
����������
�������

Citation: Liu, Y.; Zou, B.; Xu, J.; Yang,

S.; Li, Y. Denoising for 3D Point

Cloud Based on Regularization of a

Statistical Low-Dimensional

Manifold. Sensors 2022, 22, 2666.

https://doi.org/10.3390/s22072666

Academic Editor: Anastasios

Doulamis

Received: 22 January 2022

Accepted: 26 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Denoising for 3D Point Cloud Based on Regularization of a
Statistical Low-Dimensional Manifold
Youyu Liu 1,2,† , Baozhu Zou 1,2,*, Jiao Xu 3,†, Siyang Yang 1,2 and Yi Li 1,2

1 Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment,
Ministry of Education, Wuhu 241000, China; liuyyu@ahpu.edu.cn (Y.L.); 2012124@ahpu.edu.cn (S.Y.);
2210110112@stu.ahpu.edu.cn (Y.L.)

2 School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
3 System Office, Wuhu Changxin Technology Co., Ltd., Wuhu 241009, China; jxu@tokengroup.com
* Correspondence: 2200110117@stu.ahpu.edu.cn
† These authors contributed equally to this work.

Abstract: A point cloud obtained by stereo matching algorithm or three-dimensional (3D) scan-
ner generally contains much complex noise, which will affect the accuracy of subsequent surface
reconstruction or visualization processing. To eliminate the complex noise, a new regularization
algorithm for denoising was proposed. In view of the fact that 3D point clouds have low-dimensional
structures, a statistical low-dimensional manifold (SLDM) model was established. By regularizing its
dimensions, the denoising problem of the point cloud was expressed as an optimization problem
based on the geometric constraints of the regularization term of the manifold. A low-dimensional
smooth manifold model was constructed by discrete sampling, and solved by means of a statistical
method and an alternating iterative method. The performance of the denoising algorithm was quanti-
tatively evaluated from three aspects, i.e., the signal-to-noise ratio (SNR), mean square error (MSE)
and structural similarity (SSIM). Analysis and comparison of performance showed that compared
with the algebraic point-set surface (APSS), non-local denoising (NLD) and feature graph learning
(FGL) algorithms, the mean SNR of the point cloud denoised using the proposed method increased
by 1.22 DB, 1.81 DB and 1.20 DB, respectively, its mean MSE decreased by 0.096, 0.086 and 0.076,
respectively, and its mean SSIM decreased by 0.023, 0.022 and 0.020, respectively, which shows that
the proposed method is more effective in eliminating Gaussian noise and Laplace noise in common
point clouds. The application cases showed that the proposed algorithm can retain the geometric
feature information of point clouds while eliminating complex noise.

Keywords: point cloud denoising; statistical low-dimensional manifold; regularization; Gaussian
noise; Laplace noise

1. Introduction

Due to their simplicity, flexibility and strong representative ability, three-dimensional
(3D) point clouds are more and more widely used in many fields [1–3], such as object
recognition and surface reconstruction. Point cloud data are mainly obtained in two
ways [4,5], namely using a stereo matching algorithm or a 3D scanner. The former obtains
the point cloud by projecting all pixels into the 3D space through matching [6]. Due
to the fuzzy matching, a lot of noise will be present in the obtained point cloud. The
latter, including laser scanners [7], structured light scanners [8] and lidar [9], can quickly
obtain complete point clouds. However, due to the uncertainties of measurement errors,
reflectance from objects, occlusion, illumination and the environment, the obtained point
cloud data of objects often contain a large number of complex noise points [10]. Noise not
only deforms the bottom manifold structure of point clouds [11], which is not conducive to
their surface reconstruction and visualization, but also adds useless information [12], and
then reduces the accuracy of the extraction of their features.
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Point cloud denoising has become one of the hot fields of 3D geometric data processing.
Zeng et al. [13] extended a previously proposed graph Laplace regularization (GLR), which
uses the patch manifold prior to seeking self-similar patches in order to fulfill the purpose
of point cloud denoising. Dinesh et al. [14] proposed a fast graph-based local algorithm,
but it was found that the graph signal denoising algorithm would lead to the problems of
clustering and deformation. Duan et al. [15] proposed a weighted multi-projection (WMP)
algorithm to estimate a local tangent plane at each 3D point, and then reconstructed each
3D point through the weighted averaging of its projections on multiple tangent planes,
so as to alleviate the problems of clustering and deformation. Wei et al. [16] applied the
feature graph learning (FGL) algorithm to point cloud denoising. Different from setting
the edge weight parameters manually, when the available signal is smooth relative to the
graph, the edge weight parameters are strictly optimized through feature measurement
learning, so as to realize the accurate and fast denoising of the point cloud. The above
algorithms are derived from formulae that explicitly assume Gaussian noise, and have
achieved good results regarding the additional noise generated on the object surface, but
theoretically, they are not suitable for the actual complex noise far away from the object
noise points. The removal of actual complex noise points is still challenging.

To solve the issue of the actual complex noise of point clouds in objects, a denoising
approach for 3D point clouds, based on the regularization of the statistical low-dimensional
manifold (R-SLDM), is proposed in this article. Firstly, the slight and non-sparse noise
(such as Gaussian noise) and large and sparse noise (such as Laplace noise) (see Figure 1)
were combined into actual complex noise. Secondly, in view of the fact that 3D point clouds
have low-dimensional structures, the point cloud model with noise was distributed on
the low-dimensional manifold in a high-dimensional space. Moreover, the regularization
term of the manifold was used for the denoising of prior information to maintain the basic
structure embedded in the low-dimensional manifold. Finally, the denoising problem of
point clouds was expressed as an optimization problem based on the geometric constraints
of the regularization term of the manifold, which was approximately solved by means of a
statistical method and an alternating iterative method.
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Figure 1. Point cloud model with Laplace noise and Gaussian noise.

The main contributions of our work are as follows:

(1) A denoising algorithm was designed for Gaussian noise and Laplace noise to denoise
the two kinds of noise together;

(2) Using the regularization term of the manifold and the fidelity term of the noise, the
basic structure of a denoised point cloud was maintained;

(3) Discrete sampling was used to construct low-dimensional manifolds to avoid a large
number of calculations.

2. Related Works

At present, there are two kinds of denoising methods for point cloud data: local meth-
ods [14,17–25] and non-local methods [13,15,16,26–28]. The former involves the denoising
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of the point cloud based on the neighborhood of points, while the latter involves identifying
similar point patches from the local neighborhood and combining this group of patches
for denoising.

(1) Local Method. Alexa et al. [17] defined a point cloud surface by means of moving
least-squares projection, projected the noise points onto the least-squares surface, and
then smoothed the data. Guennebaud et al. [18] and Öztireli et al. [19] proposed the
algebraic point set surface (APSS) and robust implicit moving least-squares (RIMLS),
respectively, for denoising based on moving least-squares (MLS), but it was found that
over-smoothing could easily be produced [20,21]. Lipman et al. [22] introduced local
optimal projection (LOP) in point cloud denoising, of which the basic principle is to project
the point set to the natural surface of the point cloud to reduce noise. However, the
algorithm has a limited effect in terms of preserving the features of the point cloud. Huang
et al. [23] proposed a weighted local optimal projection (WLOP) algorithm based on the
local optimal projection algorithm, which can retain the features of a point cloud, but it is
time-consuming. Moreover, they also proposed an anisotropic WLOP (AWLOP) algorithm
by modifying WLOP, and used anisotropic weighting functions to retain the sharp features
of the point cloud model [24]; however, it can easily produce additional features [20,21].
Dinesh et al. [25] solved different types of additive noise by using two fidelity terms through
feature graph Laplace regularization (FGLR).

(2) Non-Local Method. Dabov et al. [26] and Rosman et al. [27] spread image denois-
ing algorithms such as non-local mean (NLM) and block-matching 3D Denoising (BM3D)
to point cloud denoising. However, this was found to depend on the self-similarity among
the surface blocks in the point cloud, and required a large amount of calculation. De-
schaud et al. [28] used the polynomial coefficients of local MLS surfaces as neighborhood
descriptors to calculate the similarity of points, and then proposed a non-local denoising
(NLD) algorithm. Zeng et al. [13] proposed the GLR denoising algorithm to seek self-similar
patches to denoise the point cloud. Different from the direct smoothing of 3D coordinate
points, Duan et al. [15] estimated the local tangent plane of each point based on the graphi-
cal method, and realized point cloud denoising through weighted projection. Wei et al. [16]
used the FGL algorithm for point cloud denoising.

The method proposed in this article is categorized as a non-local method. Similar
to [13,16,25], we also used regularization for denoising. However, the methods given in
references [13,16] involve the establishing of prior information based on Gaussian noise,
which is not suitable for complex information including both Laplace noise and Gaussian
noise, so it is difficult to apply these methods in practical denoising. On the other hand,
although two kinds of additive noise are studied in reference [25], two different algorithms
are designed for them; thus, the two kinds of noise are not solved uniformly. Our proposed
method is intended to solve the above two problems.

3. Methods
3.1. Low-Dimensional Manifold Model

Image u ∈ Rm×n (indicating that u is in the number field with the size of m × n);
P(u)(x) is defined as a two-dimensional (2D) rectangular pixel block of the u, with a size
of s1 × s2. Pixel x is in the upper left corner of the rectangle, and ∀ x ∈ Ω = {1, 2, . . . , m} ×
{1, 2, . . . , n}. The set of all pixel blocks is called the pixel block set of the u, which is
represented by P(u) [29]:

P(u) =
{
P(u)(x) : x ∈ Ω

}
⊂ Rd, d = s1 × s2 (1)

For the image u, a point cloud in Rd is given from the P(u), which is close to a smooth
manifold embedded in Rd. This potential smooth manifold is called a block manifold;
it is associated with u, and is denoted as M(u). Based on the fact that there are often
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low-dimensional structures in many natural image block manifolds [29,30], Osher et al.
designed a low-dimensional manifold model [31], as shown in Equation (2):

arg min
u ∈ Rm×n

M⊂ Rd

dim(M), subject to : b = Φu + ε, P(u) ⊂M (2)

Moreover, dim(M) in Equation (2) is expressed as follows:

dim(M) =
d

∑
i=1
||∇Mαi(x)||2L2(M) (3)

where αi(x) = xi; ∀ x = (x1, · · · , xd) ∈ M ⊂ Rd

An image restoration model for low-dimensional manifolds is obtained from
Equations (2) and (3), as shown in Equation (4):

arg min
u ∈ Rm×n

M⊂ Rd

d

∑
i=1
||∇Mαi(x)||2L2(M) + µ ‖ b−Φu||22, subject to : P(u) ⊂M (4)

3.2. Point Cloud Denoising Model
3.2.1. 3D Point Cloud and Noise Model

Point cloud N = {ni}N
i=1, and ni ∈ R3. Let N = [n1, . . . , nN ]

> ∈ RN×3, and then its
observation model can be expressed as Equation (5):

N = U + G + L (5)

where U, G, L ∈ RN×3.
Our goal in developing this model was to restore the observation model N to the ideal

model U under the interference of Gaussian noise G and Laplace noise L.

3.2.2. Statistical Low-Dimensional Manifold Model

A surface block {nm}M
m=1 ⊂ N is defined in the point cloud, from which M subsets

are selected as the block centers. The block set pm centered on nm is defined as the set of k
points closest to nm, and Um=1

M pm = N . Let pm ∈ R3k be the block coordinates, composed
of k points in pm.

A low-dimensional smooth manifold, in which pm samples are embedded in R3k, is
represented byM(U). The designed statistical low-dimensional manifold (SLDM) model
is shown in Equation (6):

arg min
U

dim(M(U)), subject to : N = U + G + L, pm ⊂M(U) (6)

The maximum a posteriori (MAP) problem can be described by a regularization term
and a fidelity term, as follows:

arg min
U

dim(M(U)) + λ ‖ N−U− L ‖2
F, subject to : pm ⊂M(U) (7)

where ‖ N−U− L ‖2
F is the fidelity item, which is used to ensure the similarity before

and after point cloud processing; min
U

dim(M(U)) is the regularization term to enhance

the output; λ is a parameter to weigh the relationship between the fidelity term and the
regularity term.

Blocks are usually not a single smooth manifold, which may have different dimensions
and correspond to different patterns of images [29]; thus, dim(M(U)) of the block manifold
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is a function ofM(U). The integral of dim(M(U)) onM is used for regularization, as
shown in Equation (8):

arg min
U

∫
M

dim(M(U))(p)dp + λ ‖ N−U− L ‖2
F, subject to : pm ⊂M(U) (8)

where p ∈ R3k is a point onM; dim(M(U))(p) is the manifold size ofM(U) at p.
According to Equation (3),

dim(M)(p) =
3k

∑
i=1
||∇M fi (p) || 2F (9)

Substituting Equation (9) into Equation (8),

arg min
U

3k

∑
i=1

∫
M
||∇M fi(p) ||2dp+λ ‖ N−U− L ‖2

F, subject to : N = U + G + L (10)

where ∀p = [p1, . . . , p3k]
> ∈ M ⊂ R3k, fi(p) = pi; ∇M fi(p) is the gradient of function fi

at p onM.

3.3. Solution of Point Cloud Denoising Model
3.3.1. Solution Principle

ManifoldM is discretely sampled to construct a discrete graph G, and to describe
the low-dimensional smooth manifold model. Its vertex set is a visible surface block
P = {pm}

M
m=1, and pm ∈ M(U) ⊂ R3k, in which the edge weight of the m and n blocks

are defined as follows:

wm,n =

 (ρmρn)
−1/γ exp

(
− ‖pm−pn‖2

2
2ε2

)
‖ pm − pn ‖2< r

0 otherwise
(11)

where (ρmρn)
−1/γ is a normalized term; ρn=ΣM

m=1ψ( ||pm − pn ||2) is the expression be-
fore normalization; ψ(·) is the weight kernel function. Under these conditions, an r-
neighborhood graph is constructed with no edge being greater than r; r = εCr.

A symmetric adjacency matrix W ∈ RM×M is defined by using the edge weight
in Equation (11) to represent graph G, in which W(m, n)= W(n, m)= wm,n. Moreover,
D(m, m) = ∑

n
wm,n. According to the literature [32], the Laplacian matrix of the combined

graph is defined as M = D−W. For the regularization term in Equation (10), fi is sampled
at the position of P to obtain the discrete form fi = [ fi(p1) . . . fi(pM)]>. The regularizer
f>i Mfi [33] is derived from M, as shown in Equation (12).

f>i Mfi = ∑
(m,n)∈τ

wm,n( fi(pm)− fi(pn))
2 (12)

According to studies [34,35],

lim
M→ ∞

ε→ 0, δ→ 0

f>i Mfi ∼
1
|M|

∫
M
‖ ∇M fi(p) ‖2

2dp (13)

With the increasing of sample number M and the decreasing of neighborhood radius
r, f>i Mfi is close to its limit of smoothness. If the manifold dimension δ is low, even if the
block manifold is embedded in a high-dimensional space, it can reasonably approximate
the continuous regularization function [36].
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According to Equations (9) and (13),

lim
M→ ∞

ε→ 0, δ→ 0

|M|
3k

∑
i=1

f>i Mfi ∼
3k

∑
i=1

∫
M
‖ ∇M fi(p) ‖2

2dp (14)

In order to define fi, the {pm}
M
m=1 must be sorted. The following Equation (15) can be

inferred from Equation (12):

3k

∑
i=1

f>i Mfi = ∑
(m,n)∈τ

wm,n ‖ pm − fipn ‖
2
2 (15)

where ‖ pm − pn ‖2 can determine the block similarity. It can be seen from Equation (15)
that the regularization does not need the coordinate function fi; thus, the surface blocks do
not need to be sorted.

According to the constructed discrete graph G, the global graph Laplace matrix
Mp = ∑3k

i=1 STMS ∈ RkM×N can be obtained, in which kM is the number of points of all
surface blocks, and S ∈ {0, 1}kM×N . Therefore, Equation (10) can be transformed into
Equation (16):

arg min
U

(
PT

x MpPx + PT
yMpPy + PT

z MpPz

)
+ λ ‖ N−U− L ‖2

F, subject to : N = U + G + L (16)

where Px, Py, Pz ∈ RkM.
Let P =

[
Px, Py, Pz

]
∈ RkM×3, then,

tr
(

P>MpP
)
= PT

x MpPx + PT
yMpPy + PT

z MpPz (17)

where P is related to the denoised point cloud sample, and P = SU−C, C ∈ RkM×3.
The objective function (16) can be rewritten as shown in Equation (18):

arg min
U

tr
(
(SU−C)>Mp(SU−C)

)
+ λ ‖ N−U− L ‖ 2

F, subject to : N = U + G + L

(18)
For any point ni in the point cloud N , let Si represent the average distance from this

point to k points in the neighborhood, and then the distance threshold is obtained, as shown
in Equation (19):

dthreshold =
∑n

i=1 Si

N
± std ·

∑n
i=1

(
Si − ∑n

i=1 Si
N

)2

N
(19)

The point with a distance between ni and a neighborhood outside (∑n
i=1 Si
N − std ·

∑n
i=1

(
Si−

∑n
i=1 Si

N

)2

N , ∑n
i=1 Si
N + std ·

∑n
i=1

(
Si−

∑n
i=1 Si

N

)2

N ) is Laplace noise. Therefore, the position
matrix L of Laplace noise can be obtained using a statistical method.

To solve Equation (18) approximately, an alternating optimization method is adopted:
in the loop, fix Mp and update U, then update Mp given U, and repeat until convergence.
In each iteration, Mp is updated according to the above method. In order to fix Mp and
optimize U, the coordinates (x, y, z) of each point are given by Equation (20):(

STMpS + λEq

)
Uq = λ

(
Nq + Lq

)
+ STMpCq (20)

where Eq is an identity matrix with the same size as Mp; U is solved by means of an iterative
method until the result converges.
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3.3.2. Algorithm Design

Based on the solution principle, the denoising process for the 3D point cloud, based on
the regularization of SLDM (R-SLDM), is shown in Figure 2, and its algorithm (Algorithm 1)
is shown as follows:

Algorithm 1: Denoising for 3D point cloud based on R-

Input: N, k, s, λ, ξ.
Output: Denoised cloud U.
1: Initializing U with N;
2: for iter = 1, 2, . . . r do;
3: Sampling s points from U as a block center;
4: Find the k nearest neighbors of the center of each block to form a surface block;

5: Optimizing objective function: arg min
U

tr
(
(SU−C)>Mp(SU−C)

)
+ λ ‖ N−U− L ‖ 2

F,

subject to: N = U + G + L;

6: L← dthreshold = ∑n
i=1 Si
N ± std ·

∑n
i=1

(
Si−

∑n
i=1 Si

N

)2

N ;
7: MP ← ∑3k

i=1 STMS ;

8: Nq ←
(

STMpS + λEq

)
Uq = λ

(
Nq + Lq

)
+ STMpCq ; q ∈ {x, y, z};

9: U converges;
10: end for
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3.3.3. Performance Evaluation

The performance of the denoising algorithm can be quantitatively evaluated based on
the signal-to-noise ratio (SNR), mean square error (MSE) and structural similarity (SSIM).

The SNR [13] is shown in Equation (21):

SNR(U1,U2)10lg
2

N2
∑ui∈U2

‖ uj ‖2
2

1
N1

∑ui∈U1
min

uj∈U2
‖ ui − uj ‖2

2 +
1

N2
∑ui∈U2

min
uj∈U1

‖ ui − uj ‖2
2

(21)

The MSE [15] is shown in Equation (22):

MSE(U1,U2)
1
2

(
1

N1
∑

ui∈U1

min
uj∈U2

‖ ui − uj ‖2
2 +

1
N2

∑
ui∈U2

min
uj∈U1

‖ ui − uj ‖2
2

)
(22)

where U1 = {ui}N1
i=1, ui ∈ R3; U2 =

{
uj
}N2

j=1, uj ∈ R3.
The SSIM [37] is shown in Equation (23):

SSIM(U1,U2) =
(2µ1µ2 + C1)(2σ12 + C2)(

µ2
1 + µ2

2 + C1
)(

σ2
1 + σ2

2 + C2
) (23)
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where µ1 = ∑
ui∈U1

wi|ui|, µ2 = ∑
uj∈U2

wj|uj|, σ1 =

[
∑

ui∈U1

wi(|ui − µ1|) 2

] 1
2

,

σ2 =

[
∑

uj∈U1

wj
(
|uj − µ1|)

2
] 1

2

, σ12 = 1
2

[
∑

ui∈U1

wi(|ui − µ1|)
(
|uj| − µ2

)
+ ∑

uj∈U2

wj(|ui| − µ1)

(
|uj| − µ2

)]
,

N
∑

i=1
wi = 1.

With the SNR, MSE and SSIM, the difference between the ground-truth point cloud
and the denoised one can be reasonably compared. The larger the SNR and SSIM, the lower
the distortion of point cloud denoising, and the better the denoising effect. The smaller
the MSE value, the lower the deviation between the ground-truth value and the denoised
cloud, and the better the denoising effect.

4. Results and Discussion
4.1. Comparative Analysis of Denoising Performance

To verify the effectiveness of the proposed algorithm, the public point cloud model
known as Daratech was used to carry out the denoising research, and the performance was
compared with the existing algorithms under different noise intensity conditions.

As shown in Figure 3a, Daratech’s ground-truth point cloud model contains 32,003
data points. The Gaussian noise and Laplacian noise, with a mean value of 0 and standard
deviations (σ) of 0.1, 0.2, 0.3, 0.4, 0.5, were added to the model of the ground-truth point
cloud, for which the noise models with σ = 0.2 and σ = 0.4 are shown in Figure 4. To
conveniently display the effect and denoising results after adding noise, color information
was added to the resulting model, and the color bar represents depth information. The
R-SLDM proposed in this article was used to denoise the 3D point cloud model under
different noise intensities, as shown in Figure 4, in which k is 16, s is 50%, λ is 21 and ξ is
15. From the denoising results in Figure 3b,c, it can be seen that the denoising algorithm
proposed in this article can effectively eliminate Gaussian noise and Laplace noise in the
common point cloud, and can properly retain their original geometric features. Thus, it is
an effective point cloud denoising algorithm.
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The point cloud models under different noise intensities, as shown in Figure 4, were
denoised by APSS, NLD and FLD, respectively. It can be seen from Figure 5 that the color
distribution on the surface of the point cloud model was uneven, and thus, did not show
the plane characteristics well. Moreover, there was noise far away from the main body.
Compared with Figure 5, the color distribution on the surfaces shown in Figures 6 and 7
was relatively uniform, but there was also noise far away from the main body. It can be
seen from the results of Figures 5–7 that the Laplace noise could not be well eliminated.
As can be seen from Table 1, for the five kinds of noise levels with different σ values (0.01
to 0.05), the mean SNRs of APSS and NLD after denoising were 46.79 DB and 46.42 DB,
respectively, with little difference. The mean SNR of the latest FGL method after denoising



Sensors 2022, 22, 2666 9 of 17

was 47.03 DB, while that of the proposed algorithm in this article was 48.23 DB, which was
1.22 DB more than that of APSS, 1.81 DB more than that of NLD and 1.20 DB more than
that of FGL. It was thus better than the latter three. The distortion of the denoising process
of the proposed algorithm was the lowest. It can be seen from Table 2 that the mean MSE
obtained by the R-SLDM in this article was as low as 0.159, 0.096 lower than that of APSS,
0.086 lower than that of NLD, and 0.076 lower than that of FLD. The deviation between
the ground-truth value and the denoised cloud was the lowest. It can be seen from Table 3
that the mean SSIM with noise was 0.906, and those of APSS, WLOP and FGL were 0.944,
0.945 and 0.947, respectively, with all of these playing a certain role in the composite noise.
However, the mean SSIM of the algorithm in this article was 0.967, which was 0.023, 0.022
and 0.020 more than that of the other three algorithms. Comparative experiments showed
that the proposed algorithm is more suitable for denoising noise in practice.
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Table 1. SNR (DB) of five different denoising algorithms for Daratech models.

Noise Levels σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05 Means

Noise 47.31 46.73 46.14 45.26 44.96 46.08
APSS 48.12 47.52 46.87 45.96 45.48 46.79
NLD 47.93 46.28 46.71 45.78 45.38 46.42
FGL 48.05 48.29 46.22 46.75 45.83 47.03

R-SLDM 49.78 48.77 48.26 47.36 46.98 48.23

Table 2. MSE of five different denoising algorithms for Daratech models.

Noise Levels σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05 Means

Noise 0.196 0.231 0.283 0.315 0.356 0.276
APSS 0.187 0.216 0.267 0.289 0.313 0.255

WLOP 0.179 0.208 0.257 0.273 0.308 0.245
FGL 0.174 0.192 0.236 0.274 0.301 0.235

R-SLDM 0.139 0.153 0.162 0.169 0.172 0.159
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Table 3. SSIM of five different denoising algorithms for Daratech models.

Noise Levels σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05 Means

Noise 0. 944 0.921 0.913 0.895 0.856 0.906
APSS 0.954 0.936 0.967 0.949 0.913 0.944

WLOP 0.959 0.948 0.957 0.931 0.928 0.945
FGL 0.981 0.953 0.931 0.937 0.931 0.947

R-SLDM 0.979 0.983 0.962 0.961 0.952 0.967

4.2. Denoising Application for 3D Point Cloud

To further verify the proposed R-SLDM model, a self-built laser-scanning platform,
as shown in Figure 8, was used to collect the point cloud of the four objects with noise,
and the algorithm in this article was used for denoising on a workstation. The workstation
parameters were as follows: the basic frequency was 3.90 GHz; the CPU model was AMD
Ryzen73800X; and the graphics card model was 3060.
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Figure 8. Laser-scanning platform.

The objects shown in Figure 9 were scanned by laser, and the obtained 3D point cloud
is shown in Figure 10. To clearly illustrate the point cloud noise of objects and the denoising
performance of various algorithms, we locally amplified the scanned point cloud and
denoising results. It can be seen from the local enlarged view of the point clouds of the four
objects in Figure 10 that there were regular noises close to the main bodies and irregular
noises far away from them in the point clouds obtained by the laser-scanning platform. The
results obtained for the denoising of the point cloud with the APSS algorithm are shown
in Figure 11. Taking object 3 as an example, it is obvious from Figures 10c and 11c that
there was little difference before and after point cloud denoising. Consequently, the APSS
algorithm could not eliminate the noise far away from the main body, and the removal effect
of noise on the object surface was also not effective. The results obtained for the denoising
of the point cloud shown in Figure 10 using the NLD algorithm are shown in Figure 12. As
can be seen from Figure 12a,b, the noise on the object surface was reduced considerably, but
the noise far away from the main body still existed. As can be seen from Figure 12c,d, noise
still existed on the surface of the workpiece and away from the main body. By analyzing
the structural information of the four objects, it can be seen that the structures of objects
1 and 2 were simple with regular planes or surfaces, and those of objects 3 and 4 were
complex, containing a large number of irregular holes and surfaces. It was found that the
NLD algorithm was not suitable for the point clouds with complex structures and that
were far away from the main body. The denoising results obtained with the FGL algorithm
are shown in Figure 13. The noise on the surface of the four objects was well eliminated,
and the noise far away from the main body was not removed. The results obtained for the
denoising of the point cloud shown in Figure 10 using the proposed R-SLDM algorithm are
shown in Figure 14, in which k is 16, s is 50%, λ is 21 and ξ is 15. The results show that the
surfaces of the objects were smooth and the noise away from the main body became less.
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Compared with APSS, NLD and FGL, the R-SLDM algorithm proposed in this article was
able to effectively remove large-scale irregular noise far from the main body and small-scale
regular noise close to the main body. Taking object 1 in Table 4 as an example, the SNR
value of the R-SLDM algorithm was 47.83 db, which was 2.62 DB higher than that of APSS,
1.08 DB higher than that of NLD and 0.91 DB higher than that of FLD. The SNR value of the
proposed R-SLDM algorithm was higher than that of APSS, NLD and FGL. For different
objects, the mean SNR of R-SLDM was 48.49 DB, which was 1.02 DB higher than that of
APSS, 1.14 DB higher than that of NLD and 0.94 DB higher than that of FGL. From Table 5
it can be inferred that the mean MSE of the proposed R-SLDM algorithm was reduced to
3.165 × 10−3, a lower value than that of APSS (1.213 × 10−3), NLD (1.107 × 10−3) and FGL
(0.451 × 10−3). According to Table 6, the mean SSIM values of APSS, WLOP and FGL were
0.935, 0.937 and 0.950, respectively. All of the three algorithms maintained the structure of
the point cloud. Nevertheless, the mean SSIM of the proposed algorithm was 0.973, which
was 0.038, 0.036 and 0.023 more than that of the other three algorithms, and it retained the
real structure of the point cloud more completely. Comparative experiments showed that
the R-SLDM algorithm not only eliminated complex noise, but also effectively retained the
geometric information of the point cloud, and the distortion rate was low.
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Table 4. SNR (DB) of different denoising algorithms for four objects.

Objects a b c d Means

Noise 45.21 47.51 48.42 44.23 46.34
APSS 46.63 48.63 48.98 45.63 47.47
NLD 46.75 47.74 48.78 46.14 47.35
FGL 46.92 47.82 48,83 47.81 47.85

R-SLDM 47.83 48.64 49.74 47.73 48.49

Table 5. MSE (×10−3) of different denoising algorithms for four objects.

Objects a b c d Means

Noise 4.734 4.348 5.378 5.134 4.989
APSS 4.257 3.789 4.898 4.568 4.378

WLOP 4.191 3.695 4.788 4.414 4.272
FGL 3.933 2.978 3.764 3.789 3.616

R-SLDM 3.275 2.784 3.356 3.246 3.165
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Table 6. SSIM of different denoising algorithms for four objects.

Objects a b c d Means

Noise 0.884 0.912 0.878 0.934 0.902
APSS 0.913 0.941 0.918 0.968 0.935

WLOP 0.931 0.965 0.908 0.944 0.937
FGL 0.956 0.953 0.928 0.954 0.950

R-SLDM 0.975 0.984 0.956 0.976 0.973

5. Conclusions

A SLDM model was established in this paper, which was sampled discretely. The
position matrix of the ideal point cloud was approximately calculated using the statistical
method and an alternating iterative method; then, the denoising for the 3D point cloud,
based on R-SLDM, which can be widely applied to the denoising of point clouds with
significant geometric characteristics, was determined. Different algorithms were used to
denoise the Daratech model with five kinds of noise levels, and SNR, MES and SSIM were
used for comparative analysis. Compared with APSS, NLD and FGL, the mean SNR of
the point cloud denoised by the proposed algorithm increased by 1.22 DB, 1.81 DB and
1.20 DB, respectively; the mean MSE decreased by 0.096, 0.086 and 0.076, respectively; the
mean SSIM increased by 0.023, 0.022 and 0.020, respectively. Different algorithms were
used to denoise the 3D noisy point clouds of the four kinds of objects, which shows that
compared with APSS, NLD and FGL, the mean SNR of the point cloud denoised by the
proposed algorithm increased by 2.62 DB, 1.08 DB and 0.91 DB, respectively; the mean
MSE decreased by 1.213 × 10−3, 1.107 × 10−3 and 0.451 × 10−3, respectively; and the mean
SSIM increased by 0.038, 0.036 and 0.023, respectively. The results show that the proposed
method is more suitable for denoising practical complex noise than the existing algorithms,
and can clearly retain the salient features of the objects without excessive smoothing. The
method proposed in this article has achieved great success in static point cloud denoising,
but has not been verified in the field of dynamic point clouds. In future work, we will
consider the noise caused by irregular sampling and the change of the number of points in
each frame of the dynamic point cloud. The dynamic point cloud sequence can be divided
into each frame independently, and then the proposed method can be extended to the field
of dynamic point clouds with strengthening of the inter-frame correlation.
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Nomenclature

b observation image
C position matrix of block center
Cr, C1, C2 constant
d number
dim(M) dimension of block manifoldM
dthreshold distance threshold
D diagonal matrix
fi coordinate function
G Gaussian noise
i count
k number of nearest fields
L Laplace noise
M Laplacian matrix of combined graph
Mp global graph Laplace matrix
M number of samples
ni position of point cloud N
N point cloud with noise
N number of samples
N1 number of samples of ground-truth point cloud
N2 number of samples of observed point cloud after denoising
pm block set
p point ofM
pm block coordinates
P position matrix of point cloud
Px midpoint coordinate vector in x-direction
Py midpoint coordinate vector in y-direction
Pz midpoint coordinate vector in z-direction
q index of coordinates, q ∈ {x, y, z}
r radius of neighborhood
Rd number field with size of d
Rm×n number field with size of m× n
s sampling rate of block center
s1 length of pixel block
s2 width of pixel block
S sampling matrix
Si average distance
std multiple threshold of standard deviation
u image
U1 set of ground-truth point cloud
U2 set of observed point cloud after denoising
U ideal model
wm,n edge weight
W adjacency matrix
x pixel
αi(x) coordinate function, i = 1, . . . , d
γ constant
δ manifold dimension
ε perturbing noise.
ε reset parameter
ξ maximum number of iteration
λ parameter
µ parameter in penalty item
µ1 mean value of U1
µ2 mean value of U2
σ standard deviation
σ1 standard deviation of U1
σ2 standard deviation of U2
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σ12 covariance of U1 and U2
τ edge set
Φ metric operator
G discrete graph
M manifold
|M| manifold size
N set of point cloud with noise
P visible surface block
Ω pixel index
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