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Sclerostin antibody (Scl-Ab) represents a promising therapeutic approach to treat patients with osteoporosis.
Purpose: The aim of this study was to investigate the effects of Scl-Ab, running and a combination of both on
bone formation. Methods: Sixty femaleWistar rats, aged 8 months were randomly assigned to five groups (sub-
cutaneous injections performed twice a week): (1) (Sham): sedentary rats + saline, (2) (OVX): ovariectomized
rats+ saline, (3) (OVX+E): OVX rats+ saline+ treadmill training (5 times/week, 1 h/day), (4) (OVX+E+S):
OVX rats + treadmill training+ 5mg/kg Scl-Ab and (5) (OVX+ S): OVX rats + 5mg/kg Scl-Ab. After 14 weeks,
body composition,whole body and femoral BMDswere determined byDXA and serumwas collected for analysis
of osteocalcin and NTX. Bone microarchitecture was analyzed using μCT and bone strength was assessed at the
femur mid-shaft in 3-point bending. Results: Running exercise decreased fat mass as well as the bone resorption
marker NTX relative to the non-exercised control groups, effects that were associated with a prevention of the
deleterious effects of OVX on whole body and femoral BMDs. Scl-Ab increased the bone formation marker
osteocalcin, which resulted in robust increases in BMD and femoral metaphyseal bone volume to levels greater
than in the Sham group. OVX + S + E group did not further impact on bone mass relative to the OVX + S
group. At the cortical femur diaphysis, Scl-Ab prevented the decreases in bone strength after OVX, while exercise
did not affect cortical strength. Conclusion:We suggest that while running on a treadmill can prevent some bone
loss through a modest antiresorptive effect, it did not contribute to the robust bone-forming effects of Scl-Ab
when combined in an estrogen ablation model.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The bone remodeling process constitutes a coupled activity of cells
resorbing and forming bone (Moriishi et al., 2012). Disruptions in sig-
naling pathways among these cells and alterations in their activity are
considered to be part of the physiopathology of osteoporosis (Boyce
et al., 2012; Cary et al., 2013). Several methods have been used to
treat osteoporosis in order to reduce the risk of fractures (Boyce et al.,
2012; Lippuner, 2012; Ng, 2009), including medications and increasing
physical activity. Osteoporosis medications increase bone mass either
by decreasing bone resorption (i.e. Bisphosphonates, Calcitonin, Selec-
tive Estrogen Receptor Modulators, e.g., Raloxifene, Estrogen/hormone
therapy) (Migliaccio et al., 2007), by increasing bone formation
(i.e. Teriparatide, a parathyroid hormone) (Ohtori et al., 2013), or by
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modulating the balance of both (Strontium ranelate) (Kaufman et al.,
2013). Antibody-mediated inhibition of sclerostin, a pivotal negative
regulator of bone formation (Li et al., 2009), represents a promising
new therapeutic approach for the anabolic treatment of bone-related
disorders, such as postmenopausal osteoporosis. Sclerostin is a protein
produced primarily by osteocytes (Li et al., 2009; Bonewald, 2011),
and inhibits osteoblastic activity on the surface of bone by binding to
low-density lipoprotein receptors and inhibiting theWnt/β-catenin sig-
naling pathway (Li et al., 2009).

Regular exercise is a non-pharmacological option and considered an
essential part of any osteoporosis treatment program (Iwamoto et al.,
2004, 2005; Hagihara et al., 2009; Honda et al., 2003). Bone formation
and, consequently, BoneMineral Density (BMD) are enhanced by phys-
ical activity in premenopausal women (Mosti et al., 2013; Anek et al.,
2011). Physical activity increases themechanical stresses on bone tissue
(Cheung and Giangregorio, 2012; Niinimaki, 2012). Theoretically, the
mechanical stress is detected by mechanoreceptors (i.e. integrins)
(Batra et al., 2012; Xu et al., 2012) primarily on osteocytes, which ulti-
mately transduce the mechanical signals into biological signals.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Radiographic projection of the distal femoral metaphysis acquired bymicrocomputed tomography. A: Transversal sections of the femoral metaphyseal area, left and center images:
red arrow show a furrow in the cortical part to explain unselected slices; right image presents no furrow (blue arrow) and constitutes thefirst selected slice. B: Schematic representation of
the region of interest that corresponds to 250 slices from the distal growth plate (upper black line) to the shaft proximally (lower black line).
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Increased activity and stress can trigger bone modeling by directly in-
creasing osteoblast activity, while a lack of stress can signal increased
osteoclastic resorption. These processes are largely dependent on
osteocyte activities, which control the communication towards and be-
tween osteoblast forming cells and osteoclast resorbing cells, perhaps in
part through regulation of sclerostin expression (Poole et al., 2005; Li
et al., 2008). Lin et al. (2009) reported that mechanical unloading of
Fig. 2.Whole body (A) and femoral (B) BMDsmeasured by DXA. All values representmean± S
and OVX + E respectively.
wildtype mice caused a decrease of Wnt/beta-catenin signaling activity
accompanied by upregulation of Sost (Lin et al., 2009). However, the
pathways by which mechanical forces are transduced to osteoclast
and osteoblast activity are incompletely defined. Moreover, the amount
and type of mechanical stress required remains debatable. It has been
reported that running and jumping exercises produce changes in circu-
lating levels of hormones such as growth hormone (GH) and insulin-
EM. The critical p-value (p) was 0.05; a, b, c represent significant differences vs. Sham, OVX

Image of Fig. 2
Image of Fig. 1


Fig. 3. Serum osteocalcin (OCN) concentration. All values represent mean ± SEM. The
critical p-value (p) was 0.05; a, b, c represent significant differences vs. Sham, OVX and
OVX + E, respectively.
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like growth factor-1 (IGF-1), which have an anabolic effect on both bone
and muscle (Iwamoto et al., 2004, 2005; Hagihara et al., 2009; Honda
et al., 2003). Among all types of exercise programs, high-impact exercise
is thought to be greatly beneficial to bone (Iwamoto et al., 2004, 2005;
Hagihara et al., 2009; Honda et al., 2003). We hypothesized that a
Fig. 4. Bone mechanical parameters. Mechanical properties of the femur were assessed by a
fracture), B. Stiffness (extrinsic rigidity). All values represent mean ± SEM. The critical p-v
OVX + S respectively.
combination of a pharmacologic dose of Sclerostin Antibody (Scl-Ab)
and running training might have a synergetic effect in osteoporosis
treatment. The aim of the present study was to compare the effect of
sclerostin antibody, running exercise and a combination of both on
bone status in a female mature rat model.
2. Materials and methods

2.1. Animal treatment

The study protocol was approved by the Institutional Animal Care
and Use Committee of our institution (agreement nos. C45-234-9 and
2011-11-2) and from the French National Institute of Health and
Medical Research (INSERM) (approval ID: INSERM45-001). Sclerostin
antibody was provided by Amgen (Thousand Oaks, CA, USA).

Sixty 8-month-old female Wistar rats (mean weight 341 ± 24 g)
were purchased from Animal Production Janvier, Genest Saint-Isle,
France. The animals were housed two per cage, in standard cages
(30 × 28 × 20 cm3) and kept in a controlled environment (22 ± 2 °C,
12 h light–dark cycle) with free access to food and water. After one
week of acclimation to the new environment, the rats were randomly
ovariectomized or sham operated. After 2 months, the rats were
randomly assigned to the 5 following groups (12 rats per group):
(1) Sham: injected twice a week with saline and no exercise, (2) OVX:
ovariectomized, injected twice a week with saline and no exercise,
(3) OVX + E: ovariectomized, injected twice a week with saline and
exercised treadmill running (see details below), (4) OVX + E + S:
ovariectomized, injected with subcutaneous sclerostin antibody
(5 mg/kg/day Scl-AbVI, twice a week) and exercised treadmill running
and (5) OVX + S: ovariectomized, injected with sclerostin antibody
(5 mg/kg/day, twice a week) and no exercise. The treadmill running
protocol consisted of 1 h running, 5 days a week for a duration of
14 weeks. The maximum aerobic speed (MAS) of the rats was re-
evaluated every 3 weeks. The MAS was determined as follows: after
three-point bending test. A. Ultimate load (the maximal force supported by bone before
alue (p) was 0.05; a, d, e represent significant differences vs. Sham, OVX + E + S and
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Table 1
Fatmass and total bodyweightmeasured at the end of the study. All values representmean±SEM. (a) Significant difference compared to Shamgroup (p b 0.05). (b) Significant difference
compared to OVX group (p b 0.05).

Sham OVX OVX + E OVX + S OVX + E + S

Total body weight (g) 335 ± 6 (n = 12) 404 ± 12 (a) (n = 11) 371 ± 10 (a) (n = 12) 372 ± 12 (a) (n = 12) 358 ± 10 (b) (n = 12)
Fat mass (g) 57.95 ± 2.99 118.27 ± 11.19 (a) 88.63 ± 5.49 (a,b) 116.12 ± 24.94 (a) 72.19 ± 6.28 (b)
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10 min running at a low speed, the treadmill speed was gradually in-
creased every 2 min until the rat refused or was no longer able to
walk and start running. Training started with 10 min running at 50%
of the MAS (from 13.43 to 24.15 m/min), followed by 5 cycles of
8min at 80% of MAS (from 21.48 to 38.64m/min) and 2min at 50%. Ex-
ercise was performed 5 days a week for a total duration of 14 weeks.
This protocol was chosen because a previous study showed it had a sig-
nificant positive effect on bone mineral density in male Wistar rats
(Boudenot et al., 2012). One rat from the OVX group died before the
end of the experiment and was thus excluded.

After 14weeks of treatment, animals were sacrificed by exsanguina-
tion under anesthesiawith pentobarbital. The procedure for the care and
killing of the animals was in accordance with the European Community
standards on the care and use of laboratory animals. After sacrifice, fe-
murs and tibias were removed and cleared of surrounding soft tissue;
blood samples were centrifuged and the serumwas kept at−20 °C be-
fore ELISA analysis.

2.2. Body weight, fat mass and BMD measurements

Whole body weight, fat mass and BMD were evaluated by DXA for
thewhole body and for the right femur on aDiscovery scanner (Hologic,
Bedford, Massachusetts, USA). The parameters of body composition and
BMD were determined using the scanner's APEX software.

2.3. Bone microarchitecture/macroarchitecture

Femoral microarchitecture was analyzed using a micro-computed
tomograph (μCT, Skyscan 1072; Skyscan, Kontich, Belgium) and follow-
ing the protocol described previously by Bonnet et al. (2006). The X-ray
source was set at 85 kV and 100 μA, with a pixel size of 11.16 μm. Four
hundred projections were acquired over an angular range of 180° (an-
gular step of 0.45°). For each sample, 250 slices were selected from
the distal metaphysis. Details on how the 250 slices of the distal
metaphysis were consistently selected relative to anatomical locations
are shown in Fig. 1. The trabecular bone region of interest (ROI) was ex-
tracted by drawing ellipsoid contour with CT analyzer software
(Skyscan). The following parameters were measured: bone volume/tis-
sue volume (BV/TV; expressed in percentage), trabecular spacing
(Tb.Sp; μm), trabecular number (Tb.N; 1/mm) and trabecular thickness
Tb.Th (mm). The distal femur cortex was analyzed using Matlab Soft-
ware as described previously by Toumi et al. (2012), using a
thresholding range developed previously (Toumi et al., 2012). Cortical
thickness (Ct. thickness), cortical porosity (Ct. porosity), and cortical
Table 2
Parametric data for the five groups: Cortical Thickness (Ct.Thickness), NTX serum level meas
(b) Significant difference compared OVX group (p b 0.05). (c) Significant difference compar
0.05). All values represent mean ± SEM. Pinteraction: Statistical interaction between the effects
sclerostin antibody (b0.05). Pexercise: statistical degree of the influence of exercise (b0.05). Th
for the three parameters.

Parametric data Sham OVX OVX + E OVX

Ct. Thickness (μm) 506.73 ± 12.84
(n = 12)

541.30 ± 14.33
(n = 11)

511.14 ± 12.39
(n = 11)

650.0
(n =

NTX serum level (nM) 12.14 ± 0.69
(n = 12)

13.31 ± 0.62
(n = 11)

11.08 ± 0.92 (b)
(n = 12)

11.97
(n =
volume (Ct. volume) were calculated on the binary images based on
two-dimensional (2D) analysis. The porosity was calculated as the
ratio of the total area of pores to the total area of cortical bone space.

2.4. Bone biochemical markers

Bone turnover markers were analyzed in the terminal serum sam-
ples. Osteocalcin was analyzed as a marker of bone formation using a
commercial Rat Osteocalcin EIA kit (IDS, France). Intra- and inter-
assay CV were respectively 5.0% and 5.5% and the detection limit was
50 ng/ml. Telopeptide N of type I collagen (NTX) was analyzed as a
marker of bone resorption. Serum samples were analyzed in duplicate
using an ELISA Kit (NTX osteomark serum; TECO medical SARL,
Versailles, France). Intra- and inter-assay CVwere 4.6% and 6.9% respec-
tively and the detection limit was 3.2 nM Bone Collagen Equivalents/L
(nM BCE/L).

2.5. Bone mechanical testing

Mechanical properties of the femur were assessed by a three-point
bending test. Each femur was secured on the two lower supports on
the anvil of a Universal Testing Machine (Instron 3343; Instron,
Melbourne, Australia). The distance between the two supports was
20 mm. Loading point contacted the midpoint of the femoral diaphysis
in an antero-posterior direction at a speed of 1 mm/min. Load-
displacement curveswere collected using specialized Instron 3343 soft-
ware. Ultimate load (the maximal force supported by bone before frac-
ture, N) and stiffness (extrinsic rigidity; N/mm), were calculated
according to the method described previously by Turner and Burr
(Turner and Burr, 1993).

2.6. Statistics

Numerical variables were expressed as mean ± SEM. For each pa-
rameter, the group's normality was tested using a Shapiro Wilk test.
The homogeneity of the variances was tested to compare groups using
a Fisher F test. Parameters were classified to parametric and non-
parametric. For the parametric values, a two-way analysis of variance
(ANOVA) was used. The two factors in the ANOVAwere sclerostin anti-
body treatment and exercise, while the dependent variables were the
total body weight, the Ct. thickness and the NTX concentration at the
end of the study. To test the level of significance, a PLSD Fisher post
hoc test when significant. A Kruskal Wallis test was used for the non-
parametric values and groups were subsequently compared using the
ured at the end of the study. (a) Significant difference compared Sham group (p b 0.05).
ed OVX + E group (p b 0.05). (e) Significant difference compared OVX + S group (p b

of sclerostin antibody and exercise (b0.05). PScl-Ab: Statistical degree of the influence of
ere was no statistical interaction between the effects of sclerostin antibody and exercise

+ S OVX + E + S P SclAb P exercise P interaction

8 ± 17.55 (a,b,c)
12)

665.84 ± 16.20 (a,b,c)
(n = 12)

b0.0001 0.6431 0.1442

± 0.62
11)

9.18 ± 0.60 (a,b,e)
(n = 12)

0.0281 0.0010 0.6926



Table 3
Trabecular microarchitectural parameters in distal femoral metaphysis measured by microcomputed tomography (μCT). All values represent mean ± SEM. Bone volume/tissue volume
BV/TV (%), trabecular thickness Tb.Th (mm), trabecular number Tb.N (1/mm), trabecular spacing Tb.Sp (μm). The critical p-value (p) was 0.05; a, b, c represent significant differences
vs Sham, OVX and OVX + E respectively.

Sham OVX OVX+E OVX+S OVX+E+S

BV/TV (%) 15.60 ± 1.57 7.09 ± 1.13 (a) 8.13 ± 0.81 (a) 28.77 ± 3.82 (a,b,c) 26.07 ± 3.46 (a,b,c)
Tb.Th (mm) 0.1040 ± 1745 0.0930 ± 0.0023 (a) 0.0964 ± 0.0024 (a) 0.1675 ± 0.0066 (a,b,c) 0.1803 ± 0.0052 (a,b,c)
Tb.N (1/mm) 1.525 ± 0.1745 0.746 ± 0.1077 (a) 0.851 ± 0.0884 (a) 1.694 ± 0.2109 (b,c) 1.437 ± 0.1823 (b,c)
Tb.Sp (mm) 0.724 ± 0.0931 0.879 ± 0.0834 0.807 ± 0.073 0.787 ± 0.096 0.763 ± 0.064
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Dunn's post hoc test. Values of p b 0.05 were considered statistically
significant.
3. Results

The overall results showed that exercise decreased fat mass as well
as the bone resorptionmarker NTX relative to the non-exercised control
groups, effects thatwere associatedwith a prevention of the deleterious
effects of OVX on whole body and femur BMDs. Scl-Ab increased the
bone formation marker osteocalcin, and resulted in robust increases in
BMDs and femur metaphyseal bone volume to levels greater than in
the Sham group. The addition of exercise in the OVX + S + E group
did not further impact bone mass relative to the OVX + S group. At
the cortical femur diaphysis, Scl-Ab prevented the decreases in bone
strength after OVX, while exercise did not affect cortical strength.
These results are summarized in Figs. 2–4, Tables 1–4 and detailed
below.
3.1. Body weight and composition (Tables 1, 2)

The body weight measured at the end of the study revealed that the
OVX group showed a significant body weight gain compared with the
sham group (p b 0.01). Overall body weight measured at the end of
the study was lower in the OVX + E + S group compared with the
OVX group (p b 0.01). Similar results were obtained for fat mass, with
both trained OVX groups having a significantly lower fat mass com-
pared to non-trained OVX. Finally, there was no significant difference
in the lean mass between all the groups.
3.2. Bone mineral density (Fig. 2)

Both whole body and femoral BMDs were significantly lower in the
OVX group compared to Sham controls. Exercise did not induce a signif-
icant improvement in BMD compared to OVX controls, but therewas no
significant difference between OVX + E and Sham. Scl-Ab resulted in
significant increases in BMD compared to all other groups, though a sig-
nificant additive effect of exercise was not observed relative to the
OVX + S group.
Table 4
Microarchitectural at the distal femoral metaphysis measured bymicrocomputed tomography
(Ct volume) and cortical porosity (Ct porosity); a, b, c represent significant differences vs. Sham

Sham OVX OVX+E

Ct. Volume (μm3) 4978.7 ± 1062.38 50409.5 ± 1609.04 50852.9 ±
Ct. Porosity (%) 0.05367 ± 0.0009 0.0547 ± 0.00108 0.06269 ±
3.3. Bone microarchitecture and macroarchitecture (Tables 2–4)

As expected, trabecular bone volume in the distal femurmetaphysis
was decreased in the OVX group vs Sham controls (Table 3). Trabecular
BV/TV and Tb.Th were significantly higher for both Scl-Ab groups com-
pared to all other groups (Sham, OVX and OVX + E). Cortical volume
and cortical thickness in the femurmetaphysiswere significantly higher
in sclerostin antibody groups (OVX+ S and OVX+ E+ S) compared to
all groups (Sham, OVX and OVX+ E), and neither exercise nor ovariec-
tomy affected these parameters (Tables 2–4). Cortical porosity was the
highest in the OVX+E group compared to OVX and Sham controls, and
Scl-Ab prevented the significant increase in porosity with training.

3.4. Bone biochemical markers (Table 2, Fig. 3)

OCN was significantly higher in all OVX groups compared to Sham,
further increased with Scl-Ab, resulting in a significantly higher value
in OVX + E + S compared to OVX and OVX + E. NTX was significantly
lower in trained groups relative to OVX,while Scl-Ab alone resulted in a
non-significant decrease. Moreover NTX was significantly lower in
OVX + E + S than in OVX + S.

3.5. Bone mechanical testing (Fig. 4)

At the femur diaphysis, OVX resulted in significant decreases in ulti-
mate load and stiffness relative to Sham controls, while sclerostin anti-
body significantly improved these parameters compared to OVX
controls. Training alone had no significant effect on strength, and did
not significantly add to the effect of Scl-Ab treatment.

4. Discussion

While running exercise is recommended for optimum cardiovascu-
lar and overall health and anything that gets your heart rate into your
target heart rate zonewill work, the efficacy of running exercise therapy
on bone status and particularly in combination with osteoporosis ther-
apeutics is relatively underreported. The current study examined the ef-
fect of sclerostin antibody, running exercise and a combination of both
on bone mass in 10-month old OVX rats. Our findings confirm that
(μCT). All values represent mean ± SEM, the critical p-value (p) was 0.05. Cortical volume
, OVX and OVX + E respectively.

OVX+S OVX+E+S

924.63 63237.6 ± 1533.37 (a,b,c) 66393.4 ± 1705.85 (a,b,c)
0.00253 (a,b) 0.05082 ± 0.00237 (c) 0.5015 ± 0.00119 (a,b,c)

Unlabelled image
Unlabelled image
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running exercise decreased fat mass as well as the bone resorption
marker NTX relative to the non-exercised control groups, effects that
were associated with a prevention of the deleterious effects of OVX on
whole body and femur BMDs. Scl-Ab increased the bone formation
marker osteocalcin, and resulted in robust increases in areal BMD and
femur metaphyseal bone volume to levels greater than in the Sham
group. The combination of Scl-Ab and running did not further impact
bone mass and strength relative to Scl-Ab alone, though NTX and fat
mass were also reduced.

A lower dose than typically been used in animal models (5 mg/kg
twice a week) of Scl-Ab was sufficient to increase cortical volume,
BMD, BV/TV and Tb.Th. These findings are consistent with the effects
of the typical Scl-Ab dose used in animal studies (25 mg/kg twice a
week)which have been shown to significantly increase bone formation,
bone volume, and bone strength in multiple rodent models (summa-
rized in Ke et al. Endo Reviews) (Ke et al., 2012). The use of the
5 mg/kg dose is closer to the highest dose level (3 mg/kg) tested in
Phase 2 clinical studies (McClung et al., 2014), and its more modest
effect was considered optimal to allow potential additive effects with
exercise (Tian et al., 2011; Agholme et al., 2011).

Treadmill exercise has primarily been used to evaluate the effects of
running on bone homeostasis (Barengolts et al., 1993, 1994; Peng et al.,
1994, 1997). Previous studies have demonstrated that treadmill run-
ning increased bone formation and decreased bone resorption in grow-
ing rats, resulting in increases in BMD and trabecular microarchitecture
in weight bearing sites (Barengolts et al., 1994; Peng et al., 1994). In our
femalematuremodel, while BMDof OVX exercised rats increased to ap-
proximately the same extent as Sham, and NTX decreased, our running
exercise had amoremodest effect on BMD compared to previous results
from jumping rat models (Iwamoto et al., 2004, 2005; Hagihara et al.,
2009; Honda et al., 2003). This difference may be related to the signifi-
cantly higher principal tension, compression and shear strain and strain
rates with jumping compared to treadmill running (Milgrom et al.,
2000). It has been reported that high-impact exercise has greater bene-
ficial effect on bone formation and strength (Honda et al., 2003), while
running on a treadmill may not create stress levels high enough to
reach the bone modeling threshold required, as described by Frost
(Frost, 1997) in his mechanostat theory. In addition, it is possible that
estrogen loss may have shifted the bone-modeling threshold in OVX
rats, thus reducing the anabolic effect of treadmill running in the current
study. However, previous studies have reported that rats with high
bone turnover (i.e. estrogen-deficient) are more sensitive to loading
compared with normal rats (Barengolts et al., 1993; Frost, 1997).
Consistentwith the currentfindings, running exercise resulted in reduc-
tions in urinary NTX levels in postmenopausal womenwith osteopenia,
an effect that was correlated with improvements in lumbar BMD
(Yamazaki et al., 2004).

In addition to the load-based effects of exercise on the regulation of
bone homeostasis, it is possible that some of the preventive bone effects
could be attributed to the inhibition of fat mass accumulation post-OVX.
A recent publication has focused on the interactions between fat and
bone (Reid, 2008). Although a direct role of visceral fat in regulating
bone resorption has not been established, obesity has been linked to
chronic inflammation that could result in upregulation of proinflamma-
tory cytokines or hormones and thus increased osteoclastogenesis (Cao,
2011). However, weight loss has been reported to result in elevations in
bone resorption markers in humans, an effect hypothesized to be asso-
ciated with reduced skeletal loading rather than loss of fat. In any exer-
cise model it is challenging to separate out the effects of loading from
other effects on skeletal physiology. In fact, in the short term, exercise
has been reported to increase bone resorption markers in humans
(Welsh et al., 1997), while the opposite is true in the longer-term
(Phoosuwan et al., 2009), suggesting that the effects of exercise on
bone resorption may not be solely loading-based. Thus, the interactions
between increasing fat mass and regulation of bone turnover require
further exploration.
The expression of sclerostin in bone is also regulated by themechan-
ical loading environment (Robling et al., 2008). Thus, sclerostin is con-
sidered an important mediator of the anabolic effects of loading, and
in the catabolic effects of unloading. Herein, the combination therapy
of Scl-Ab and running exercise did not further impact bone formation
and strength relative to the Scl-Ab, perhaps due to the robust bone
effects of Scl-Ab relative to our treadmill exercise model.

In summary, weekly treatment with a low dose of Scl-Ab increased
bone formation, bone mass, and bone strength in OVX Wistar mature
rats. Running exercise decreased fatmass aswell as the bone resorption
marker NTX relative to the non-exercised control groups, effects that
were associated with a prevention of the deleterious effects of OVX on
whole body and femur BMDs. The combination therapy of Scl-Ab and
running exercise did not further impact bone mass relative to the Scl-
Ab, while it had moderate effect on bone physiology.
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