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Parallelism between evolutionary trajectories in a trait space is often seen as
evidence for repeatability of phenotypic evolution, and angles between trajec-
tories play a pivotal role in the analysis of parallelism. However, properties of
angles in multidimensional spaces have not been widely appreciated by biol-
ogists. To remedy this situation, this study provides a brief overview on
geometric and statistical aspects of angles in multidimensional spaces.
Under the null hypothesis that trajectory vectors have no preferred directions
(i.e. uniform distribution on hypersphere), the angle between two indepen-
dent vectors is concentrated around the right angle, with a more
pronounced peak in a higher-dimensional space. This probability distribution
is closely related to ¢- and beta distributions, which can be used for testing the
null hypothesis concerning a pair of trajectories. A recently proposed method
with eigenanalysis of a vector correlation matrix can be connected to the test of
no correlation or concentration of multiple vectors, for which simple test pro-
cedures are available in the statistical literature. Concentration of vectors can
also be examined by tools of directional statistics such as the Rayleigh test.
These frameworks provide biologists with baselines to make statistically
justified inferences for (non)parallel evolution.

1. Introduction

Multivariate approaches have proven to be powerful means to analyse pheno-
types, yielding more holistic and nuanced understanding of organismal
evolution and development than achievable from univariate approaches. It is
now fairly common to conceptualize and analyse patterns of phenotypic evol-
ution in multidimensional trait spaces (e.g. [1-7]). However, increasing
dimensionality sometimes poses challenges in interpreting and analysing quan-
tities that superficially appear familiar. This review concerns technical aspects
of the analysis of phenotypic trajectories in multidimensional spaces, with a
particular focus on the angles and their applications to detection of parallel
evolution. Here, the term parallel evolution is used in the geometric sense; par-
allelism between trajectories in a trait space between multiple ancestor—
descendant pairs [7,8], which typically results in acquisition of similar derived
traits in the descendants. Parallel responses to similar selection pressures
between lineages are often regarded as evidence for repeatability or predictabil-
ity of phenotypic evolution under natural selection, and the prevalence and
extent of such parallelism are under active debate (e.g. [9-11]).

A variety of toolkit exists for analysing evolutionary or developmental trajec-
tories in multidimensional spaces. One useful concept is the allometric space
[12-16], where variation among multivariate allometric axes (typically principal
component (PC) vectors; [17-21]) can be visualized and analysed in various
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ways by treating empirical allometric axes as observations
[22-29]. Another broadly employed tool is the phenotypic trajec-
tory analysis [3,30-32], which primarily concerns quantification
and statistical testing of inter-population differences in the
magnitude, direction and shape of phenotypic trajectories.

The phenotypic trajectory (or phenotypic change vector)
analysis has recently fuelled investigations into the parallel
evolution [7,33]. There is a trend to quantitatively analyse pat-
terns of evolutionary changes in putatively parallel lineages
(e.g. [34-36]). The angles between phenotypic change vectors
of different lineages play an especially pivotal role in empiri-
cal analyses of parallel evolution (e.g. [33,37—43]), because
they are supposed to provide ‘intuitive and mathematically
formal’ measures of (non)parallelism [37, p. 6].

Unfortunately, however, interpretation of angles in multidi-
mensional spaces is not so straightforward. Consider, for
example, the angle between randomly directed vectors in
two- and three-dimensional spaces. It is convenient to fix one
of them pointed at a “pole” and to let the other be uniformly dis-
tributed on the unit circle/sphere (figure 1a,b). The probability
density of the angle between these vectors is then proportional
to the arc length and surface area for a given infinitesimal incre-
ment of ‘latitude’. One will notice that the density for the two-
dimensional space is uniform (figure 1a), whereas that for the
three-dimensional space is peaked at the ‘equator’ because
this region encompasses more area per latitude than ‘polar’
regions (figure 1b). This simple example demonstrates that dis-
tributions of random angles depend on the dimensionality,
warning against extending our intuition into high-dimensional
spaces. Regrettably, few recent analyses of evolutionary paralle-
lism have taken this trend into account. Frameworks to make
statistically justified inferences on angles have essentially been
lacking in the current empirical literature.

This paper gives a brief overview of methods to analyse
angles in multidimensional spaces. Specifically, it first derives
the probability distribution of the angle between random vectors
under the null hypothesis that the vectors have no preferred direc-
tions. It is by no means novel to science or even to the biological
literature, where relevant results have been used in one form or
another (e.g. [4447]). The primary aim here is to disseminate
well-known results with theoretical underpinnings. Recently, a
framework for analysing multiple vectors simultaneously via
eigenanalysis of a vector correlation matrix was proposed [48],
but this framework lacked clear justifications as to which sum-
mary statistic should be looked at. This study also gives an
alternative interpretation and a simple test statistic for that
framework regarding the same null hypothesis.

2. Theory

(a) Preliminaries

Let us first review the definition of the ordinary (Pearson pro-
duct-moment) correlation coefficient, which has a close
relationship with angles between random vectors. For the
bivariate random observations of size N, (x1, X, ..., xn) and
(1, Y2, --., Yn), the correlation coefficient r is defined as

= Zi\il (X,‘ — x)(yl 7 9) , (21)
VEN - 0P Y, - )

where x and y are the sample
x=YN x/N,7=3",vyi/N. By using the matrix notation

means:

x:(xl—g’c,xz—fc,...,xN—ic)T and y=01-1

Yo—V, -, YN — y)T, where the superscript T denotes
transpose, we can rewrite (2.1) as
T
X
p— (2.2)
([l
where the numerator is the inner product, and || - | denotes

the vector norm or length (||x|| = v'xTx). Recall the geometric
definition of the inner product,

xy = [Ix[l[ly|| cos 6, (2.3)

where 6 is the angle formed by x and y in their N-dimen-
sional space. Then, we have

r = cos 6. (2.4)

That is, the correlation coefficient and the angle between
random vectors are directly related through the cosine/arcco-
sine transformation. Here, the range of 6 is taken as [0, 7] (in
radians) so that a one-to-one, though negative, relationship
exists between r and 6: in the case of perfect positive corre-
lation, r =1, the two vectors point to the same direction, 6 =
0; in the case of no correlation, =0, the two vectors are
perpendicular to each other, 6 =7/2.

We could standardize the variables by their standard
deviations beforehand: u = ||x| 'x and v = ||y| "'y, so that

r=cosf=u'v. (2.5)

Since |lu|| =||v||=1, u and v denote points on the unit
hypersphere in the N-dimensional space.

Technically, the sample-mean-centred vectors x and y are
in an (N — 1)-dimensional space, because centring with the
sample mean reduces the effective dimensionality—the so-
called degree of freedom—of the original N-vectors by one.
For normal (and other) variables, the distribution of r with
N sample-mean-centred observations from a population
with arbitrary mean is the same as that with N—1 obser-
vations centred at a known population mean (e.g. [49,50]).
For what follows, it is convenient to consider the latter with
the population mean 0.

This discussion concerns the equivalence between corre-
lations in the variable (trait) space and angles in the object
(lineage, individual, etc.) space, but the same relationship
also holds when the space labels are swapped, i.e. the equiv-
alence between correlations in a lineage space and angles in a
trait space. We now turn to the distribution of random angles
with a general k-dimensional space.

(b) Distribution of random angles

Let us consider a pair of random vectors x = (xy, xp, ..., x0T and
y=W1, Y2 ..., yk)T and the angle 6 between them. The elements
are assumed to be independently and identically distributed.
Let b=(y"x)/(x™x), the ratio of the inner product between x
and y to the squared norm of x. By the geometric definition of
the inner product (2.3), the vector bx points to the foot of the per-
pendicular from y to x, and the vector y —bx denotes this
perpendicular (figure 1e). In the terminology of regression, bx
and y —bx are predictions and residuals, respectively, in the
regression of y on x (without intercept). The angle 6 is related
to these vectors in the trigonometric relationship

1 b
tan® ||y — bx|’

(2.6)
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Figure 1. Distribution of angle in multidimensional spaces. (a,b) Probability density of angle & between two vectors uniformly distributed on two-dimensional circle
and three-dimensional sphere, respectively. Lower panels show schematic illustrations of the angle between a ‘pole’ (the thick arrow pointing the left-hand side) and
another vector uniformly distributed on the unit circle/sphere. Upper panels show the corresponding densities. (c) Density of & in general k-dimensional cases (2.9).
(d) Density of r=cos@ (2.8). () Scheme to find probability distribution of random angle in k-dimensional space (only the 1st, 2nd and kth coordinate axes are

shown for obvious visual restrictions). See text for details.

The distribution of this quantity is heuristically derived
here; see, e.g. [49-52] for formal proofs. Assume that
the elements of x and y are normally distributed with mean
0 and variance ¢°, and that these two vectors are indepen-
dent. The standardized vectors ||x| 'x and |y| 'y are
uniformly distributed on the unit hypersphere in the
k-dimensional space. We can rotate the coordinate axes
arbitrarily as far as the distribution of 6 is concerned; let
x| 'x = (1,0, ..., 0)T for simplicity. Then, the distribution of
bl|x|| = y*(||x]|"'x) = 11 is normal with mean 0 and variance
o®. Also, that of ||y — bx|[*/o? =YX ,y2/0? is z* with k—1
degrees of freedom, and independent of b||x|| (figure 1). There-
fore, by the operational definition of the t-distribution—
namely, the distribution of the ratio of a standard normal
variate to the square root of a x> variate divided by its degrees
of freedom, with the two variates independent from each
other—the quantity

bllxll/o
Vlly = 0P/ - 1)

has a t-distribution with k—1 degrees of freedom. The prob-
ability density (or element) of r in this case can be derived by

R

tan 0 N 27)

transforming that of the f-distribution:

1

-3)/
B -

—1<r<l, (2.8)
where B(a, b) is the beta function with the two parameters a
and b (this is just a normalizing constant, whose value need
not concern most readers) (figure 1d). Then the density for

0 = arccos is, by noting |dr| = |— sin 0d 6|,

1
B(1/2, (k—1)/2)
1
T B(1/2, (k- 1)/2)

(1 — cos? 0)<k73)/2| —sin 6d0)|

sint29dl, 0<0< (2.9)

This density has a peak at §=7/2, which is increasingly pro-
nounced as k increases (figure 1c). Another useful expression

can be derived for s =7, by noting |dr| = |ds/2\/s| and dupli-
cation of the positive and negative branches for r in (2.8):

1

Bz - 0

0<s<1, (2.10)

which is the density of the beta distribution with the parameters
1/2 and (k—1)/2.
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The same distribution can be obtained from looser con-
ditions than assumed here. For example, x could be from any
distribution as long as it is independent of y that in turn has a
spherically contoured distribution [50,51]. Indeed, expressions
equivalent to (2.9) and (2.10) can be obtained from purely geo-
metric evaluation of the surface area of a hyperspherical cap
[44,53], which is equivalent to the probability for a random
vector uniformly distributed on the hypersphere to fall within
the region (see also [46]). A similar geometric reasoning was
in fact involved in Fisher’s [54,55] formal derivation of the t-dis-
tribution (see also [56, ch. 11]), so, to be strict, the above
derivation was partly circular.

These results can be used for testing the null hypothesis
that two phenotypic change vectors have no preferred
directions (population means being (0, ..., 0)") and are inde-
pendent from each other, by inserting the dimensionality of
the trait space into k. In particular, the p-value for an observed
angle can be calculated from the ¢ statistic (2.7); example func-
tions for the R environment [57] are provided in the electronic
supplementary material. This is equivalent to the ordinary cor-
relation test, where typically k=N —1 (see above). When the
polarities of the vectors are to be ignored (e.g. test for angles
between eigenvectors), the beta distribution (2.10) can be
used instead. An equivalent test is commonly used for testing
differences between allometric axes (e.g. [45]).

(c) Pairwise angles and correlations

The above results concern a pair of random vectors, which
should suffice when there are only a few lineages to compare.
When interest is in analysing a set of many lineages simul-
taneously (e.g. [37,40,41]), a convenient procedure is to
construct a matrix of pairwise angles or correlations. Let x;
denote phenotypic change vectors of p traits from # lineages
(i=1,..., n), each starting from its respective ancestor, and
arrange these in rows of the n xp matrix X. This matrix
then is standardized so that each row has the length of unity:

Z = diag(xi] )X, (2.11)

where diag(-) denotes an n xn diagonal matrix with the
designated ith diagonal elements. Then we consider the fol-
lowing 1 x n inter-lineage correlation matrix

c=2z7". (2.12)

By construction, C is symmetric and its (i, j)th elements are
the vector correlations between the ith and jth vectors (2.5),
with the diagonal elements being 1. The rows need not be
centred, and thus retain the full effective dimensionality of
p, unless the traits themselves are linearly dependent (as is
the case for shape variables; see below). Taking element-
wise arccosines of C yields a matrix of pairwise angles.
For the sake of discussion, let I" be the population (true) cor-
relation matrix corresponding to C.

It might be tempting to make statistical inferences by
treating pairwise angles or correlations in these matrices as
a sample: e.g. calculating mean and standard deviation
from pairwise angles and conducting a test of locations, e.g.
t-test, Wilcoxon rank-sum test. However, such inferences
should be, if at all, made with caution, because pairwise
angles and correlations are generally not independent from
one another. Ordinary statistical tests assume the obser-
vations to be independent (or at least uncorrelated), and
violation of this assumption leads to suboptimal

performance, e.g. inflated type I error rates. Off-diagonal [ 4 |

elements of C have non-zero covariances unless I' =1,,,
where I, is the n x n identity matrix [58,59]. Similar should
be the case for pairwise angles. Therefore, it is inadvisable
to conduct tests for pairwise angles in this way, unless, per-
haps, the covariances are appropriately taken into account
(methods for which are available for correlations; [60,61]).
Although a sensible Monte Carlo design could be constructed
to accommodate the covariances, it is rather questionable
whether tests on mean pairwise angles are of much practical
use beyond testing the null hypothesis I' = I,,. There are more
straightforward ways to test this null hypothesis (below), and
other cases hardly translate into particular values of mean
pairwise angles.

(d) Eigenanalysis and one-step test for multiple vectors
De Lisle & Bolnick [48] proposed to use eigenanalysis of the
inter-lineage correlation matrix C to detect concentration of
phenotypic change vectors in a trait space. That is, to consider
spectral decomposition (or eigendecomposition) of C:

C =ULUT, (2.13)

where U is an n x n matrix of eigenvectors, and L = diag(l)) is
an n xn diagonal matrix of eigenvalues. Their motivation
was to quantify the magnitude of parallelism and effective
dimensionality of parallel trajectories in the trait space by
analysing eigenvalues of C, which represent variances
along the corresponding PCs. For those purposes, however,
it is more straightforward to consider the p xp inter-trait
cross-product matrix A and its eigendecomposition instead:

A=27"7 = VKV], (2.14)

where V is a p x p matrix of eigenvectors, and K = diag(k;)
is a pxp diagonal matrix of eigenvalues. The non-zero
eigenvalues of C and A are in fact identical (electronic sup-
plementary material, appendix A). C provides a quick
means to surmise closeness between phenotypic change vec-
tors, as well as a useful test described below. However,
concerning variation in the trait space, V and K are more
interpretable than U and L because the former pair pertains
to the p-dimensional trait space whereas the latter pertains
to the n-dimensional lineage space (electronic suupple-
mentary material, appendix A). The rest of this section
addresses quantification and test of the magnitude of paralle-
lism—the first objective of the eigenanalysis as originally
proposed [48]. Brief comments on the second objective—
determination of dimensionality of parallel trajectories—are
given in appendix A.

One complexity in dealing with eigenvalues of these
matrices is the presence of sampling error and bias, which
render sample eigenvalues inaccurate estimators of the corre-
sponding population eigenvalues (e.g. [62,63]). Regarding the
null hypothesis test of no parallelism, it has been suggested to
compare eigenvalues of C with Monte Carlo distributions of
eigenvalues of matrices drawn from a Wishart distribution
[48]. To be clear, that distribution pertains to unscaled
cross-product matrices, so the generated random matrices
should be scaled as correlation matrices (this scaling was
not clearly mentioned in DeLisle & Bolnick’s descriptions,
although was involved in their computer codes). Although
this procedure is potentially valid, it has not been clearly
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indicated which test statistic should be looked at in testing
this null hypothesis.

Here, it is proposed that dispersion of eigenvalues in
these matrices, or equivalently sum of squared correlation
coefficients from C, can be an appropriate test statistic. Eigen-
value dispersion has been used to quantify covariation
between traits [64-67], and its sampling properties are
relatively well known [68]. Intuitively, if phenotypic change
vectors are uniformly distributed in the trait space, eigen-
values of A (or C) exhibit low dispersion. If the vectors
are concentrated in a single or a few directions, then the
eigenvalues are highly dispersed.

In particular, it is possible to show the following equality
regarding dispersions of eigenvalues of C and A (denoted I;
and k;, respectively) and sum of squared correlations (see
appendix A):

n 14

SU-17=> (k—k) +?—n—2ZrU,

i=1 i=1 i<j

(2.15)

where [ and k are the averages of eigenvalues, and r;; are the
(i, j)th elements of C. Under the null hypothesis that all vec-
tors are independently directed from one another without
preferred directions, the population (true) correlation coeffi-
cients are zero, or I' = I,,. For n lineages, we take it as if p
traits are observations. Under the multivariate normality of
the elements of X, each of r;‘} is distributed as Beta[l/2,
(p—1)/2] (2.10) and hence has the mean 1/p and variance
2(p—1)/p*(p +2). Furthermore, it is possible to show that
ZJ’S are uncorrelated with one another under the null hypo-
thesis [68,69]. Therefore, the expectation and variance of the
sum of squared correlations are:

- -1 - n(n—1)(p—1)

E rl-z- :n(ni and Var 1’1-2- = .
; ! 2p ; ! r*(p+2)

(2.16)

From these moments, Schott [69] proposed the following
high-dimensional asymptotic test for the hypothesis I' = I,,.
Under the condition 7 — o0, p— o0, and n/p—ye(0, ),
the distribution of ZLJ» r?j —n(n—1)/2p converges to the
normal distribution with mean 0 and variance
lim(Var(3"\;73)) = ¥*. (Note that this condition is just a
modest generalization from the ordinary large-sample
asymptotic condition, n — o0 and p/n — 0, which is equally
unrealistic.) Empirical values of Z?q rizj can be compared
with the normal distribution with the above mean and var-
iance (2.16), and a large deviation can be seen as evidence
against the null hypothesis, suggesting concentration of vec-
tors. Schott [69] showed by simulations that this test has a
reasonable type I error rate (although slightly too liberal
when p or n is small, e.g. less than 16, in which case Monte
Carlo simulations can be used) and a power usually superior
to that of the conventional likelihood-ratio test.

A caveat on this procedure is that the test statistic does not
convey information on the signs of correlation coefficients.
Therefore, this test does not distinguish unimodal and antipo-
dal concentration patterns (neither do tests entirely based on
eigenvalues). It is strongly recommended to inspect C or PC
scores to surmise what type of deviation from the null is pre-
sent (see below). If the detection of parallel signal is of
specific interest, it is probably more adequate to use the

Rayleigh test from the directional statistics (electronic
supplementary material, appendix B).

3. Recommendations

Although the statistical toolkits described above enable
tests of particular null hypotheses, it is strongly rec-
ommended to conduct exploratory analyses before those
tests are applied, in order to surmise overall patterns in the
data. A common option is to visualize metric relationships
between ancestral and descendant states via an ordination
method like principal component analysis (PCA). Comp-
lementary to this approach is to make ordination of
phenotypic change vectors, as is done for allometric axes
[12,13]. The latter can be obtained from the eigenanalysis of
A (2.14). It would also be useful to visualize relationships
between ordination axes and traits via biplot, or to explore
potential structures with clustering approaches (see electronic
supplementary material, appendix C).

The Schott and Rayleigh tests share the same null hypoth-
esis that the directional vectors are uniformly distributed, but
have different alternative hypotheses. The Rayleigh test is
powerful in detecting unimodal concentration of the vectors,
but will be senseless if the vectors show antipodal or girdle-
like distributions. The Schott test can detect these forms of
deviation from uniformity, but does not distinguish antipodal
and unimodal patterns by itself. Choice between these differ-
ent tests should be made according to their properties and
biological/statistical hypotheses of interest.

4. Example analysis

Stuart et al.’s [37] dataset of lake-stream divergence in the
threespine stickleback (Gasterosteus aculeatus) is re-analysed
here for demonstration. The original data were pre-
processed as described in electronic supplementary material,
appendix D. The resultant dataset consists of 13 phenotypic
change vectors in 80 nominal morphological traits: 41 linear
measurements, 38 Procrustes-aligned shape coordinates
and one centroid size (from two-dimensional geometric mor-
phometric analysis of 19 full landmarks). The effective
dimensionality of the vectors is 80 — 4 = 76, as 4 degrees of free-
dom are lost by Procrustes alignment (assuming that the
configurations were projected onto the tangent space).

The resultant 78 pairwise angles ranged from 0.49 to 2.62
(28.0° —149.9°). Compared with the null distribution of
angles in the 76-dimensional space (2.9), 38 and 29 out of
these were closer to parallel and antiparallel, respectively,
than expected from random directions by chance alone
(two-sided test at o=0.05; no error rate control is deemed
necessary for this demonstrative analysis; figure 2a). The
mean angle of 1.50 (86.0°) was closer to parallel than expected
for a mean of 78 random angles (p<1x10~° based on a
Monte Carlo simulation with 10° iterations; figure 2b). This
interpretation is in stark contrast with that of Stuart ef al.
[37], who regarded their mean of 81.1° with 84 traits as
‘nearly orthogonal’. Note, however, that this test is for
illustrative purposes only, as the mean pairwise angle lacks
a clear interpretability (see above).

Ordination from PCA of the standardized phenotypic
change vectors Z is shown in figure 2c—f (see electronic sup-
plementary material, appendix C for details). The vectors of
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Figure 2. Re-analysis of Stuart et al.’s [37] dataset. (a) Histogram of 78 pairwise angles between the phenotypic change vectors in 13 lineages of Gasterosteus aculeatus,
compared with a scaled density of random angles for p =76 (2.9). Regions outside the 2.5 and 97.5 percentiles of the density are shown with solid orange fills.
(b) Mean of the 78 pairwise angles (blue arrow) compared with the null distribution (histogram) based on 100 000 Monte Carlo simulation runs. (c—f) PC plots
of phenotypic change vectors with different visualizations. (c) PCA biplot showing scores (points) and coefficients (arrows) of PCT and PC2. The scaling parameter
o was set to 1 (see electronic supplementary material, appendix C). Blue arrows denote shape coordinates, which cannot be interpreted individually, whereas
orange ones denote the other traits, some of which are labelled. The inner axis labels are for coefficients, whereas the outer ones are for scores. (d) Pairwise
angles shown with colour-scaled segments. (e) Clouds of bootstrap replicates and approximate 95% confidence ellipses. Ellipses are based on 5000 replicates of
PC scores, but only 1000 replicates are shown for visual clarity. (f) Grouping with k-means clustering shown with colours and convex hulls. This grouping gave
the smallest within-group sum of squares for (arbitrarily chosen value of) k= 5. Squares denote group centroids. Acronyms for watersheds are as in [37].

some lineages appear closely clustered with one another, but
distribution of PC scores across the origin indicates that not
all lineages had similar divergence (figure 2d). Non-para-
metric bootstrapping suggests that differences between
vectors are mostly larger than what would be expected from
sampling error alone except in most similar pairs (figure 2e).
Nevertheless, the magnitude of sampling error appears het-
erogeneous among lineages, cautioning against face-value
interpretation of differences; for example, sampling error in
direction is evidently large for the Moore watershed, and
this seems largely owing to small trajectory length. Potential
clustering was explored with k-means clustering with varying
numbers of clusters, and the result for k=5 is shown as an
example (figure 2f). PCA biplot shows that major components
of variation among trajectories are to some extent character-
ized by variation in standard length and other traits highly
correlated with it, along with several others (figure 2c). Over-
all, these exploratory analyses suggest the presence of multiple
preferred directions of phenotypic change vectors.

In order to show deviation from the uniformity, the Schott
test was applied to this dataset. The sum of the 78 squared cor-
relations was 24.25, whereas the null expectation and standard
deviation (from (2.16) with n =13 and p =76) were 1.03 and
0.16, respectively, indicating a statistically significant deviation

from the null hypothesis of uniformity (Z = 144.08; p < 1 x 107°).
This test and examinations of pairwise angles and PC
scores altogether indicate that the phenotypic change vectors
most likely have preferred directions in the trait space, and
that some of the vectors are significantly more (dis)similar to
one another than expected from uniform distribution by
chance. This insight is in contrast to the original account [37],
and is partly in line with the reanalysis in [48], reinforced
with more rigorous statistics. These results provide objective
justifications to explore potential biological causes of the
perceived patterns. In particular, the presence of multiple
clusters may potentially reflect differing evolvability or selec-
tion regimes among recognized clusters. Such possibilities
would deserve a more inclusive approach as was originally
undertaken by Stuart et al. [37], with the aid of the present
methodology.

5. Discussion

Angles have been commonly used in quantitative analyses of
parallel evolution, but their properties in multidimensional
spaces have not attained due attention. As clarified by the
above analysis, angles between randomly directed vectors
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are peaked around the right angle in multidimensional
spaces ((2.9); figure 1). It is therefore inadvisable to interpret
angles at face value, e.g. angles closer to 90° than 0° regarded
as evidence against parallel evolution on their own [33,37].
In addition, the dependency of the peakedness on dimen-
sionality ((2.9); figure 1c) renders angles incomparable
across different dimensions. Thus, direct comparison of
angles or pooled meta-analysis across varying dimensional-
ities [33,38,70] will be tenuous, unless dimensionality is
sensibly taken into account. A potentially useful standardiz-
ation in this respect is vk — 2(7/2 — 6), whose distribution
under the null condition (2.9) converges to the standard
normal distribution as k— oo [52]; when k is sufficiently
large, this quantity could be used as an effect size against
the null distribution.

This review has concentrated on the null hypothesis that
vectors are independent and have no preferred directions,
which is just one of many hypotheses of potential biological
interest [7,48]. This is not to claim superior biological impor-
tance of this hypothesis over another, but rather to present it
as a baseline for analysing multidimensional vectors. At the
other extreme, the hypothesis of completely parallel vectors
could be tested, if interest is in detecting deviation from par-
allelism [7]. It is, however, more difficult to define a unified
procedure for testing this null hypothesis than it may seem.
It should in principle be possible to extend the present para-
metric framework into any arbitrary population values of
correlation (although the distributions are substantially
more complex). However, a practical test procedure will
need to incorporate sampling error, whose nature and magni-
tude would largely depend on individual study systems. This
is partly because complete correlation in the population
eliminates any room for sampling variation, thereby trivi-
ally yielding sample correlation coefficient exactly 1 or —1
with probability 1. (On the other hand, tests against no
preferred directions described above are not seriously
affected by sampling error, with which the uniform distri-
bution on the hypersphere typically remains unaffected
under the null hypothesis [71].) A more realistic option
will be to adopt one of the resampling-based approaches
[3,20,32,72], as is done in the phenotypic trajectory analy-
sis. However, it should be remembered that a resampling-
based test, although being nominally non-parametric, is
usually not free from the assumption that the populations
share the same form of distribution, potentially differing
only in the quantity of interest [73,74]. Between-group het-
eroscedasticity, whose presence was also suggested in the
present re-analysis (figure 2e), can possibly undermine
adequacy of tests of this type. Robustness of resampling-
based tests against such cases needs to be critically
assessed.

Apart from hypothesis testing, exploratory methods
could be more commonly used in the analysis of parallelism.
It should be straightforward to apply concepts and tech-
niques originally devised for the analysis of allometric
space to phenotypic change vectors. Examples include
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