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Chemotherapy-induced cardiotoxicity (CIC) is an emerging clinical problem with significant
healthcare costs and no preventative therapies (1, 2). Identifying selective therapeutic targets in CIC
is difficult, in part, because the mechanisms of drug toxicity vary between chemotherapeutics. For
example, cardiotoxicity can be acute or chronic, transient or permanent, and can affect myocardial
contractility, cardiomyocyte conduction or the myocardial vascular system (3). Thus, candidate
CIC therapies would need to target many features involved in cardiac dysfunction, and additionally
should not prevent chemotherapy-mediated tumor regression. Although most would agree that
investing in new therapies that specifically target the tumor, while not affecting other normal
tissues, including the heart would be ideal, this approach is currently impractical, as even the
most selective cancer therapies have been associated with cardiotoxicity (1). For example, Bcr-
Abl kinase is a specific gene fusion that causes chronic myeologenous leukemia (CML) (4), and
although Bcr-Abl kinase inhibitors, including imatinib mesylate are effective in treating CML
(5), they are also associated with cardiotoxicity in pre-clinical animal studies and patients (6),
suggesting that alternative adjuvant therapies that can prevent, limit or improve CIC need to
be developed. The most commonly used preventative therapy for CIC is dexrazoxane (7), and
although dexrazoxane has shown some benefit in preventing CIC (7), it has also been associated
with prevention of chemotherapy-induced tumor regression (8), and increased incidence in the
development of certain types of cancer in pediatric patients (9, 10). In addition, current treatment
guidelines for patients diagnosed with CIC often result in discontinuation of the chemotherapy
(regardless of the tumor responsiveness) and initiation into standard heart failure treatment
regimes (which include β-blockers and angiotensin inhibitors) (11). In both options, for either
prevention or treatment of CIC, the myocardium appears to have precedence over the tumor, with
patients receiving suboptimal care for their cancer. Rather than separating our treatment regime
to focus either on heart failure or cancer, an ideal approach would look for common pathways
identified in both tissues, with the aim to limit or improve chemotherapy-induced heart failure, but
not prevent (or even enhance) chemotherapy-induced tumor regression. In this opinion article,
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we will discuss metabolic pathways that appear to be induced
in both the failing heart and tumor, suggesting that metabolic
therapies could provide an alternative approach for treating CIC,
without hindering or potentially even improving chemotherapy-
induced tumor regression.

In recent years several metabolic pathways have been
identified in the failing myocardium, resulting in the emergence
of metabolic therapies that appear to be beneficial against
several forms of heart failure in both animals and patients
(12, 13). The myocardium is the most energetically demanding
organ of our body, and predominantly utilizes long-chain
fatty acids and glucose as the primary substrates to generate
adenosine triphosphate (ATP), which is required for myocardial
contractility (14). In normal conditions, glucose is metabolized
to pyruvate in the cytoplasm by glycolysis (GLY), generating
∼2 ATP (14). Pyruvate can be further metabolized in the
mitochondria to acetyl-CoA, the substrate for the Krebs’
cycle, in a process termed glucose oxidation (GO), and this
requires the pyruvate dehydrogenase complex (PDC) (14).
Alternatively, long-chain fatty acids can also be metabolized
in the mitochondria to generate acetyl-CoA via fatty acid
β-oxidation (FAO) (14). The reducing equivalents NADH
and FADH2 produced from the Krebs’ cycle can enter
the electron transport chain (ETC) to produce ∼32 ATP
(14). The normal myocardium generates the majority of its
ATP (∼60–90%) from mitochondrial fatty acid β-oxidation
(FAO) and glucose oxidation (GO), with cytoplasmic GLY
providing a minimal alternative energy-producing pathway
(14, 15). Several studies have reported that a transition
from a normal to failing myocardium is associated with
a switch in energy metabolism from mitochondrial GO
to cytoplasmic GLY (13–15). Furthermore, GLY appears to
be uncoupled from GO, in part, because PDC is actively
inhibited by pyruvate dehydrogenase kinase (PDK) (14). The
increase in GLY (and uncoupling to GO) results in an
increase in the production of lactate and protons (H+) in
the cytoplasm. This buildup of H+ eventually results in
a decrease in cardiac efficiency, since the cardiomyocytes
utilize a large amount of ATP to restore ion homeostasis, at
the expense of ATP-dependent contractility (14). Thus, this
shift in energy metabolism impairs cardiac contractility and
conductance.

A prominent metabolic transcription factor that has been
shown to be important in the switch in energy metabolism
from GO to GLY is hypoxia-inducible factor 1α (HIF1α)
(16). HIF1α is a transcription factor that is induced in the
failing myocardium, and is associated with increased expression
of glucose transporters, glycolytic enzymes, and PDK (17–
19). Thus, HIF1α can directly increase GLY (via increasing
glucose uptake into the cell and increasing the levels of
glycolytic enzymes) and inhibit GO (via the induction of
PDK), resulting in decreased cardiac efficiency. Several studies
have shown that coupling GLY with GO can improve cardiac
function in several heart failure models. For example, inhibition
of PDK with the small molecule compound dicholoracetate
(DCA) improves cardiac function in both ischemic and

afterload-induced heart failure models (20–24). Furthermore,
inhibition of FAO with Ranolazine or Trimetazidine, which
subsequently increase GO [via the Randle cycle; (25)], improves
cardiac function in multiple preclinical heart failure models and
in patients (26–29). Therefore, increasing GO (either directly
with PDK inhibitors or indirectly with FAO inhibitors) appears
to reverse the metabolic remodeling observed in the failing
heart and improve cardiac efficiency and function. A recent
study has implicated a similar metabolic remodeling in sunitinib-
induced heart failure [i.e., increased GLY (30)], suggesting
that therapeutically increasing GO in CIC would be beneficial
in this form of heart failure as well. In addition, several
chemotherapeutics, including anthracyclines or tyrosine kinase
inhibitors are associated with cardiac metabolic dysfunction
(30–38), providing further evidence that metabolic therapies
could be beneficial against a variety of cardiotoxic chemotherapy
agents.

Intriguingly, a similar metabolic remodeling has also been
identified in cancer progression (39, 40). In 1927 Otto Warburg
observed that most cancer cells utilized aerobic GLY, and this
was associated with decreased mitochondrial respiration (41). It
is now well described that cancer cells have a similar uncoupling
of GLY with GO to the failing myocardium, however, unlike the
failing myocardium, this metabolic profile provides cancer cells
with a survival advantage (39, 42). For example, the increase in
GLY in cancer results in an increase in other glycolytic branching
pathways, including the pentose phosphate pathway or serine
biosynthetic pathway, which generates nucleotides or amino
acids, respectively, both required for cell proliferation (40, 43).
Alternatively, the decrease in mitochondrial GO provides cancer
cells with apoptosis resistance (19, 39, 44). The inhibition of
PDC (and GO) in cancer cells is associated with an increase
in the mitochondrial membrane potential, which subsequently
increases the threshold for activation of the mitochondrial
permeability transition pore and thus, mitochondrial dependent
apoptosis (19, 39, 44). Similar to the failing myocardium,
HIF1α is also induced in cancer cells and is associated with
an increase in the expression of glucose transporters, glycolytic
enzymes and PDK (resulting in suppressed mitochondrial GO).
Inhibition of PDK (and increasing GO), with DCA in cancer cells
results in decreased proliferation and enhanced mitochondrial-
dependent apoptosis, resulting in decreased tumor growth in
several pre-clinical animal models (19, 44–47), and in a small
clinical trial in glioblastoma patients (48). Alternatively, other
compounds that also increase GO, including the pyruvate
kinase activator TEPP-46, has shown benefit against tumor
progression (49). Taken together, these studies provide strong
evidence that therapeutically increasing GO is a valid approach
for decreasing tumor progression. In addition, our group had
shown that increasing GO with DCA was sufficient to decrease
HIF1α activity (44), providing a strong positive feedback loop
that would potentiate the increase in the GO/GLY ratio, in
cancer.

Recent evidence has also implicated HIF1α with the reductive
glutamine pathway in cancer (50–52). The reductive glutamine
pathway is associated with decreased GO, and provides cancer
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cells with sufficient mitochondrial substrates (i.e., citrate) to
sustain lipogenesis, a critical requirement for proliferating cancer
cells (50). Similarly the reductive glutamine pathway has also
been implicated in right-sided heart failure, as well (53), and

inhibition of this pathway has been shown to be beneficial against
both heart failure and cancer progression (51–53). Intriguingly,
enhancing GO has been shown to inhibit the reductive glutamine
pathway (51, 53), suggesting that metabolic therapies which

FIGURE 1 | A similar metabolic remodeling in heart failure and cancer. HIF1α is induced in both the failing cardiomyocyte and cancer cells, and can increase the

expression of glucose transporters, glycolytic enzymes, pyruvate dehydrogenase kinase (PDK), and the reductive glutamine pathway (shown in blue font). The

increase in glycolysis is accompanied with the shuttling of glycolytic intermediates into the PPP and SBP, increasing nucleotide and amino acid synthesis, respectively.

Furthermore, uncoupling of glycolysis with glucose oxidation results in an increase in lactate and H+ production in the cytoplasm. Inhibition of glucose oxidation is

associated with closure of the MPTP, leading to apoptosis resistance. These metabolic alterations result in decreased cardiac efficiency and contractility in the heart

and increased proliferation and apoptosis resistance in the tumor. HRE, Hypoxia Response Element; GLUT, Glucose Transporter; PPP, Pentose Phosphate Pathway;

SBP, Serine Biosynthetic Pathway; PDK, Pyruvate Dehydrogenase Kinase; PDC, Pyruvate Dehydrogenase Complex; ETC: Electron Transport Chain; MPTP,

Mitochondrial Permeability Transition Pore.
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increase GO could have alternative benefits against heart
failure and cancer progression, in addition to altering energy
metabolism.

In conclusion, a similar metabolic profile (i.e., uncoupling
of GLY with GO) appears to be prominent in both
heart failure and cancer (see Figure 1). Therapeutically
increasing GO in either the failing myocardium or tumor
results in improved cardiac function or tumor regression,
respectively, suggesting that a similar metabolic therapy
could be beneficial in CIC. Although intriguing, much
work is required to address if metabolic therapies could be
advantageous against this emerging and prominent clinical
condition.
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