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Abstract
Background: Metabolic networks present a complex interconnected structure, whose
understanding is in general a non-trivial task. Several formal approaches have been developed to
support the investigation of such networks. One of the relevant problems in this context is the
comprehension of causality dependencies amongst the molecules involved in the metabolic process.

Results: We apply techniques from formal methods and computational logic to develop an
abstract qualitative model of metabolic networks in order to determine possible causal
dependencies. Keeping in mind both expressiveness and ease of use, we aimed at providing: i) a
minimal notation to represent causality in biochemical interactions, and ii) an automated tool
allowing human experts to easily vary conditions of in silico experiments. We exploit a reading of
chemical reactions in terms of logical implications: starting from a description of a metabolic
network in terms of reaction rules and initial conditions, chains of reactions, causally depending one
from the another, can be automatically deduced. Both the components of the initial state and the
clauses ruling reactions can be easily varied and a new trial of the experiment started, according to
a what-if investigation strategy. Our approach aims at exploiting computational logic as a formal
modeling framework, amongst the several available, that is naturally close to human reasoning. It
directly leads to executable implementations and may support, in perspective, various reasoning
schemata. Indeed, our abstractions are supported by a computational counterpart, based on a
Prolog implementation, which allows for a representation language closely correspondent to the
adopted chemical abstract notation. The proposed approach has been validated by results
regarding gene knock-out and essentiality for a model of the metabolic network of Escherichia coli
K12, which show a relevant coherence with available wet-lab experimental data.

Conclusions: Starting from the presented work, our goal is to provide an effective analysis toolkit,
supported by an efficient full-fledged computational counterpart, with the aim of fruitfully driving in
vitro experiments by effectively pruning non promising directions.
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Background
Understanding the relationships amongst the elements
involved in biologic interaction networks, such as the
functioning of cellular metabolism, is a relevant problem
in Systems Biology. In the words of [1], “diagrams of
interconnections represent a sort of static roadmaps, but
what we really seek to know are the traffic patterns, why
such patterns emerge, and how we can control them”.
Having a formal description of the interconnections and a
methodology to perform software simulation on how
these patterns are, should help in orientating in vitro
experimentation. Under this regard, causality can play an
important role in finding chains of reactions that connect
the parts of the system of interest, e.g. for determining
causal correlations among molecules that are not appar-
ently correlated. In general, the proposed models of com-
plex systems code a lot of information and determining
possible correlations and causal dependencies may be not
straightforward or computationally expensive.

We focus here on metabolic networks, i.e. the set of the
cellular biochemical pathways involved in energy man-
agement and in the synthesis of structural components.
Biochemical pathways are typically composed of chains of
enzymatically catalyzed chemical reactions and are inter-
connected in a complex way. Starting from the composi-
tion of local, well understood behaviour, the study of the
overall emerging behaviour of metabolic networks
appears difficult.

We apply techniques from formal methods and from
computational logic in order to develop an abstract qual-
itative model of metabolic networks, focussing on causal-
ity. Keeping in mind both expressiveness and ease of use,
we aimed at providing: i) a minimal notation to represent
causality in biochemical interactions, and ii) an auto-
mated tool allowing the human expert to easily vary con-
ditions of the in silico experiment. We introduce a simple
and skeletal notation, inspired by biochemical reactions,
to emphasize the causality aspects we are concerned with.
The choice of relying on computational logic, which “pro-
vides a straightforward and intuitive representation of
human reasoning” [2], has appeared particularly suitable
in the multidisciplinary context of our work. On the one
hand, it should be palatable to biologists, since very close
to the biochemical intuition. On the other hand, it has a
direct computational counterpart, which computer scien-
tists can build upon in order to devise the needed analysis
tool.

In our notation, biochemical reactions are given an
abstract representation: we only record which are the rela-
tions between the source and the target elements of each
single reaction, e.g. between two molecules M and N and
the molecule P they produce. In turn, P can become a

source molecule in another reaction and so on and so
forth. In other words, we abstract away from quantities,
stoichiometric proportions, kinetical or thermodynamics
parameters that are involved in the production of P.
Noticeably, we also abstract from the actual dynamics of
reactions. Intuitively speaking, we project reactions on a
“flat” temporal scale so that the availability of M and N is
never spoiled after the production of P, and other metab-
olites can be caused by M and N. This is also an abstrac-
tion over quantities, since “infinite copies” of M and N
result always available. Because of the abstraction, the
reaction leading to P actually represents the possibility for
P to be generated, or caused, in vivo, by the presence of M
and N. Indeed, the model gives an over-approximation of
the set of the actual pathways, possibly including some
pathways that could be actually prevented, for instance,
by the lack of a suitable quantity of reactants or by an
inadequate temperature. The payoff of the abstraction
adopted is in terms of expressiveness of the language and
effectiveness of its computational counterpart. Abstracting
from quantitative issues may prevent reasoning about
some of the dynamical features of (bio)chemical objects.
However, it makes possible to take into consideration
some aspects of those systems (typically large biochemical
networks) whose kinetical and thermodynamical param-
eters are scarcely known.

Chains of causal reactions can be, step by step, automati-
cally deduced. To this aim, we exploit an analogy between
logical implications and chemical reactions, by interpret-
ing the reaction of M and N that produces P as a logical
clause stating that M and N imply P. Our method is sup-
ported by a computational logic counterpart, based on a
Prolog implementation of a bottom-up semantics. This
allows us to compute the set of all the metabolites that can
be produced as consequences of a given set of rules and
starting from a set of initially available metabolites. This
is step-wise determined by repeatedly adding the metabo-
lites that can be immediately caused by the application of
the rules to the set of the so-far produced metabolites. We
then relate the computational construction with the orig-
inal model and prove convergence properties of the proc-
ess.

Despite the abstract working hypotheses adopted, our
framework has revealed sufficient to provide meaningful
approximations of the possible chains of reactions during
experiments. Moreover, the approach facilitates thinking
and revising the biological model itself, by making easy to
vary both the components of the initial state and the
clauses that rule reactions.

The proposed approach can serve as a sort of “what-if”
analysis, repeatedly exploring different scenarios, each
one derived from a different set of working hypotheses.
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Our tool allows us to rapidly evaluate the impact of
changes in the hypotheses on a particular observable out-
come. Thus, we obtain an interactive and effective analy-
sis, that can be used to differentiate the most promising
causal relations deduced, which deserve to be tested in
vitro, from those that instead can be pruned.

We have validated our approach by studying the robust-
ness of the metabolic network of E. coli K12. Selected
genes have been knocked-out by disabling the rules
regarding the corresponding encoded enzymes. Results
are coherent with the actual biological behaviour,
observed in vitro and reported in [3] and in the “Geno
Base” (http://ecoli.aist-nara.ac.jp/), a database entirely
dedicated to E. coli K-12.

This paper is organized as follows. Next, we will discuss
related work and then present our formal framework,
illustrating how biochemical processes can be represented
inside it. Results about experiments with the metabolic
network of the E. coli K-12 metabolic genotype follow.
Conclusions are followed by a section Methods, in which
we report on the techniques used.

Related work and comparison
Our work can be included in the recent research trend
which exploits well established theories and techniques
from formal methods in order to support the interpreta-
tion of the big amount of the raw biological data now
available. By using logic, we slightly diverge from the line
of research in which biological modelling is inspired by
the use of concurrent models. Concurrency theory offers a
wide choice of models naturally expressing causality, that
is one of its essential notions. Nevertheless, causality is a
natural notion also in the logic framework. Concurrent
models are focussed on the description of the dynamic
behaviour of whole systems. Considering these aspects
can be computationally demanding. This has led us to the
choice of an even more abstract model, where – as men-
tioned above – the notion of time is abstracted away. An
abstraction similar to ours can be performed a posteriori
on a concurrent model, for instance by resorting to static
analysis techniques, which offer static approximations of
the dynamic behaviour. Usually, static techniques extract
information by systematically inspecting the specification
of the dynamic behaviour of systems. In our approach
instead, we want to infer information by directly inspect-
ing the set of reactions, modulo the abstractions we dis-
cussed above, thus skipping the specification of the
chemical dynamics. Resorting to static techniques repre-
sents a typical way to drastically reduce the computational
cost due to the study of all the possible dynamic evolu-
tions of a system. The price to pay amounts to a loss of
precision, since they usually provide over-approximations
of the behaviour.

Among the several formalisms developed in concurrency
theory and applicable to Systems Biology, we recall below
the most relevant for our purposes. Petri Nets [4] offer a
way to graphically represent the structure of distributed
systems. They have been successfully applied to the mod-
elling of metabolic pathways and simple genetic networks
(see e.g. [5,6] to cite only a few). They model pathways
and networks in terms of their dynamic evolutions.

Process calculi describe interactions and communications
between independent agents or processes. The underlying
idea is that a biological system can be seen as concurrent
systems. In particular, π–calculus [7] and Ambient Calcu-
lus [8] have been transferred from theoretical computer
science setting to the biology setting, leading to suitably
extended biological versions of them, such as the Bio-
chemical stochastic π-calculus [9,10] and BioAmbients
[11]. Also a version of CCS, RCCS [12] has been intro-
duced to address biological issues. Other calculi have
been instead specifically defined for biological modelling,
such as κ-calculus [13], Brane calculi [14] and Beta Bind-
ers [15]. Chemistry has been already invoked explicitly in
the process algebraic context many years before the com-
ing of systems biology. In [16], an abstract machine based
on the chemical metaphor is introduced: states are chem-
ical solutions where floating molecules can interact
according to reaction rules. Rules specify how to produce
new molecules from old ones.

Closer to our approach is the work presented in [17],
where the authors apply a causal semantics of the π-calcu-
lus in order to describe biochemical processes. The proc-
ess computations that can be obtained quite accurately
capture and reflect the behaviour of biological systems
and causality has a key role in enhancing precision in such
simulations. Our starting point is quite similar, but in our
model the description of biological systems is given in
terms of molecular entities and reaction rules that implic-
itly code the causal relationships, and hence the possible
pathways. The causal semantics in [17] is based on an
enhanced form of transition systems [18], that makes it
possible to capture truly concurrent aspects like causality
in an interleaving setting, like the process algebraic one.
There are also other proposals, introduced with the same
aim, see for instance the distributed transition systems in
[19].

It is interesting to observe that our results could be com-
parable with the one obtained by using a quite efficient
static technique like Control Flow Analysis (CFA) [20,21],
applied to the π-calculus. In these settings, a reaction
between M and N that produces P can be abstractly mod-
elled as the synchronization of the process M and N on a
shared channel c, with a process P as a continuation.
Notice that in this case the full expressiveness of the π-cal-
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culus and, in particular, name-passing seems not to be
needed. In its simplest form, CFA considers as effective all
the communications that might occur through given
shared channels, disregarding their actual viability, due
for instance to synchronization dynamics. In modelling
reactions in such a way, also CFA would not consider the
possible consumption of reactants. Under this regard, our
approach can offer an analogous result, within a more
skeletal and abstract setting. Having an over-approxima-
tion of the exact behaviour of a system, both in the case of
static analysis and in our framework, means that all those
events that the prediction does not include will never hap-
pen, while when included, the events can happen, i.e. they
are only possible.

Another recent proposal that shares some similarities with
our approach is the one based on the biochemical abstract
machine BIOCHAM [22], which also offers a formal mod-
elling environment for biochemical processes, oriented
towards qualitative aspects. It is based on a rule-centered
language for specifying biochemical systems. Differently
from our approach, BIOCHAM semantics takes into con-
sideration the dynamics of systems and provides tools for
querying temporal properties of these systems by using
Computation Tree Logic. Refraining from dealing with
quantities, BIOCHAM offers explicit controls on reactant
consumption during reactions and, by default, all the pos-
sibilities are considered. This suggests further develop-
ments for our approach, where, currently, only the case of
no consumption is admitted. The reason for this choice is
effectiveness: in this way, branching semantics is avoided.

Still close to our approach and also to BIOCHAM is Path-
way logic (see e.g. [23,24]), where rewriting logic is used
for modelling biological processes. Rewrite rules describe
local changes and the molecular patterns that cause them.
Rules can be concurrently applied and this corresponds to
the actual possibility of biological compartments to inde-
pendently evolve. This offers a basis for in silico experi-
ments and for advanced forms of symbolic analysis. We
choose an alternative approach, by not resorting to a con-
current semantics, that is not in accordance with our aims.

Amongst the computational logic tradition, which largely
influences our proposal, it is interesting to cite some
recent proposals based on Abductive Logic Programming.

Complexity of bio-networks, understood as lack of com-
plete knowledge, has been addressed by means of the
capability of making assumptions provided by abduction.
This approach has been applied to gene networks in [25],
with motivations similar to ours. That proposal is based
on a combination of Abduction and Induction: abduction
allows inference from observable effects (see also [26])
and therefore it is used to generate hypotheses, while

induction has the aim of learning general rules from these
abduced hypotheses. The representation language has
been ad-hoc devised. The predictive accuracy increases
with the number of training examples. This methodology
has a richer representation language than ours and aims at
addressing a different class of problems in a different
experimental setting. Differently, [2], and then [27], are
based on a quite general class of languages, extended to
deal with the biological context. These language, also
known as action or event calculi, are suited to describe the
non-monotone evolution of a dynamical environment,
and specifically biological networks. Abduction is again
used as an expressive means to compute/deduce explana-
tions for missing information due to the dynamical nature
of the world. Although perhaps more expressive than our
approach, these proposals deal again with an explicit
treatment of the dynamics of the systems, differently from
our proposal that strives for simplicity in order to address,
even approximately, causality in very large metabolic net-
works.

Finally, it is important to refer to the wide usage of graphs
as representation language, traditionally close to biologist
experience. Amongst the huge set of papers adopting
graphs to model bio-networks, our work is closer to those
that use arcs and nodes to directly represent reactions. For
instance, an approach quite corresponding to our logical
view of reactions – as far as the abstraction level is con-
cerned – is in [28]. There, starting from a chosen qualita-
tive interpretation of biochemistry analogous to ours, the
authors focus on the topology of metabolic networks,
aiming at defining a representative measure of network
activity, the Synthetic Accessibility (the number of chemi-
cal reactions needed to transform a set of initial metabo-
lites into a set of output ones). This notion has also been
tested for predicting viability of mutant strains with accu-
racy results comparable to ours, although under a differ-
ent perspective.

Results and discussion
A constructive formalisation of metabolic causality
We clarify our interpretation of the metabolic causal rela-
tions by introducing the notation used to represent bio-
chemical reactions. We consider the assumptions on
which such idealised notatation relies, discussing why,
according to our aims, these assumptions can be consid-
ered viable working hypotheses. Such a notation repre-
sents our adopted formalisation of the biochemical
reactions. Then, under the chosen hypotheses, we give a
formal account of the fact that a metabolite, hereafter also
called reactant, is caused by a network. In the section
Methods, we will present the computational counterpart
of the formalisation and we will relate the computational
construction with the adopted model.
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From biochemical reactions to causal relations
Let us consider a biochemical reaction written in the clas-
sical notation:

M, N, P and Q are the species involved and m, n, p and q
the corresponding stoichiometric coefficients. Expression
(1) indicates that, when the reaction occurs, a certain
amount of M and N becomes a certain amount of P and Q
according to the stoichiometric proportions. Besides stoi-
chiometry, in order to exhaustively characterize a chemi-
cal reaction, one should take into account a number of
factors related to thermodynamics and kinetics that repre-
sent the propensity for a reaction to occur and the rate at
which reactants eventually become products.

Since we are interested in investigating causality relation-
ships only, we can omit the description of many of the fac-
tors cited above. Then, we can give an abstract
representation of (1) as follows:

We call such an expression a reaction rule. It simply states
that the presence of both M and N represents the possibil-
ity for P and Q to be produced or caused. If applicable, i.e.
it is known that the premises M and N are producible by
a network, then also P and Q are producible. Informally
speaking, a standard dynamical reading of (2) would be:

indeed, not considering the evolution of the network,
reactants are not consumed at any step.

The description of causal relations within a metabolic net-
work can be made by defining a set of metabolites initially
present I and a set of reaction rules R that describe how
new metabolites can be produced. Initial metabolites are
represented in the form of rules with no premises like →
P.

Example 1
Let us consider an experiment about a pathway occurring
in an environment providing α-D Glucose, Glycerol and
oxygen. By using suitable acronyms like glc, gly and o2,
respectively, the initial conditions of such an experiment
I will include:

→ glc

→ gly

→ o2

Moreover, let us imagine that the overall process to be
described includes (some steps of) the upper part of the
glycolytic pathway. Then, the set R will contain reaction
rules like:

where the acronyms glc6p, fru6p, fru16p, gap, dhap, nad,
nadh, bpg13 stand for Glucose 6-phosphate, Fructose 6-
phosphate, Fructose1,6-bisphosphate, Glyceraldehyde 3-
phosphate, Dihydroxyacetone phosphate, NAD+, NADH
and 1,3 Bisphosphoglicerate, respectively.

The rules (4), (5), (6), (7) and (8) together, and (9)
describe the reaction catalyzed by the enzymes phos-
phoglucose isomerase, 6-phosphofructo 1-chinase, fruc-
tose bisphosphate aldolase, triose phosphate isomerase,
glyceraldehyde 3-phosphate dehydrogenase, respectively.
Note that a reactant appearing on the right side of the
operator → may well appear on the left side in another
rule.

We eventually decompose the rules into simpler monadic
rules, e.g. (2) will be written as:

This transformation is causality preserving in the sense of
the following proposition.

Proposition 1
Let M1 ❍ … ❍ Mm → P1 ❍ … ❍ Pn be an applicable rule,
i.e. M1, …, Mn are producible, and then P1, …, Pn are pro-
ducible. Then, also the simplified rules M1 ❍ … ❍ Mm →
Pi, with i = 1, …, n, are applicable in any order, and their
application makes P1, …, Pn producible, as well.

The above proposition holds because causality behaves in
a monotone way, since the application of subsequent
rules cannot spoil the fact that any metabolite is produci-
ble.

mM nN pP qQ+ → + (1)

M N P Q→ (2)

M N M N P Q→ (3)

glc p fru p6 6→ (4)

fru p ATP fru p ADP6 16→ (5)

fru p gap dhap16 → (6)

dhap gap→ (7)

gap dhap→ (8)

gap nad bpg nadh→ 13 (9)

M N P→ (10)

M N Q→ (11)
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The fact that a reactant is caused by a network is made pre-
cise by means of the following definition relating the
metabolite to the chain of reactions that have made it
exist, starting from an initial state I and according to a set
of rules R.

Definition 1
Given a set of rules R, an initial state I, and a reactant a let
us consider the following construction:

Then, any ER,I(a) ≠ ⊥ is an explanation for a under R and I.

The construction is non-deterministic (in the choice of the
rule and in the choice amongst the first two cases), indeed
there may be different ways to cause a metabolite.

False positives and false negatives: a problem of approximation
We here briefly discuss on the precision of our approach.
As explained above, our approach is intended to offer an
over-approximation of the dynamic behaviour of meta-
bolic pathways. The existence of an explanation gives us
indications about the possibility of the production of the
metabolite, according to the many relaxing assumptions
adopted. This means that we can have false positives, i.e. it
is possible to predict in silico the production of metabo-
lites that cannot be produced in vivo. This presence is
expected as a consequence of abstraction and of over-
approximation. However, the experimental results
reported in the final part of the section give accuracy rates,
i.e. a measure of approximation, comparable with those
obtained by other well-known approaches in the litera-
ture.

On the contrary, up to the adequacy of the adopted bio-
logical model, we do not expect false negatives, i.e. metab-
olites that can be produced in vivo but have no
explanation in silico, as stated by the following claim.

Claim
If there is no explanation for the production of a certain
metabolite a, then a cannot be producible in vivo.

The intuition supporting our claim is based on the follow-
ing reasoning: if ad absurdum the metabolite a is actually
producible in vivo, then there is a certain set of biochemi-
cal reactions that can be applied starting from an initial set
of metabolites. Starting from the same reactions and
applying to them the abstractions illustrated above
should lead us to the explanation we are looking for.

Note that experimental evidence of the possible produc-
tion of a metabolite in vivo but not in silico, should suggest
the need of a revision of the adopted biological model.

The set of reactants that can be “motivated”, in the sense
above illustrated, by an explanation starting from an ini-
tial pool of given reactants and a specific set of rules can
be automatically determined. Amongst the different and
equivalent approaches that could have been used, we fol-
low a logic-deductive interpretation, along the line of the
explanatory approach adopted. For further details, see sec-
tion Methods.

Experiments
We have applied our approach to a biological model
based upon the E. coli K-12 metabolic genotype proposed
in [29] and [30]. This group of genes represents a subset
of the whole genome of E. coli K-12 that includes genes
encoding enzymes involved in energetic and biosynthetic
metabolism. Using our formalism, we have represented
the metabolic network composed by the enzymes
encoded by the selected gene set and the metabolites
involved in the catalyzed reactions. We have obtained a
list of about 600 causal rules. We have performed some in
silico “what-if” experiments and compared the obtained
results with the correspondent in vitro counterpart,
excerpts of which are reported in the following. The exper-
iments have been carried out on a tool (see [31]), briefly
presented in section Methods.

Mutually essential genes
In this in silico experimental session we performed a gene
knock-out mimicking an homologous in vitro experiment
presented in [3]. There, the authors silenced two target
genes of E. coli K-12 (sucAB and sucCD) that encode for
two enzymes involved in the Krebs cycle (α-ketoglutarate
dehydrogenase and succinyl-CoA synthase, respectively).
They found those genes “mutually essential” for the pro-
duction of succinyl-CoA, i.e. sucAB and sucCD could be
knocked-out individually, but not simultaneously in
order to achieve Succinyl-CoA production. Succinyl-CoA
is a critically important metabolite involved in several
biochemical pathways leading, e.g., to energy production
and peptidoglycan biosynthesis (via Diaminopimelate).

In order to simulate this gene knock-out, we have
removed the rules corresponding to the reactions cata-
lysed by α-ketoglutarate dehydrogenase and succinyl-CoA
synthase. Then we have set the starting experimental con-
ditions, including in the initial state all the metabolites
that the cell is assumed to uptake from the external envi-
ronment. Checking for the presence of succinyl-CoA at the
end of the computation, we found that this metabolite
was not produced (i.e. the correspondent fact was not
deduced) only when both the target genes (i.e. the rules

E a

a

a E a E a

a I

a a a R ER I R I R I n n R, , ,, ,( ) = ( ) ( )⎡⎣ ⎤⎦
⊥

→ ∈
→ ∈1 1… …

if

if and ,, ..I ia i n( ) ≠⊥ ∀ ∈[ ]
⎧

⎨
⎪

⎩
⎪

1

otherwise
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corresponding to the action of the encoded enzymes)
were simultaneously turned off. This reflects what actually
happens in vitro.

In silico gene knock-out
We have performed other in silico gene knock-outs and
compared our results with the information contained in
the “Geno Base” (http://ecoli.aist-nara.ac.jp/), a database
entirely dedicated to E. coli K-12. In this database genes
are classified according to various criteria, among which
their essentiality, i.e. their capability of causing cell death,
when turned off. In our in silico knock-out experiments we
tried to test gene essentiality verifying whether or not our
in silico knock-out mutants exhibit features typically per-
taining to living cells. We assumed that these characteris-
tics should reasonably include the production of ATP
(essential for cellular energetic metabolism), the produc-
tion of reduced coenzymes NADPH and NADH and the
production of not dispensable structural components,
such as the cell wall (murein Biosynthesis). We have per-
formed our in silico knock-out experiments over a sample
of 132 genes of our set, each time removing the rules cor-
responding to the enzyme encoded by the silenced gene
and checking for the presence of the observed elements at
the end of each computation. We interpret the results as a
prediction on the viability or not viability of the knock-
out mutant under analysis. In our experimental setting
(see Table 1), we slightly extend the notion of false posi-
tives and negatives introduced in the first part of the sec-
tion and we say that a True Positive occurs when a knock-
out mutant results viable both in silico and in the in vivo
counterpart, while a True Negative occurs when a in silico
knock-out mutant is not viable both in silico and in vivo, a
False Positive occurs when a viable in silico knock-out
mutant has an in vivo counterpart which is not, and a False
Negative occurs when an in silico knock-out mutants is not
viable, while its in vivo counterpart results viable. Note
that this assignment has been arbitrarily chosen. To eval-
uate the performance of our method and compare it with
similar approaches we use a performance measure taken
by [28], that measures the number of true predictions –
both positive (viability) and negative (non viability) – on
the overall ones. Note that our definitions of false posi-
tives and false negatives differ from those proposed in

[28]. This difference has been taken into account in calcu-
lating the accuracy A defined below.

Definition 4
Let TP, TN, FP, FN be the number of true positives, true
negatives false positives, and false negatives, respectively.
We define accuracy A as

.

Our experiments give the following results:

As reported in [28], the accuracy of the Synthetic Accessi-
bility approach therein presented ranges from 60% to
74%, while another approach for metabolic networks, i.e.
the Flux Balance Analysis [30], has an accuracy that ranges
between 62% and 86%. We found 17 false positives,
resulting in an accuracy of about 87% over this specific
experiment. These differences are probably strongly influ-
enced by the way data sets are interpreted and by which
cases are included in the data sets. However, the obtained
results make us confident that our approach is reasonably
accurate.

To give an intuitive idea of the experiments, we just report
in Table 2, some examples of true positive, true negative
and false positive cases (reminding that we have no false
negatives). The symbols + or − stand for the presence or
absence, respectively, of the observed elements in the in
silico results.

The presence of false positives (in silico, the mutant is pre-
dicted viable, but actually, in vivo, it is not) is expected in
our framework, as a consequence of the abstraction and of
the over-approximation we used in our model. This corre-
sponds to the fact that something that has influence on
viability and that is potentially producible in silico, it is not
actually produced in real life. Finally, note that, in the
experiments carried out, we have found no false negatives.
This makes us confident of the correctness of the adopted
biological model.

Conclusions
In metabolic networks, metabolites are produced from a
set of initial metabolites, through a set of chemical reac-
tions. These reactions produce intermediate metabolites
that can be both products or reactants. We have intro-

A TP TN TP TN FP FN= +( ) + + +( )/

TP

TN

FP

FN

=
=
=
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

102

13

17

0

Table 1: True and false positives and negatives according to our 
definition, depending on the viability of knock-out mutants in 
silico and in vivo

CASE IN SILICO IN VIVO

True Positive viable viable
True Negative not viable not viable
False Positive viable not viable
False Negative not viable viable
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duced a simple and skeletal notation to describe these net-
works in terms of molecular entities and reaction rules
that specify their interactions and that implicitly code pos-
sible causal dependencies amongst reactions. This nota-
tion permits us, on the one hand, to give to chemical
reactions an abstract and intuitive representation where
quantitative aspects are abstracted away; on the other
hand, this representation can be straightforwardly trans-
lated into an input for the tool we developed, paving the
way for in silico experiments and further tool develop-
ment. To this aim, we have exploited the analogy between
reaction rules and logical implications, that allows us to
automatically deduce chains of causally related reactions
by means of a logical-based tool. Even though we do not
consider the dynamic evolution of metabolic networks,
our model is sufficient to give information on which
metabolites can be possibly produced and how and,
therefore, to give hints on the possible flows of reactions.

Moreover, our methodology makes it possible to reason
about the model itself, by allowing us to vary both the ini-
tial conditions and the rules. It is easy to program such
modifications and evaluating the impact of changes in the
hypotheses is quite immediate, because the tool quickly
reacts to the queries (typically an answer about a reasona-
ble large network returns almost istantanelously). The
what-if approach satisfies the need to simulate and inves-
tigate the behaviour of not fully known metabolic net-
works under different working hypotheses. In particular it
allows us to perform perturbative experiments, whose
results are not trivial to predict. In fact, if the studied net-
work is complex enough, it results unfeasible to a priori
estimate the effects produced by a local perturbation on
the overall network. Finally, we have applied our method-
ology to the metabolic network of the E. coli K-12 meta-
bolic genotype. The in silico experiments presented reflect
the in vitro ones. The results obtained up to now show our
method not to underperform analogous ones. Noticeably
it is ground on a formalism that provides efficient and
straightforward implementations.

Our ultimate goal for further investigations is that of sup-
porting a heuristic process of searching causal explana-
tions of metabolic phenomena, with in mind the

“emphasis on hypothesis-driven research in biology”
advocated in [1].

Methods
To illustrate our methodology, we describe the computa-
tional framework that represents the counterpart of the
formalisation of metabolic causality, introduced in sec-
tion Results and Discussion. Finally, we relate the compu-
tational construction with the adopted formalisation.

The set of reactants that can be caused – according to our
formalisation – by an explanation starting from an initial
set of reactants and a set of rules can be automatically
determined. Amongst the different and equivalent
approaches that we could choose, we eventually follow a
logic-deductive interpretation, along the line of the
explanatory approach adopted. Technically, what follows
consists of a fragment of Horn-based Logic Programming
(having only a finite set of ground predicates) equipped
with bottom-up semantics (see, e.g. [32]). However, for
the sake of accessibility, the theory is recast in terms of
rules (i.e., clauses) and reactants (i.e., predicates). In the
following, reactants are directly represented, while causal
rules of the model, a ❍ c → b say, are straightforwardly
translated into Horn-rules, like a, c → b, according to the
following definition.

Definition 2
Let A a finite set of reactants such that a1,…, an, a ∈ A, then

with n ≥ 0 is a rule.

Notice that we can have rules with empty premises. These
rules are used for representing the elements present in the
initial state I.

The set of consequences of a given set of rules (respec-
tively, the semantics of a logic program) can be defined
according to a step-wise bottom-up process. The applica-
tion of a rule to a set of reactants causes a new reactant
when all the premises of the rule can be verified in the set.
Starting from the set of the initially available reactants, the
set of all the reactants that can be caused can be obtained
by repeatedly adding the reactants that can be immedi-
ately caused by the application of all the rules.

Definition 3
Let R be a set of rules and A a set of reactants, then the
immediate consequence operator TR(A) : 2A → 2A is defined
as

a a an1 , ,… →

T A a a a a R a a A AR n n( ) → ∈ ∈{ }∪… …| , , , ,1 1and 

Table 2: Gene knock-out experimental results

Gene ATP NADPH NADH cellwall outcome

acpS − − − − true negative
lpxA + + + − true negative
glk + + + + true positive
aceA + + + + true positive
prsA + + + + false positive
pfk + + + + false positive
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.

Moreover, .

The convergence of the outlined process is guaranteed by
the following result, which is based on the observation

that, trivially,  is a (finite) complete partial

order(c.p.o.) and T(_) is continuous over it (keeping the
original A guarantees monotonicity). Moreover, being the
set of reactants finite – i.e. the number of all the reactants
occurring in rules R and in the initial state I – the bottom-
up construction is also guaranteed to converge in a finite

number of steps (then the fix point is indicated as (A)

instead of as (A)).

Proposition 2
Let R be a set of rules, A a set of reactants, and m the
number of all the reactants in the model under consider-
ation. Then, n <m exists such that

Example 2
Let us consider a network with reactants I = { → b} ini-
tially available and consisting of the following simple
rules R:

Applying TR ({b}) we have

Coherence of computational and metabolic causality

As standard, one would like to relate the computational
construction provided with the original model, i.e. our
adopted formalisation of biochemical reactions, intro-
duced in section Results and Discussion. Let us start to
observe that keeping track of the rule used when applying
TR(_) would allow us to reconstruct explanations (which

indeed recall SLD-trees of the top-down semantics of
Logic Programming). Considering again the example

above, the reactant c is caused in  by the applica-

tion of rule (12), that in turn depends on rule (13), for the
production of a that does not belong to the initial set I =

{→ b}. Consequently, one would have the explanation
c[a[b],b] for c. However, it is important to have considered
convergence over reactants rather than over explanations.
It is easy to observe that at the fourth step we would have
the explanation a[b[a[b]]] due to the cycle between a and
b. This amounts to say that – in the presence of cycles –
explanations can growth indefinitely, i.e. convergence
occurs at infinity. Hence, we have restricted ourselves to
compute the reactants that can be produced, which is a
finite process. However, the following correspondence
between computational results and the potentially infi-
nite model of explanations can be drawn.

Theorem 1

Let R be a set of rules, a a reactant, I a set of reactants and
 the minimum natural number such that

. Then the following holds

Proof
(Outline).

(⇒) By induction on the number of steps needed to firstly
cause a in the bottom-up process (the rule that has moti-
vated the inclusion of a can also be used as the top-most
rule in the definition of an explanation for a. All the reac-
tants in the premises of the rule must have been caused in
less steps, and then, by inductive hypothesis, explanations
for them exist, and these can be used to construct the
explanation for a).

(⇐) By induction on structural complexity of EI,R(a). (By

inductive hypothesis, all the reactants in the premises of

the top-most rule in the explanation belong to ,

then either a is in  or  is not a fix point, since

the rule is clearly applicable and would cause a).

To address the problem of causality in metabolic net-
works, as seen above, we developed a software tool based
on an implementation of a standard bottom-up seman-
tics, running on top of SICTUS Prolog Interpreter (see
[31]).

T A T T A T A AR
n

R R
n

R
o( ) ( )( ) ( )−1 and

〈 ⊆⎧2A ,

TR
n

TR
∞

T T A T AR R
n

R
n( )( )= ( ).

a b c, → (12)

b a→ (13)

a b→ (14)

c d→ (15)

T b a b

T b c a b

T b d c b a

T b T

R

R

R

R R

{ }( ) = { }
{ }( ) = { }
{ }( ) = { }
{ }( ) =

,

, ,

, , ,

2

3

4 33 b{ }( )

T bR
3 { }( )

n

T T I T IR
n

R
n( )( )= ( )

a T I E aR
n

I R∈ ( ) ⇔ ∃ ( ) ≠⊥,

T IR
n ( )

T IR
n ( ) T IR

n ( )
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