
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Peroxygenase-Catalysed Epoxidation of Styrene Derivatives
in Neat Reaction Media
Marine C. R. Rauch,[a] Florian Tieves,[a] Caroline E. Paul,[a] Isabel W. C. E. Arends,[b]

Miguel Alcalde,[c] and Frank Hollmann*[a]

Biocatalytic oxyfunctionalisation reactions are traditionally con-
ducted in aqueous media limiting their production yield. Here
we report the application of a peroxygenase in neat reaction
conditions reaching product concentrations of up to 360 mM.

Epoxides are important building blocks in organic synthesis.
The ring opening of epoxides leads to useful �- or β-substituted
alcohols.[1] As a result, a broad range of catalytic methods for
the epoxidation of C=C-double bonds have been established.[2]

Compared to this variety, only few biocatalytic methods are
known. The chemoenzymatic epoxidation of alkenes using
lipase-borne peracids for example is receiving tremendous
interest but yields racemic products.[3] Amongst the stereo-
specific epoxidation methods the use of flavin-dependent
styrene monooxygenases[4] and P450 monooxygenases[5] are
most prominent.
The latter approaches rely on reductive activation of

molecular oxygen using reduced nicotinamide cofactors (NAD
(P)H) as source of reducing equivalents (Scheme 1). This not
only implies complicated and vulnerable electron transport
chains but also, due to the exclusive water-solubility of the
cofactors, largely limits these processes to aqueous reaction
media.
The majority of the alkenes of interest are however hydro-

phobic, limiting the final product titres to the lower millimolar

range. This is inacceptable from an economic and an environ-
mental point-of-view. Current solutions focus around two-
liquid-phase-system approaches (2LPS).[6]

Ideally, (bio) catalytic epoxidation reactions should occur in
organic media (even neat) to enable high product concen-
trations. In this respect, peroxygenases represent a promising
solution.[7] Peroxygenases are heme-thiolate enzymes enabling
P450 monooxygenase-like oxyfunctionalisation reactions. In
contrast to monooxygenases, peroxygenases do not rely on
(water-soluble) redox partners but on (organic) peroxides,
enabling their potential application in non-aqueous media.
Pioneering works by Pu, Wang and Zhang[8] and Hofrichter[9]

have established peroxygenase-catalysed epoxidation reactions
using hydrogen peroxide or organic hydroperoxides as oxi-
dants, albeit in aqueous reaction media thereby limiting the
reagent concentration to the lower millimolar range.
Klibanov and co-workers reported peroxidase-reactions

under non-aqueous conditions.[10] Unfortunately, these contri-
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Scheme 1. Comparison of biocatalytic epoxidation reactions.
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butions have not yet found widespread attention in the
biocatalysis community.
We therefore set out to establish peroxygenase-catalysed,

selective oxyfunctionalisation reactions in neat reaction media.
As model peroxygenase we chose an evolved recombinant
peroxygenase from Agrocybe aegerita (rAaeUPO)[11] to catalyse
the epoxidation of styrene and its derivatives.[9]

As oxidant, we chose tert-butyl hydroperoxide (tBuOOH) due
to its high solubility in hydrophobic media.
To employ rAaeUPO in neat reaction media, we first

immobilised it covalently on an epoxide-modified polyacrylic
matrix (Immobead IB-COV-1). Under non-optimised conditions,
72.8% of the enzyme was immobilised (for further details see SI
section 4). The remaining catalytic activity, however was only
3% (Figure S1). Further development will have to focus on
optimised immobilisation procedures yielding higher activity.
Nevertheless, having the immobilised enzyme in hand, we

first explored its substrate scope (Table 1). Pleasingly, all of the
styrene derivatives tested were converted with satisfactory to
excellent turnover numbers for the biocatalyst. In accordance
with previous reports[9,12] wild-type rAaeUPO converted the
majority of styrenes non-stereoselectively giving (near racemic)
epoxides, one notable exception being cis-ß-methylstyrene,
which was converted highly stereoselectively into (1R,2S)-cis-β-
methylstyrene oxide. It is also interesting to note that in some
cases, the desired epoxide was not stable and spontaneously
rearranged into the corresponding carbonyl compound (for
further details see SI section 5.3).
Nevertheless, very significant product concentrations of up

to 100 mM were achieved. The catalytic performance of
rAaeUPO in terms of turnover numbers (TON=amount of
product divided by the amount of enzyme, [mol×mol� 1]) was
excellent.
To identify parameters influencing the productivity of the

reaction, we systematically varied the biocatalyst loading and
the tBuOOH feeding rate in the epoxidation of cis-β-meth-
ylstyrene (Figure 1). The initial rate of the epoxidation reaction
correlated directly with the dosing rate of tBuOOH. This,
however did not necessarily translate in higher product titres.
Most probably, increasing feed rates of the oxidant also
increased the undesired oxidative inactivation of the enzyme’s
active site.[13] This is supported by the observation that the
robustness of the reactions (i. e. the duration of product
accumulation) inversely correlated with the tBuOOH feed rate
(Table S2).
As mentioned above, epoxides are versatile building blocks

for the synthesis of a broad range of products. Amino alcohols,
for example, are common structural motifs in many pharma-
ceutically active ingredients.[14] We therefore envisioned a

chemoenzymatic cascade reaction comprising the rAaeUPO-
catalysed, stereoselective epoxidation of cis-β-methylstyrene
followed by the chemical oxirane-opening with methyl amine
yielding (pseudo)ephedrine (Scheme 2).
The epoxidation reaction was performed on a 10 mL scale

with gradual tBuOOH feed (Figure 2). Although a conservative
tBuOOH feed rate of 5 mMh� 1 was applied, inactivation of the
biocatalyst represented a major challenge for the reaction,
necessitating further provision of the reaction with fresh
enzyme (indicated by arrows in Figure 2). It is also interesting to
note that in contrast to previous experiments using rAaeUPO in
aqueous reaction media using H2O2,

[15] the peroxide utilisation
efficiency was only approximately 50%. It will be interesting to
further investigate this increased catalase activity of rAaeUPO.
From this experiment, 360 mM of (1R,2S)-β-methylstyrene

oxide were obtained. The turnover number of the enzyme was
more than 8500. Next to the desired product, the reaction
mixture also contained some benzaldehyde, originating from
rAaeUPO-catalysed C=C-bond cleavage.[16] To avoid negative
influences of this by-product, the desired product was purified
chromatographically and subjected to chemical ring-opening
with methylamine resulting in pseudoephedrine (58.2%), ephe-
drine (7%) and isoephedrine (34.8%) (Scheme S2).

Figure 1. Characterisation of tBuOOH feeding rate and enzyme concentration
comparing the initial reaction rates (black diamonds) and final product
concentrations (grey squares). General conditions: room temperature,
20 rpm in overhead rotator. Data presented are an average of duplicates and
corrected from potential substrate evaporation (see the Supporting
Information, Section 5.1)

Scheme 2. Envisioned chemoenzymatic cascade to obtain (pseudo)ephedrine from cis-ß-methylstyrene.
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Table 1. Substrate scope of the epoxidation of styrene derivatives with immobilised rAaeUPO. Data are an average of duplicates and corrected from
potential substrate evaporation.[a]

Substrate Epoxy product [mM] ee [%] Carbonyl product[b] [mM(%)] Time [h] TON[c]

1a 16 12 2 (12) 42 3203

2a 80 30 47 (37) 86 22598

3a 9 35 1 (11) 86 1779

4a 36 >99 2 (4) 21 6762

5a 59 9 21 (26) 60 14235

6a 24 50 102 (81) 62 22420

7a 10 39 90 (90) 49 17794

8a 8 12 22 (73) 62 5338

9a 16 17 12 (43) 42 4982

10a 15 15 22 (59) 22 6584

11a 11 15 25 (69) 42 6406

12a 3 42 1 (23) 42 712

13a 14 –[d] 60 (81) 62 13167

14a 36 28 59 (62) 97 16904

15a 4 6 25 (86) 49 5160

16a none – – – 0

17a 136 42 147 (52) 108 50356

18a none – 33 (100) 69 5872

[a] Reaction conditions: [rAaeUPO]=5.62 μM, tBuOOH dosing rate=5 mM/h, room temperature, 20 rpm in overhead rotator. [b] The concentrations of
carbonyl product were calculated using the calibration curves of the epoxides. Carbonyl products are aldehyde or ketone in β position from the ring opening
of the epoxides, [c] TON= [product]/[enzyme], [d] n.d.=not determined.
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Overall, with this contribution we have demonstrated that
peroxygenase-catalysed epoxidations can be performed under
neat reaction conditions. This opens up new possibilities for the
preparative scale-application of this promising class of enzymes.
Product concentrations of up to 360 mM have been achieved
representing one of the highest product titres obtained with
oxidoreductase catalysis[17] and certainly the highest product
concentration with isolated enzymes.[6a,b,18]

Nevertheless, some issues remain to be solved en route to a
truly preparatively useful system. First and foremost, more
active immobilisates of rAaeUPO need to be found. The activity
recovery of the peroxygenase needs to be improved to obtain
more active catalysts.[19] We are confident that from the wealth
of immobilisation methods available today,[20] a suitable method
will be found in our ongoing research. Also, more enantiose-
lective rAaeUPO versions are highly desirable to broaden the
scope of the reaction.

Experimental Section
Enzyme preparation. Recombinant expression and purification of
the evolved unspecific peroxygenase mutant from A. aegerita in P.
pastoris was performed following a previously described
procedure.[9]

Immobilisation protocol. Immobeads (IB-COV-1) from ChiralVision
was used to immobilise rAaeUPO. The beads were washed before
usage and then mixed with rAaeUPO . Immobilisation was carried
out for 5 hours using overhead rotator. After 5 hours, the immobi-
lisation mixture was stored at 6 °C for 12 hours without stirring or
shaking. After overnight incubation, the supernatant was removed,
and the beads 3 times washed. The washing fractions were pooled.
The peroxygenase concentration was determined via CO difference

spectra in the supernatant and the washing fraction to calculate
the amount of immobilised peroxygenase. A detailed description of
the immobilisation of the enzymes is available in the Supporting
Information.

Enzymatic reaction conditions. Reactions were performed in GC
vial of 1.5 mL at room temperature. Immobilised rAaeUPO was first
weighed in the vial according to the concentration of enzyme
wanted, then pure substrate was added to the vial. Before each
samples were taken, the vial was weighed in order to estimate the
loss of substrate by evaporation. tBuOOH was added in the vial via
a tube connected to a syringe pump. An overhead rotator from
neoLab was mixing the reactions at 20 rpm. At intervals, aliquots
were withdrawn, extracted with ethyl acetate, dried over MgSO4
and analysed by chiral gas chromatography. Details of gas
chromatography and temperature profiles are shown in Supporting
Information.

Chemical ring opening. 10 mg of pure epoxide were diluted in
200 μL of MeNH2 (40% in water). The reaction was mixed during
20 hours at 60 °C. The reaction was then extracted with dichloro-
methane and analysed on NMR.
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