species,

‘‘Streptomyces ruani’’ (Kumar and Goodfellow 2008)

was shown to be invalid by Tindall (2014). Strains

assigned to the clade have been detected in diverse

habitats (Kumar et al. 2007) but are usually associated

with rhizosphere and non-rhizosphere soil (Sembiring

et al. 2000; Sahin et al. 2010).

Strains classified in the S. violaceusniger clade

have an impressive track record as a source of new

antibiotics (DeBoer et al. 1970; Chen et al. 2003;

Cheng et al. 2010; Xie et al. 2019), antiparasitic

metabolites (Sun et al. 2002), antitumour compounds

(Lam et al. 1990; Wang et al. 2013), enzymes (Rabe

et al. 2017) and immunosuppressants (Vezina et al.

1975) and biocontrol agents (Clermont et al. 2010;

Palaniyandi et al. 2016; Sarwar et al. 2019) hence the

continued interest in them for genome mining and

natural product discovery. Members of this taxon are

gifted in the sense of Baltz (2017) as they have large

genomes ([ 8 Mbp) rich in biosynthetic gene clusters

(BGCs) predicted to encode for specialised metabo-

lites (Baranasic et al. 2013; Horn et al. 2014; Komaki

et al. 2018). Prospecting for Streptomyces diversity

also shows that sampling strains from unexplored,

including extreme habitats, raises the probability of

finding new compounds (Nicault et al. 2020) and that

streptomycete genomes are a prolific source of novel

BGCs (Vicente et al. 2018; Martinet et al. 2020).

The present study was designed to classify a

putative new member of the S. violaceusniger clade

based on genomic, genotypic and phenotypic data and

to gain an insight into its potential as a source of new

specialised metabolites. The resultant datasets showed

that the isolate represents a novel species, named

Streptomyces sabulisicollis sp. nov. Associated phy-

logenomic data clarified the internal taxonomic struc-

ture of the S. violaceusniger clade and relationships to

its closest phylogenetic neighbours.

Materials and methods

Isolation, maintenance and cultivation

Isolate PRKS01-29T was isolated from an arid, non-

saline soil sample (pH 5.8., organic matter content
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0.06%) collected just below the surface of a sand dune

in the Parangkusumo Region (8� 107 51300 S/ 110� 190
11.0400 E) of Yogyakarta Province, Java, Indonesia

following incubation on Actinomycete Isolation Agar

(HiMedia, Einhausen, Germany), pH 7.3, supple-

mented with cycloheximide (50 lg/mL), nalidixic

acid (25 lg/mL) and nystatin (25 lg/mL) and incu-

bated for 7 days at 45 �C, as described previously

(Kusuma et al. 2020). The isolate and S. albiflaviniger

DSM 41598T, S. iranensis DSM 41954T, S. javensis

DSM 41764T, S. malaysiensis NBRC 13472T, S.

rapamycinicus NRRL 5491T and S. rhizosphaericus

NRRL B-24304T and S. violaceusniger DSM 40583T

were maintained on yeast extract-malt extract agar

(International Streptomyces Project medium 2 [ISP

2]., Shirling and Gottlieb 1966) and as mixtures of

hyphal fragments and spores in 20%, v/v glycerol at

-20 �C and -80 �C. The type strains of S. albi-

flaviniger and S. iranensis were obtained from the

Leibniz Institute DSMZ German Collection of

Microorganisms and Cell Cultures GmbH, Braun-

schweig, Germany and the remaining reference strains

were from the personal collection of Professor

Michael Goodfellow, Newcastle University, New-

castle-upon-Tyne, United Kingdom. Biomass for the

chemotaxonomic studies carried out on the isolate was

prepared in 1L Erlenmeyer flasks containing 250 mL

of sterile ISP 2 broth (Shirling and Gottlieb 1966), the

flasks were shaken at 180 rpm for 14 days at 28 �C
and the resultant biomass harvested by centrifugation

at 4000 rpm for 10 min, washed twice in sterile

distilled water and freeze dried for 3 days.

Acquisition of chemotaxonomic, cultural

and morphological properties

The isolate was examined for chemotaxonomic,

cultural and morphological properties of value in

Streptomyces systematics (Kämpfer 2012; van der

Aart et al. 2019). Gram-stain (Hucher’s modification,

Society for American Bacteriology 1957) and micro-

morphological features were recorded following

growth on ISP 3 agar for 7 days at 28 �C. Growth
from the ISP 2 preparation was examined for spore-

chain arrangement and spore-surface ornamentation

using a scanning electron microscope (Tescan Vega 3,

LMU instrument) and the procedure described by

O’Donnell et al. (1993). The ability of the test and

associated marker strains to grow at different

temperatures, pH regimes and in the presence of

various concentrations of sodium chloride was carried

out in triplicate, as mentioned by Kusuma et al. (2020).

Standard chromatographic methods were used to

detect the isomers of diaminopimelic acid (A2pm)

(Staneck and Roberts 1974), whole-organism sugars

(Lechevalier and Lechevalier 1970) and for menaqui-

nones and polar lipids by applying the integrated

procedure of Minnikin et al. (1984), using appropriate

controls. Cellular fatty acids were extracted from

freeze dried cells of the isolate and fatty acid methyl

esters (FAMES) prepared following saponification

and methylation using the procedure described by

Miller (1982), as modified by Kuykendall et al. (1988).

The FAMES were separated by gas chromatography

(Agilent 68,908 instrument), the resulted peaks auto-

matically integrated and the fatty acid names and

properties determined using the standard Microbial

Identification (MIDI) system, version 4.5 and the

ACTIN 6 database (Sasser 1990). The growth and

cultural characteristics of the isolate and reference

strains were determined on tryptone yeast extract,

yeast extract-malt extract, oatmeal, inorganic salts-

starch, glycerol-asparagine, peptone-yeast extract-

iron and tyrosine agar plates (ISP media 1–7; Shirling

and Gottlieb 1966) for 21 days at 28 �C., aerial spore
mass and substrate mycelial colours and those of

diffusible pigments were recorded using colour charts

(Kelly 1958).

Whole genome sequencing

Genomic DNA was extracted from wet biomass of

single colonies of the isolate, S. albiflaviniger DSM

41598T and S. javensis DSM 41764T, grown on ISP 2

agar for 7 days at 28 �C, following the protocol

provided by MicrobesNG (Birmingham, UK) (http://

www.microbesng.uk) and sequenced on an Miseq

instrument (Illumina, San Diego, USA). The quality of

the extracted DNA preparations and the sequencing of

genomic DNA libraries was achieved, as described by

Kusuma et al. (2020). The libraries were sequenced

following the 2 9 250-bp paired-end protocol (Mi-

crobesNG, Birmingham, UK). Reads under 200 bp

were discarded and contigs assembled using SPAdes

software version 3.1.1 (Bankevich et al. 2012). The

draft genome assemblies of the strains were annotated

using the RAST-SEED web server (Aziz et al. 2008;
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Overbeek et al. 2014) with default options and are

available from GenBank database.

Phylogeny

An almost complete 16S rRNA gene sequence (1454

nucleotides [nt]) (GenBank accession number

MK503616) was taken directly from the draft genome

of the isolate using the ContEst16S tool from the

EZBioCloud webserver (https://www.ezbiocloud.net/

tools/contest16s) (Lee et al. 2017); this had been

compared with the associated 16S rRNA gene

sequence generated using Sanger method. The gene

sequence was aligned with corresponding sequences

of the most closely related type strains of Streptomyces

species retrieved from the EzBiocloud webserver

(Yoon et al. 2017) using MUSCLE software (Edgar

2004). Pairwise sequence similarities were determined

using the single-gene tree option from the Genome-to-

Genome Distance Calculator (GGDC) webserver

(Meier-Kolthoff et al. 2013a, b). Phylogenetic trees

were inferred using the maximum-likelihood (ML.,

Felsenstein 1981), maximum-parsimony (MP., Fitch

1971) and neighbour-joining (NJ., Saitou and Nei

1987) algorithms. A ML tree was inferred from

alignments with RAxML (Stamatakis 2014) using

rapid bootstrapping with the auto Maximum-Relative-

Error (MRE) criterion (Pattengale et al. 2010) and a

MP tree was constructed from the alignments with the

Tree Analysis New Technology (TNT) program

(Goloboff et al. 2008) using 1000 bootstraps together

with tree-bisection-and-reconnection branch swap-

ping and ten random sequence replicates. The

sequences were checked for computational bias using

the X2 test from PAUP*(Phylogenetic Analysis Using

Parsimony) (Swofford 2002).The trees were evaluated

using bootstrap analyses based on 1000 replicates

(Felsenstein 1985) from the MEGA X software

package (Kumar et al. 2018) and the two-parameter

model of Jukes and Cantor (1969) then rooted with the

16S rRNA gene sequence from Streptomyces albus

subsp. albus NRRL B-1811 T (GenBank accession

number JX486031.1), the type strain of the type spe-

cies of the genus Streptomyces.

Comparison of genomes

The draft genome sequences generated for isolate

PRKS01-29T, S. albiflaviniger DSM 41598T and S.

javensis DSM 41764T were compared with corre-

sponding sequences of type strains of species classi-

fied in the S. violaceusniger 16S rRNA gene clade.

The ML phylogenomic tree inferred using the codon

tree option in the PATRIC webserver (Wattam et al.

2017), which was based on aligned amino acids and

nucleotides derived from 453 single copy genes in the

genome dataset matched against the PATRIC PGFams

database (http://www.patricbrc.org), was generated

using the RAxML algorithm (Stamatakis 2006). The

genome sequences of isolate PRKS01-29T and the S.

albiflaviniger and S. javensis strains were compared

with one another and with those of S. antimycoticus

NRRL B-24289T, S. himastatinicus ATCC 53653T, S.

hygroscopicus subsp. hygroscopicus NBRC 16556T,

S. iranensis DSM 41954T, S. malaysiensis DSM

4137T, S. melanosporofaciens DSM 40318T, S.

milbemycinicus NRRL 5739T, S. rapamycinicus

NRRL 5491T, S. rhizosphaericus NRRL-24304T, S.

sparsogenes DSM 40356T and S. violaceusniger DSM

40503T. Average nucleotide identity (orthoANI., Lee

et al. 2016) and digital DNA-DNA hybridisation

(dDDH., Meier-Kolthoff et al. 2013a) values were

determined between the isolate and members of the S.

violaceusniger clade using the ANI calculator from

the EzBioCloud (https://www.ezbiocloud.net/tools/

ani) and the GGDC webserver (http://ggdc.dsmz.de/

ggdc), respectively. The presence of natural product-

BGCs in the genome of the strains were detected using

the antiSMASH 5.0 platform (Blin et al. 2019) with

default option available at https://antismash.

secondarymetabolites.org.

Phenotypic tests

Isolate PRKS01-29T and the type strains of its closest

phylogenomic neighbours were examined for pheno-

typic properties that distinguish between species

classified in the S. violaceusniger 16S rRNA gene

clade (Sembiring et al. 2000; Goodfellow et al. 2007;

Kumar and Goodfellow 2008, 2010; Hamedi et al.

2010; Zhou et al. 2017). Biochemical, degradation and

physiological properties were acquired using media

and methods described by Williams et al. (1983) and

enzyme profiles with API-ZYM strips (BioMériux,

France). All of the tests were carried out in duplicate

using a standard inoculum equivalent to 5.0 on the

McFarland scale (Murray et al. 1999).
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Screening for bioactivity

The isolate was screened for antimicrobial activity

against a panel of wild type microorganisms (primary

screens) and Bacillus subtilis reporter strains (sec-

ondary screens) using a standard plug assay (Fiedler

2004). Plugs of isolate PRKS01-29T were taken from

ISP 2 and ISP 3 agar (Shirling and Gottlieb 1966) and

from MMM and from 410 agar (Goodfellow and

Fiedler2010) plates incubated for 14 days at 28 �C
and added to cultures of wild type strains of Bacillus

subtilis, Candida albicans, Escherichia coli, Micro-

coccus luteus, Pseudomonas aeruginosa and Staphy-

lococcus aureus., all of the strains were obtained from

Public Health Laboratory Service, Freeman Hospital,

Newcastle-upon-Tyne, United Kingdom. The wild

type strains were prepared by inoculating 500 lL of

overnight cultures grown at 37 �C in 25 mL Luria

Bertani (LB) broth (Sigma Aldrich, UK) to an optical

density (OD) of 0.6 and the resultant preparations

diluted to give an OD value of 0.0125 by mixing

100 mL of the LB media with the same proportion of

nutrient agar (Sigma Aldrich, UK)., each of the

resultant preparations was carefully mixed, poured

into the square Petri dishes containing the agar plugs

of the isolate and the plate incubated overnight at

37 �C. The incubated plates were observed for the

presence and sizes (in millimetres) of inhibition zones

around the agar plugs. In the secondary assays, agar

plugs were added to overnight cultures of six B.

subtilis reporter strains grown as described above., the

reporter strains were designed to detect modes of

action of antimicrobial compound(s) produced by the

isolate, as shown in Table S1. Overnight cultures of

the strains were grown at 37 �C in Luria Bertani broth

then mixed with a similar volume of nutrient agar

(Sigma-Aldrich, UK) to give an optical density

reading of 0.0125. The resultant preparations were

examined for the presence of blue halos around the

circumference of inhibition zones, the latter are

formed when bioactive compound(s) produced by

the isolate cleave X-gal in the agar media to 5-bromo-

4-chloro-3-hydroxy indole (blue compound) and

galactose.

Results and discussion

The chemotaxonomic, colonial and morphological

properties of the isolate showed that it was a bona fide

member of the S. violaceusniger clade (Sembiring

et al. 2000; Goodfellow et al. 2007; Kumar and

Goodfellow 2008, 2010; Hamedi et al. 2010; Nguyen

and Kim 2015; Zhou et al. 2017). The organism was

found to be aerobic, Gram-stain positive, formed an

extensively branched substrate mycelium and aerial

hyphae that differentiated into spiral chains of rugose

ornamented spores (Fig S1), produced a dark grey to

black aerial spore mass and a grey yellow substrate

mycelium on oatmeal agar (Fig S2), contained LL-

A2pm as the diamino acid of the peptidoglycan, MK-9

(H6) (58.4%) and MK-9 (H8) (41.6%) as the predom-

inant isoprenologues, galactose, glucose, mannose and

ribose as whole cell sugars and gave a polar lipid

profile consisting of diphosphatidylglycerol, two

phosphatidylglycerols, phosphatidylinositol, two

phosphatidylinositol mannosides and two unknown

phospholipids (Fig S3).

The major fatty acids ([ 10%) of the isolate were

iso-C15:0 (14.4%), anteiso-C15:0 (13.8%) and iso-C16:0

(27.2%) with lower proportions of iso-C14:0 (4.9%),

C14:0 (1.0%), iso-H-C16:1 (1.2%), C16:0 (9.3%), an-

teiso-x9c-C17:1 (1.8%), iso-C17:0 (6.5%), anteiso-

C17:0 (9.9%), cyclo C17:0 (1.9%), C17:0 (1.1%),

C16:1-x7c/ C16:1-x6c (1.2%) and iso-C17:1 x9c/10-
methyl C16:0 (2.8%)., trace components made up the

balance of the profile. Complex mixtures of saturated

straight chain and iso- and anteiso- fatty acids have

been reported for the type strains of S. fabae (Nguyen

and Kim 2015), S. iranensis (Hamedi et al. 2010), S.

malaysiensis (Al-Tai et al. 1999) and S. solisilvae

(Zhou et al. 2017).

The genomic features of the isolate, S. albi-

flaviniger DSM 41598T and S. javensis DSM 41764T

are shown in Table 1. It is interesting that these strains

have draft genomes over 8 Mbp in size and hence can

be considered to be gifted after Baltz (2017). Avail-

able whole genome sequences of type strains of

species classified in the S. violaceusniger 16S rRNA

gene clade have larger genome sizes, as exemplified

by S. iranensis HM 35T (12.1 Mb; Horn et al. 2014)

and S. rapamycinicus (12.7 Mb; Baranasic et al.

2013), the genome of the latter contains 48 BGCs

including the biocluster expressing for rapamycin

biosynthesis.
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The phylogenetic tree (Fig. 1) based on 16S rRNA

gene sequences shows that the isolate forms a clade in

the Streptomyces gene tree together with the type

strains of S. albiflaviniger, S. javensis and S. vio-

laceusniger. It is most closely related to S. javensis

NBRC 100777T and S. violaceusniger NBRC 13459T

sharing a similarity with these strains of 99.4%, a

value which corresponds to 9 nucleotide (nt) differ-

ences., the corresponding values with S. albiflaviniger

NRRL B-1356T are 99.3% (10 nt differences in 1414

Table 1 Genomic features of the isolate and type strains of S. albiflaviniger and S. javensis

Genomic features Isolate PRKS01-29T S. albiflaviniger DSM 11483T S. javensis DSM 41764T

Genome size (Mbp) 10.2 10.3 11.1

Mean coverage 56.92 9.93 35.33

Number of contigs 1104 3530 1486

Number of rRNA operons 8 8 8

Number of tRNA operons 64 59 71

G?C (mol%) 71.66 70.90 71.23

GenBank accessions JAEEAP000000000.1 JAEEAR000000000.1 JAEEAQ000000000.1

Fig. 1 Maximum-likelihood tree based on 16S rRNA gene

sequences showing relationships between isolate PRKS01-29T

and closely related type strains of Streptomyces species

classified in the Streptomyces violaceusniger clade. Asterisks

indicate branches of the tree that were found using the

neighbour-joining and maximum-parsimony algorithms. NJ

and MP denote nodes recovered using the neighbour-joining

and maximum-parsimony tree-making algorithms, respectively.

Numbers at the nodes show bootstrap values, only those above

50% are shown. The root of the tree was established using

Streptomyces albus subsp. albus NRRL B-1811T. Bar indicates

0.005 substitutions per nucleotide position
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sites). The 16S rRNA gene similarities between the

isolate and the remaining representatives of the S.

violaceusniger clade were within the range 96.8% to

99.2%. In general, these results are in agreement with

those reported by Labeda et al. (2012) who found that

streptomycetes producing spores with rugose or rough

surfaces belonged to six highly related clades.

The phylogenomic tree (Fig. 2) shows that the

isolate forms a distinct branch at the periphery of a

subclade that encompasses the type strains of S.

albiflaviniger, S. iranensis, S. javensis, S. rapamycini-

cus and S. rhizosphaericus. The S. malaysiensis strain

form a distinct lineage between this and a sister

subclade composed of the type strains of S. antimy-

coticus, S. melanosporofaciens and S. violaceusniger.

The two remaining members of the S. violaceusniger

clade, S. himastatinicus ATCC 58653 T and S. hygro-

scopicus subspecies hygroscopicus NBRC 16556T

form single membered lineages. The close phyloge-

nomic relationships between the type strains of S.

milbemycinicus and S. sporogenes and S. vio-

laceusniger clade is in agreement with the earlier

study by Nouioui et al. (2018).

The recommended thresholds used to distinguish

between closely related prokaryotic species based on

ANI and dDDH similarities are 95 to 96% (Richter and

Rosselló-Móra 2009; Chun et al. 2018) and 70%

(Meier-Kolthoff 2013a; Chun et al. 2018), respec-

tively. Table 2 shows that on this basis the isolate can

be separated from the type strains of its closest

phylogenomic neighbours, as shown in Fig. 2. It is

most closely related to S. albiflaviniger DSM 41598T

based on a dDDH similarity of 53.9% and an ANI

value of 93.5% though this latter value is shared with

S. javensis DSM 41764T and S. iranensis HM 35T.

Fig. 2 Maximum-likelihood phylogenomic tree based on 453

single copy core genes showing relationships between isolate

PRKS01-29T and closely related type strains which belong to

the Streptomyces violaceusniger clade. Numbers at the nodes

are bootstrap support values based on 100 replicates. GenBank

accession numbers are shown in parentheses. The scale bar

indicates 0.03 substitutions per nucleotide position. The tree is

rooted using the type strain of Streptomyces albus subsp. albus
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Identical results were obtained for the duplicated

cultures in all of the phenotypic tests. It is also

encouraging that the results of the biochemical,

degradative and tolerance tests are in agreement with

those from earlier analyses on the reference strains that

were performed under the same experimental proce-

dures (Al-Tai et al. 1999; Sembiring et al. 2000;

Saintpierre et al. 2003; Goodfellow et al. 2007; Kumar

and Goodfellow 2008; Hamedi et al. 2010; Zhou et al.

2017). Table 3 shows that the isolate can be separated

from the type strains of all of its closest phylogenomic

neighbours using a combination of phenotypic prop-

erties. It can, for instance, be distinguished from S.

albiflavinigerDSM 14548T, its closest neighbour, as it

is positive for esterase (C4), a-glucosidase and lipase

(C14), casein, Tween 20 and uric acid, hydrolyses

allantoin and grows in the presence of 7% w/v NaCl.

In contrast, the S. albiflaviniger strain, unlike the

isolate, hydrolyses arbutin. Additional combinations

of phenotypic properties distinguish the isolate from

the remaining reference strains and also the latter from

one another.

The aerial spore mass and substrate mycelial

colours produced by the respective reference strains

on the ISP media are in agreement with those from

earlier analyses (Al-Tai et al. 1999; Goodfellow et al.

2007; Kumar and Goodfellow 2008; Hamedi et al.

2010). Table S2 shows that the isolate and its closest

phylogenomic neighbours grew well on nearly all of

the ISP media forming a grey-yellowish substrate

mycelium bearing a grey aerial spore mass that

became moist and black on prolonged incubation on

ISP 3 agar, as is the case with the type strains of S.

antimycoticus (Kumar and Goodfellow 2008; Komaki

and Tamura 2020a), S. griseiniger (Goodfellow et al.

2007), S. hygroscopicus (Labeda and Lyons 1991) and

S. yatensis (Saintpierre et al. 2003). The isolate and the

S. albiflaviniger can be distinguished by their ability to

produce diffusible pigments, for instance, only the

reference strain produced diffusible pigments on ISP

media 3 and 7.

The isolate showed activity in the primary and

secondary screens. Growth of the S. aureus strain was

inhibited when the isolate was grown on ISP 2, ISP 3,

MMM and 410 agar media. Similarly, it inhibited the

B. subtilis, C. albicans andM. luteus strains following

cultivation on all of the nutrient formulations, apart

from medium 410. In contrast, it did not show any

activity against the E. coli strain though it did inhibit

the growth of the P. aeruginosa strain when grown on

ISP 3 and MMM agar. In the secondary screens, the

isolate formed blue halos around inhibition zones

against B. subtilis reporter strains YpuAER, YvqIER,

YjaxER and DinBCH indicating its ability to inhibit cell

envelope, DNA, fatty acid and RNA synthesis,

respectively. It also inhibited the growth of the other

reporter strains, YvgSER and YheH, without forming

blue halos thereby suggesting an ability to produce

bioactive compound(s) with unknown modes of

action.

Biosynthetic potential of isolate PRKS01-29T

and members of the S. violaceusniger clade

The isolate and the type strains of species classified in

the S. violaceusniger clade have large genomes

(10.1–12.7 Mb) predicted to encode for chemically

diverse specialised metabolites. The genome mining

Table 2 Average

nucleotide identities and

digital DNA:DNA

hybridisation values

between the isolate and

Streptomyces species
belonging to the S.
violaceusniger clade

Phylogenomic neighbours ANI (%) dDDH (%)

S. albiflaviniger DSM 41598T 93.5 53.9

S. antimycoticus NRRL B-24289T 91.3 44.7

S. himastatinicus ATCC 53653T 84.9 29.0

S. hygroscopicus subsp. hygroscopicus NBRC 16556T 90.8 41.1

S. iranensis HM 35T 93.5 52.0

S. javensis DSM 41764T 93.5 52.8

S. malaysiensis DSM 41697T 91.6 44.4

S. melanosporofaciens DSM 40318T 91.5 44.9

S. rapamycinicus NRRL 5491T 93.4 51.1

S. rhizosphaericus NRRL B-24034T 93.3 52.6

S. violaceusniger NBRC 13459T 93.7 52.7
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studies showed that all of the strains are genetically

equipped with bioclusters predicted to encode for

‘core secondary’ metabolites, such as albaflavenone/-

geosmin, ectoines, hopenes, melanin and spore pig-

ments, results in good agreement with those of Ward

and Allenby (2018). In contrast, most of the bioclus-

ters predicted to encode for druggable molecules,

notably antibiotics, were discontinuously distributed

in the genomes of the strains with many being strain

specific, as has been found in recent studies on

streptomycetes (Vicente et al. 2018; Martinet et al.

2020).

The genome of all of the strains contained bioclus-

ters predicted to encode for echosides A-E, anti-tumor

agents produced by Streptomyces strain LZ35 (Zhu

et al. 2014). In contrast, only the genomes of the

Table 3 Phenotypic characteristics which distinguish isolate PRKS01-29T from the type strains of closely related species classified

in the Streptomyces violaceusniger clade

Characteristics Strains

1 2 3 4 5 6 7

API-ZYM tests

Esterase (C4) ? - - ? ? ? ?

a-Fucosidase - - - - ? - ?

a- and b-Galactosidase,

a-mannosidase, trypsin

? ? ? ? ? - ?

b-Glucuronidase - - - ? - - -

a-Glucosidase ? - - - - - -

b-Glucosidase - - ? ? - - -

Lipase (C14) ? - ? - - ? -

Biochemical tests

Nitrate reduction - - - ? - ? ?

Degradation tests

Adenine (0.5%, w/v) ? ? - ? ? ? ?

Aesculin (0.1%, w/v) - - ? ? ? - ?

Allantoin (0.5%,w/v) ? - ? ? - ? -

Arbutin (0.5%, w/v) - ? ? ? - ? -

Casein (1%, w/v) ? - ? ? ? - ?

Guanine (0.3%, w/v) - - - ? - ? -

Starch (0.1%, w/v) ? ? ? ? ? - -

Tween 20 (1%, v/v) ? - ? ? ? - -

Uric acid (0.4%, w/v) ? - ? ? ? ? -

Xylan (0.4%, w/v) ? ? ? ? - ? ?

Tolerance tests

Growth in presence of 7% w/v, NaCl ? - - ? ? ? -

Growth at pH 9.0 - - ? – ? ? -

Growth at 45 �C ? ? - ? - - ?

Strains: 1. Isolate PRKS01-29T., 2. S. albiflaviniger DSM 14598T., 3. S. iranensis DSM 41954T., 4. S. javensis DSM 41764T., 5. S.
rapamycinicus NRRL 5491T., 6. S. rhizosphaericus NRRL B-24304T., 7. S. violaceusniger DSM 40563T

All of the strains were positive for acid and alkaline phosphatases, a-chymotrypsin, cystine, leucine and valine arylamidases, esterase

(C4), esterase lipase (C8), N-acetyl-b-glucoronidase and naphthol-AS-BI-phosphohydrolase (API-ZYM tests), hydrolysed urea and

degraded hypoxanthine (0.4%, w/v), Tweens 40, 60 and 80 (all 1%, v/v) and L-tyrosine (0.4%, w/v), but not chitin (1%, w/v), elastin

(0.3%, w/v), tributyrin (0.1%, w/v) or xanthine (0.4%, w/v)
? positive., - negative, n.d. not determined
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isolate and the type strains of S. iranensis, S.

violaceusniger and S. rapamycinicus contained bio-

clusters considered to express for meilingmycin, an

anti-parasitic macrolide (Sun et al. 2002) and

nigericin, which inhibits Gram-positive bacteria

(Graven et al.1966). Similarly, the draft genomes of

the isolate, S. albiflaviniger DSM 41598T and S.

javensis DSM 41764T contained bioclusters predicted

to encode for the synthesis of cahuitamycins A-C,

which inhibit the formation of bacterial biofilms (Park

et al. 2016), pladienolides, anti-tumour antibiotics

(Mizui et al. 2004) and funisamine, an aminopolyol

polyketide antibiotic which inhibits the growth of wild

type strains of Staphylococcus aureus, Escherichia

coli and Candida albicans (Covington et al. 2018),

respectively. Bioclusters predicted to encode for

rapamycin were only detected in the genomes of the

S. iranensis and S. rapamycinicus strains.

Conclusion

It can be concluded from the phylogenetic trees and

associated colonial and morphological data that isolate

PRKS01-29T belongs to the S. violaceusniger clade

(Sembiring et al. 2000; Goodfellow et al. 2007; Kumar

and Goodfellow 2008, 2010). In addition, the whole

genome sequence data show that it belongs to a well-

supported monophyletic clade which includes the type

strains of S. albiflaviniger, S. iranensis, S. javensis, S.

rapamycinicus and S. rhizosphaericus. It can be

distinguished from all of these strains by a broad

range of phenotypic properties and by low ANI and

dDDH values. It is, therefore, proposed that isolate

PRKS01-29T represents a novel species within the

genus Streptomyces for which the name Streptomyces

sabulosicollis sp. nov. is proposed.

Description of Streptomyces sabulosicollis sp. nov.

Streptomyces sabulosicollis (sa.bu.lo.si.col’lis. L.

masc. adj. sabulosus sandy; L. masc. n. collis a hill;

N.L. gen. n. sabulosicollis of a sandy hill), Gram-

stain-positive, catalase positive, aerobic actinobac-

terium which forms an extensively branched substrate

mycelium and aerial hyphae which differentiate into

spiral chains of rugose ornamented spores

(0.8 9 0.97 lm) on yeast extract-malt extract agar.

A yellowish-grey substrate mycelium carries a grey

aerial spore mass that becomes moist and black

following prolonged incubation on oatmeal agar.

Grows from 10 to 45 �C (optimally at 28 �C), from
pH 5.5–7.5 (optimally 7.0) and can tolerate up to 7%

(w/v) NaCl. Allantoin and urea are hydrolysed but not

aesculin or arbutin. Does not reduces nitrate. Degrades

adenine, casein, hypoxanthine, starch, L-tyrosine,

Tweens 20, 40, 60 and 80, uric acid and xylan, but

not chitin, elastin, guanine, tributyrin or xanthine.

Positive for acid and alkaline phosphatases, a-chy-
motrypsin, cystine, leucine and valine arylamidases,

esterase lipase, a- and b-galactosidases, a-glucosi-
dase, N-acetyl-b-glucosidase, lipase (C14), a-man-

nosidase, naphthol-AS.BI-phosphohydrolase and

trypsin, but not a-fucosidase, b-glucosidase or b-
glucuronidase. Whole organism hydrolysates contain

LL-A2pm, galactose, glucose, mannose and ribose.,

the predominant fatty acids ([ 10%) are iso-C15:0

(14.4%), anteiso-C15:0 (13.8%) and iso-C16:0 (27.2%),

the major menaquinones MK-9 (H6, H8) with the

proportions of 58.4% and 41.6%, respectively, and the

polar lipid profile is composed of diphosphatidylglyc-

erol, two phosphatidylglycerols, phosphatidylinositol,

two phosphatidylinositol mannosides and two

unknown phospholipids. The dDNA G?C content of

the strain is 71.7% and its approximate genome size

10.2 Mbp.

The type strain, PRKS01-29T (= CCMM B1303T-

= ICEBB-02T = NCIMB 15210T) was isolated from

a sandy soil sample collected from an arid sand dune

system in the Parangkusumo Region of Yogyakarta

Province, Java, Indonesia. The GenBank accession

number of the assembled draft genome of Strepto-

myces sabulosicollis is JAEEAP000000000.1.

In the case of the genus Streptomyces genome-

based classifications have revealed the presence of

well-defined species-groups (Labeda et al. 2012, 2017;

Nouioui et al. 2018), the recognition of later hetero-

typic synonyms of established species (Komaki and

Tamura 2020a, b; Madhaiyan et al. 2020) within and

outwith the S. violaceusniger phylogenetic clade

(Sembiring et al. 2000; Goodfellow et al. 2007;

Kumar and Goodfellow 2008, 2010) and the delin-

eation of the genera Embleya and Yinghuangia for

species previously included in the genus (Nouioui

et al. 2018). Such developments can be expected to

continue and in this respect, it is evident from this

study that streptomycetes which form rugose-orna-

mented spores, spiral spore chains and characteristic
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colonial properties on oatmeal agar belong to a distinct

phylogenomic clade the taxonomic status of which

merits further investigation.
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