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Abstract: In recent years, a number of wearable approaches have been introduced for objective 

monitoring of cigarette smoking based on monitoring of hand gestures, breathing or cigarette 

lighting events. However, non-reactive, objective and accurate measurement of everyday cigarette 

consumption in the wild remains a challenge. This study utilizes a wearable sensor system (Personal 

Automatic Cigarette Tracker 2.0, PACT2.0) and proposes a method that integrates information from 

an instrumented lighter and a 6-axis Inertial Measurement Unit (IMU) on the wrist for accurate 

detection of smoking events. The PACT2.0 was utilized in a study of 35 moderate to heavy smokers 

in both controlled (1.5–2 h) and unconstrained free-living conditions (~24 h). The collected dataset 

contained approximately 871 h of IMU data, 463 lighting events, and 443 cigarettes. The proposed 

method identified smoking events from the cigarette lighter data and estimated puff counts by 

detecting hand-to-mouth gestures (HMG) in the IMU data by a Support Vector Machine (SVM) 

classifier. The leave-one-subject-out (LOSO) cross-validation on the data from the controlled portion 

of the study achieved high accuracy and F1-score of smoking event detection and estimation of puff 

counts (97%/98% and 93%/86%, respectively). The results of validation in free-living demonstrate 

84.9% agreement with self-reported cigarettes. These results suggest that an IMU and instrumented 

lighter may potentially be used in studies of smoking behavior under natural conditions. 

Keywords: cigarette smoking; hand gestures; IMU sensor; lighter; unobtrusive sensing; wearable 

sensors 

 

1. Introduction 

According to the World Health Organization, smoking is the single most preventable cause of 

early death [1]. In the world, cigarette smoking causes ten percent of all annual deaths and increases 

the chances of many serious diseases [2]. The worldwide economic cost of smoking was US $1436 

billion in 2012 including direct medical care and lost productivity, equivalent in magnitude to 1.8% 

of the world’s annual gross domestic product [3]. These statistics underscore the important role of 

smoking cessation programs [4,5] to promote the economic, social, and, most importantly, health 

impact of quitting smoking. The first step of these cessation programs is to understand the patient’s 

smoking pattern over time. The generation of objective data about smoking patterns may enhance 

the efficacy of smoking cessation programs and contribute useful information about smoking 

behavior and relapse. The number of cigarettes consumed over a period time or biomarkers such as 

carbon monoxide and cotinine do not provide sufficient metrics for a detailed examination of 
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smoking behavior. Quantitative measurements of the other metrics of smoking such as number of 

puffs per cigarette, puff duration, interpuff interval and smoke inhalation volume, besides number 

of cigarettes, allows researchers to understand the relationship between smoking behavior and 

smoking cessation [6–8]. From self-reporting [9] to portable smoking topography devices [10], many 

different technologies [11–17] have been studied to identify powerful and practical ways to monitor 

smoking activities in daily life. 

In recent years, wearable sensor technologies (based on monitoring of lighting events, 

respiration, hand gestures, etc.) have gained attention in the research of objective monitoring of 

smoking. A smart cigarette lighter detects when a cigarette is being lit before smoking. However, 

these lighters only capture and record instances of user’s smoking activity [18–20]; no details of the 

puff characteristics can be found from this information. Respiration sensors measure respiration 

patterns from chest contractions-expansions and attempt to detect the characteristic breathing 

patterns associated with smoke inhalation and exhalation [21–25]. However, the respiration sensors 

are sensitive to motion artifacts, which significantly impact the accuracy of smoking detection. HMGs 

are prevalent during smoking and may be monitored by several kinds of sensors. The radio 

frequency-based proximity sensor is a two-part circuit: a receiver on the chest and a transmitter on 

the wrist (or vice versa) [26]. It detects when the hand is close to the mouth while smoking, however, 

the strength of the signal depends on the antenna orientation and may not detect all hand gestures. 

In our previous work that used an earlier version of PACT system, radio frequency-based proximity 

sensor was used instead of IMU sensor. Smoke inhalations were automatically recognized by using 

the combination of the proximity sensor and RIP sensor via SVM classifier. The authors reported an 

F1-score of 83% in lab condition [22].  

Hand and wrist-mounted Inertial Measurement Units (IMUs) have also been used to identify 

smoking events from unique hand/arm movements [27–29]. IMU-based studies have mainly focused 

on the HMGs associated with puffs. Although number of HMGs and number of puffs do not match 

perfectly because of possible multiple puffs within one HMG, research studies [30–32] have shown 

that HMGs can be used as a proxy for the number of puffs. Because of that, in the paper, smoking-

HMG detection was mentioned instead of puff detection.  

Most of the previous IMU-based studies use limited datasets: limited number of participants, 

mostly limited to lab conditions and lacking free-living tests, and limited activity diversity. Some of 

previous work used more than one IMU device that may be obtrusive to the users. 

The goal of the present study was to develop a robust and simple-as-possible sensor-based 

monitoring solution that can reliably detect smoking events and estimate the puff count for each 

cigarette irrespective of person, smoking habits, or smoking environment. To accomplish this goal, a 

new and larger dataset that contains free-living data was created. Then an algorithm was proposed 

that utilize a wrist IMU device and a smart lighter, two major parts of PACT2.0 [33] sensor platform. 

We expected the proposed solution to have several advantages over extant research on cigarette 

smoking detection. First, the wearable sensor system relied on two unobtrusive, simple sensors. 

Unlike previous studies, a smart lighter was utilized as a supporting tool to reduce false detections. 

The collaboration of the HMG detection and the lighter event defines a cigarette smoking event. With 

this approach, the negative effect of mistaken initiation of the lighter was eliminated and a better 

accuracy was achieved for cigarette smoking detection. Second, we used hand gesture frequency as 

a means of establishing boundaries of smoking events and used SVM classification to improve the 

accuracy of HMGs detection and puff count estimation. Third, we performed extensive 

validation/testing of the sensor system in free-living conditions in the largest study reported to date. 

2. Related Works 

Table 1 summarizes the prior studies on smoking detection using IMU. In [34], the authors 

described a method by using four 3-axis accelerometers (two at both wrists: dominant hand, 

dominant upper arm, non-dominant wrist, and ankle). They collected a total of 11.8 h data (34 

smoking episodes or 481 puffs) from 6 participants. Using a Random Forest classifier, they reported 

an F1-score of 70% for puff detection in person-dependent evaluations. However, their performance 
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was 40% for person-independent evaluation. In [35], two 9-axis IMUs (accelerometer, gyroscope, and 

magnetometer) at the wrist and elbow were used to recognize smoking behavior. The detection 

model was evaluated with 28 h of data, containing 369 smoking puffs collected from 15 participants. 

The detection model reached an F1-score of 85% for 10-fold cross-validation. They also applied the 

model to four users who wore two 9-axis inertial sensors for 4 h each on three days in the field. With 

this dataset, they reached 83% F1-score. A recent study [36] was conducted on six daily smokers 

wearing 6-axis IMU on both wrists and a respiration sensor to capture breathing patterns. A total of 

291 puffs were collected in these 40 h of data collection. The research achieved a recall of 96.6% and 

a precision of 87% for smoking. However, this performance was attained by a relatively obtrusive 

combination of IMU data from the wrist position and Respiratory Inductance Plethysmography (RIP) 

sensor data from the chest. In [31], 6 participants wore four 6-axis inertial sensors on their dominant 

arm: one on the wrist, one on the shoulder, and two on the elbow. For each participant, 3.5 h data 

were collected in a controlled laboratory setting. The authors reported an F1-score between 8% and 

86% for different participants. However, use of four IMU devices is obtrusive and not well suited for 

daily life. In [37], the authors used a smartwatch to detect smoking activity. They collected 45 h of 

data (17 h for smoking, 28 h for other activities) from 11 participants. The method used in this research 

for detection of smoking activity achieved an F1-score of 83–94% in a LOSO validation. 

Unfortunately, the research did not offer information about separate puffs and individual puff 

duration. 

Table 1. Related work on smoking monitoring employing inertial sensors. 

Study [34] [36] [31] [35] [37] this study 

IMU Type 3D 6D 6D 9D 6D 6D 

IMU No 4 1 4 2 1 1 

Extra Sensor  RIP    Lighter 

Classifier Random Forest SVM 
SVM, Edge 

Detector 

Conditional 

Random Forest 
Hierarchical SVM 

Validation 

Procedure 
5-fold 10-fold  10-fold & 

LOSO 
LOSO LOSO 

Performance 

(F1-score)  

0.70 for HMG, 

0.79 for 

smoking 

0.91 for 

HMG 

0.08–0.86 

for HMG 

0.85 

for HMG 

0.83–0.94 

for smoking 

0.86 for HMG, 

0.98 for 

smoking 

Activities1 

S + E,  

S + W, 

S + T 

T, D, St 

S + St, 

S + T, 

S + St, 

S + Si 

S + Si, 

W, C  

S + R 

S + St, 

S + T, 

S + W, 

E, D  

S + St, 

S + Si, 

S + T,  

E, Si,  

W, St   

R, W, Si, Si + S, 

St + T+ S, C, E, 

W + T + S, 

W + S  

Subjects 6 6 6 
15 lab, 

4 Wild 
11 35 

Length of dataset 

(hr) 
11.8  40  21 

28,  

48 for wild 
45  

55, 

816 for wild 

Study Type Lab. 
Lab. & 

Wild 
Lab. 

Lab. & 

Wild 
Lab. 

Lab. & 

Wild 

Detection  HMG, Smoking 
HMG, 

Lapse 

HMG, 

Smoking 
HMG, Smoking Smoking HMG, Smoking 

1 Activities: S = Smoking, St = Standing, Si = Sitting, T = Talk, E = Eating, D = Drink, W = Walk,  

C = Using Cellphone, R = Reading. 

3. Materials and Methods 

3.1. Wearable Sensors 

3.1.1. Inertial Sensor 
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The wrist device of PACT v2.0 system [33] was employed for capturing hand gestures associated 

with both smoking and non-smoking activities. This low-cost module contained a 6-axial IMU 

(LSM6DS3, STMicroelectronics, Geneva, Switzerland) interfaced with an STM32L151RD processor 

(STMicroelectronics, Dallas, TX, USA). The sensor data were stored on a 4 GB Micro-SD card 

accessible via USB interface. The accelerometer and gyroscope were configured to have a ±8 g and 

±2000 degrees/s measurement range, respectively, with 16 bits of resolution to prevent sensor 

saturation during sporting activities that can show angular velocity up to 450 degrees/s [38] and 

acceleration up to several g, where � = 9.8m s�⁄  is the gravitational acceleration. The IMU was 

sampled at a frequency of 100 Hz. Figure 1 shows the sensor orientation (accelerometer axes) of the 

hand module placed on the left wrist; this same positioning was also used for right-handed person. 

 

Figure 1. (a) Accelerometer axes (positive direction) for hand module, (b) Hand module, (c) Smart 

lighter. 

3.1.2. Smart lighter 

The instrumented lighter of a PACT v2.0 system [33] was employed to record the time and 

duration of all lighting events. This low-cost lighter was a customized version of a commercial 

piezoelectric lighter. A small magnet was attached to the lighter button to detect trigger events via a 

Hall Effect sensor mounted inside of the lighter. When the user pressed the trigger button of lighter 

to light a cigarette, the microcontroller (MSP430G2452, Texas Instruments, Dallas, TX, USA) 

automatically recorded the event date time on a flash memory. The logged events were accessed 

through a serial interface. 

Both wrist device and smart lighter have an independent clock in. The time across devices needs 

to be synchronized over the duration of data collection. The initial time synchronization between 

instrumented lighter and hand modules was established by sending computer time stamp 

(synchronized with an internet server) using a custom-developed LabVIEW application. At the end 

of the study, the time of both sensors were read using same application to correct possible drift 

appeared over the time.  

3.2. Participants and Study Protocol 

A subset of the original study in [35], was used in this study. The original dataset was obtained 

from medium and heavy smokers who participated in the study between October 2016 and May 2017. 

The participants signed informed consent. All procedures of the study were approved by the 

Institutional Review Board at the University of Alabama. 

To qualify for the study, participants had to be between the ages of 19–70, report smoking at 

least 8 cigarettes per day, provide a breath carbon monoxide sample of >10 parts per million 

(measured using a BreathCO vitalograph [39]), report smoking for >1 years, be healthy and have no 

acute or chronic respiratory problems. 35 qualifying participants were recruited: 24 men and 11 

women; age (average ± standard deviation/range) 25.1 ± 11.8/19–62 year; body mass index  

24.6 ± 6.1/16.8–45.9 kg/m2; self-reported cigarette consumption 11.4 ± 5.4/5–20 cigarettes per day; and 

CO measurement 14.7 ± 6.1/ 8–33 ppm). 
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The study was composed of a controlled portion (1.5–2 h) at the University of Alabama and an 

unconstrained free-living portion (~24 h). At the initial visit, participants had been informed with 

PACT2.0 wearable system, smart lighter and the purpose of the study. Participants had been 

instructed to smoke as normal with the wearable system. During the controlled portion, the 

participants were first outfitted with PACT2.0 sensor system. Then participants were asked to 

perform 10 ordered activities in the lab, outside, and in a cafeteria: 1) read aloud, 2) walk on a 

treadmill self-selected slow pace (1.8 ± 0.3 mph), 3) walk on a treadmill self-selected fast pace  

(3.0 ± 0.45 mph), 4) rest by sitting on a chair, 5) smoke while sitting on a chair, 6) talk on cellphone, 7) 

eat in a cafeteria, 8) smoke while walking and talking, 9) smoke while standing and talking, 10) smoke 

while walking silently. Activities had a maximum duration of 5 min except for the eating and 

smoking activities. Between the cigarettes, participants had an unconstrained break of at least 10-min 

duration. The participants were also free to rest at any time during the experiment. To facilitate 

annotation of the recorded sensor responses, the entire session was videotaped by an iON camera 

(Contour Action camera, Provo, UT, USA) time-synchronized with the PACT wrist device sensors. 

All videotaped data were examined by a research assistant and boundaries of every puff (starting 

point: the cigarette was put on the mouth, end point: the hand was removed from the mouth) were 

marked manually to obtain ground truth information. These annotations were used to evaluate 

detection of smoking-HMGs by computing the number of true positives, false positives and false 

negatives in the controlled portion of the study. The start and end timestamps of each activity were 

also marked in a freely available smartphone application (aTimeLogger-Time Tracker). After 

completion of the controlled study, the participants left the laboratory and started their free-living 

portion. The activities during free-living portion were not restricted. The participants self-reported 

major activities (smoking, eating, sleeping, and being sedentary) using a smartphone and 

aTimeLogger application. All other activities like walking, running, exercise, etc. were self- reported 

as physically active. Figure 2 shows a screenshot of the aTimeLogger application. Participants 

returned to the laboratory after 24 h. At the end of visit, participants were asked to participants 

whether they missed registering any smoking activity in the smartphone. In addition, the participants 

were asked to complete an ‘acceptability questionnaire’ to evaluate the acceptance of the sensor 

system in natural conditions. And the subjects scored an average of 8.3 ± 0.31 out of 10 in the 

acceptability. 

 

Figure 2. Screenshot of the aTimeLogger application. 

3.3. Dataset 

A total of 871 h of IMU data (55 h of a controlled environment and 816 h of free-living) was 

recorded by the system from 35 subjects. 463 lighting events (142 in the controlled environment and 

321 under free-living conditions) were recorded by the electronic lighter. A total of 303 smoking 

events were recorded from the users’ self-registration of cigarette consumption during the free-living 

portion of the study. It was noticed that the duration of some activities was reported as much longer 

than usual. This shows that some participants may have forgotten to mark the end of some activities. 

See Table 2 for a brief summary of the dataset. 
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Table 2. Data set of the study. 

Dataset 

 
Lab. Free-living1 

Number of Participants 35 35 

Test duration 1.5–2 h ~24 h 

Total duration 55 h 816 h 

Number of lighting events 142 321 

Number of smoking events 140 303 

Number of puffs 1852 - 

Ground truth 
Smoking events  

and puffs  
Smoking events 

Total activity durations (h) 

Eating 5.2 Eating 23.2 

Reading 3.05 Sedentary 218 

Slow walking 2.93 Sleeping 252 

Fast walking 2.83 Smoking 44.8 

Phone calling 2.91 Physically Active 130 

Sitting + Smoking 2.5 Unreported 148 

Walking + Talking + Smoking 3.38 
 

 

Standing + Talking + Smoking 3.33 
 

 

Walking + Smoking 2.3 
 

 

Resting 3.03 
 

 

Uncertain activity 23.5 
 

 

1 According to the self-report of participants. 

3.4. Signal Preprocessing 

The raw IMU data of six dimensions acquired from both controlled and free-living were 

denoised by a second-order low-pass Butterworth filter with the cutoff frequency of 2 Hz. 

3.5. Algorithm 

A characteristic pattern of HMGs, such as an instance of SPM (sequence of puff movement) [31], 

can be identified sufficiently by using the IMU data stream. Figure 3a illustrates a characteristic 

pattern in the responses of the accelerometer and gyroscopes axis while a person smoked with the 

dominant hand. The dashed boxes in the figures indicate the HMGs marked from manual video 

annotation. When the hand moved toward the mouth, one or two gyroscope axes value increased 

and reached a peak value; one accelerometer axis value reached a value between ±0.5 g and ±1 g due 

to the gravity while the others between 0 g and ±0.5 g. During a puff, the hand generally remained 

stationary at the mouth. When the hand moved away from the mouth, gyroscope signals reached the 

peak value in opposite direction, and the accelerometer values returned to the base level. 

Motivated by these characteristic patterns, a complete HMGs detection system is proposed and 

briefly discussed. 
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Figure 3. An example of the accelerometer and gyroscope signals from a participant. (a) Smoking 

event, (b) an eating event. Dashed lines show the smoking-HMGs. 

3.5.1. Detection of Hand-to-Mouth Candidate Gestures 

An approach was developed to detect smoking related HMG candidates from the raw data 

collected from x-axis accelerometer, which is the parallel axis to the arm. The changes of x-axis 

accelerometer value from high to low indicated the hand was moving towards the mouth. An 

opposite change in this axis indicated the hand was moving away from the mouth. Every falling and 

rising edge of the x-axis signal was considered as a cigarette HMG candidate. For automatic 

identification of HMG candidates, an edge-detection algorithm was proposed in the time series 

(illustrated in Figure 4): 

• The accelerometer x-axis data was initially filtered by a wavelet filter (Haar type wavelet with 

nine decomposition levels). Haar wavelet was selected here because of its square shape, which 

resembles the rapid changes of accelerometer signals. 

• A time derivation of the wavelet filtered signal was done to obtain the positive and negative 

spikes corresponding to signal transitions. 

• Spikes with the absolute amplitude smaller than median of positive spikes were discarded to 

eliminate low-magnitude gestures from further consideration. 

• The time segment between of a minimum negative spike and the following maximum positive 

spike was defined as the HMG candidate. 

 

Figure 4. Candidate HMG segments (a) x-axis accelerometer signal (b) wavelet filtered signal  

(c) derivate signal. 
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3.5.2. Feature Extraction and Selection 

Initially, 58 features were defined and extracted from the candidate HMG segments. The mean, 

standard deviations, skewness and kurtosis of accelerometer and gyroscope data, min and max value 

of the gyroscope signal, HMG duration, time differences between two detected HMGs, pitch and roll 

angles were considered as features. In the study, roll and pitch angles were calculated as in Equations 

(1) and (2) without additional filtering to keep the simplicity. These angles can be calculated by using 

complementary or Kalman filter for better accuracy [40,41]. The accelerometer data of prior and next 

HMG segments were correlated with current HMG segment, and the correlation coefficients were 

used as features. In addition, the mean and standard deviation of all accelerometer data from two 

different durations (3 and 8 s.) of the windows were calculated. The center of HMG segments was 

defined as the center of these windows.  

pitch(�) =
(−���)

(���)
 (1) 

roll(�) =
(���)

����
� + ���

�

 
(2) 

Using too many features may lead to overfitting of the classifier. A large feature set may contain 

many noise features that do not contribute to the classification. Thus, it is highly important to select 

a subset of relevant features. Before selection of most relevant features, an optimal number of features 

as a function of sample size (n) was determined. For this aim, the following process was applied [36]: 

a) n samples were randomly selected from the controlled portion data, b) a forward selection 

algorithm was used to find a subset and their misclassification rate based on 10-fold cross-validation. 

This process was repeated five times, and corresponding error rates were averaged to obtain an 

estimation of classification error. Gaussian kernel SVM was used; the algorithm stopped when 20 

features were determined.  

 

Figure 5. Optimal feature size versus sample size. 

The results are shown in Figure 5; the addition of new features did not increase the classification 

accuracy more than 1% after 12 features, which was determined to be the optimal feature number. 

The forward selection procedure was used one more time for whole controlled portion data set with 

10-fold cross-validation. The algorithm stopped when 12 most relevant features were determined, 

and these selected features were used for classification (Table 3). 

 

 

 



Sensors 2019, 19, 570 9 of 18 

 

Table 3. Selected features. 

Selected Features 

Time features Number  

Durations 2 
Detected HMG duration, the time difference between current and prior 

detected HMGs. 

Accelerometer Features 1 

Accelerometer x-axis 3 
Correlation coefficients between prior and current, next and current 

HMG period, mean of 8 s sizes of window data 

Accelerometer y-axis 2 Kurtosis, Correlation coefficient between next and current HMG period 

Accelerometer z-axis 2 Mean, the standard deviation of 3 s sizes of window data 

Gyroscope Features 1  

Gyroscope x-axis 1 Standard deviation 

Gyroscope y-axis 1 Maximum 

Gyroscope z-axis 1 Standard deviation 

1 Features were computed over each hand gesture duration. 

3.5.3. SVM Model 

A two-class SVM classifier was employed to detect the smoking HMGs. To provide labels for 

classification, all 7664 candidate HMGs of the laboratory data were manually labeled as ‘smoking-

HMG’ and ‘non-smoking-HMG’ from the video annotations. This procedure identified 1852 as 

smoking-HMG and 5812 as non-smoking-HMG. The support vector machine was trained from this 

labeled dataset. To examine whether the proposed method could successfully detect smoking HMGs 

from a new smoker data set, a LOSO cross-validation method was applied. Data set of 34 participants 

were used for training of SVM model, and remaining participant’s data were used as the validation 

set. This procedure was repeated for each participant and 35 models were obtained. 

3.5.4. Smoking Event Detection and Reduction of False Positives in Smoking HMGs Detection 

A smoking event was defined as consumption of a full or partial cigarette. The following 

procedures were applied for smoking event detection. A Gaussian kernel smoothing was used to 

define a group of smoking-HMGs as a single smoking event. After kernel smoothing, peak points of 

the kernel smoothing signal were obtained by a peak detection algorithm. Each peak was considered 

as a center of the smoking event if its level was higher than the average peak level. The start and end 

of the smoking episodes were determined by using −6 dB bandwidth for each peak. If a detected 

smoking-HMG was outside of the determined smoking event, it was relabeled as non-smoking-

HMG. The instrumented lighter data was used to eliminate non-smoking-HMGs. If a detected HMG 

was not inside of 10 min confidence interval after the cigarette lighting, it was relabeled as non-

smoking-HMG. Then, the boundary of smoking episodes was determined by kernel smoothing. 

Figure 6 shows the simplified flowchart of proposed approach. 
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Figure 6. Flowchart of proposed IMU approach for detecting smoking event and smoking-HMG. If a 

lighter data is available, an extra step indicated by dashed box will be employed for eliminating non-

smoking HMGs. 
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3.5.5. Validation on Free-Living Dataset 

In order to obtain person-independent evaluation for the free-living portion, the hold-one-out 

classifier models obtained from the controlled portion were applied to the free-living data of hold-

out subject. That is, model i, which was trained without subject i data, was used on free-living data 

of subject i. These procedures were repeated for each subject. Self-reports of the participants were 

used for accuracy computation. A confusion matrix for smoking event detection was calculated along 

with metrics of average smoking duration per cigarette and average smoking-HMGs number per 

cigarette. Misclassification rates for each activity of daily living were computed to identify which 

activity was the main source of error in smoking event detection. 

4. Results 

4.1. Results of the Controlled Portion 

Table 4 shows HMG and smoking event detection results of for both approaches: using only 

IMU data, and using IMU with lighter data in the controlled setting. Using only hand IMU data, the 

average F1-score and accuracy were 77% and 86%, respectively, for HMGs detection. Including the 

lighter data, these scores reached 86% and 93%, respectively. 

Table 4. HMG and smoking event detection results for controlled portion. 

  
TN FP FN TP 

HMG detection 
IMU 4910 902 128 1724 

IMU + Lighter 5417 395 126 1726 

Smoking event detection 
IMU 0 39 3 137 

IMU + Lighter 0 3 1 139 

    Ground truth Detected (IMU + Lighter) 

Number of cigarettes 140 142 

Number of smoking-HMGs per cigarette 13.01 (±5.5) 15.04 (±6.1) 

Smoking duration (min)/cig. Average, (SD) 4.7 (±1.4) 5.6 (±1.96) 

 

Figure 7 shows the boxplot for recall, precision, F1-score and accuracy rate for smoking-HMG 

detection in a LOSO scenario using only IMU data and IMU data with lighter data. 

 

Figure 7. Boxplot of the performance metrics for smoking-HMG detection obtained using LOSO 

validation in controlled portion. Blue for IMU only, Black for IMU + Lighter. 

In the controlled portion of the study, by using only IMU data a total of 39 false positive smoking 

events were detected. while 18 of them belongs to eating activity, 17 of them belongs to uncertain 

activities, other four false positive belongs to reading, slow walking, resting and phone call, 

respectively. By employing lighter event data, the number of false positive smoking event detection 

was reduced to three. These three detections belonged uncertain activity. In the controlled portion of 

the study, the false negative detections belong to the smoking while sitting. Figure 8 shows the 
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number of normalized false positive HMGs (FPHMG) and normalized false positive smoking events 

(FPSE) detection for each activity which were performed in the controlled portion of the study. The 

start and the end time information of each activity (including walking, talking, eating etc.) was 

marked in a smartphone application by a researcher. Then this information was used as ground truth 

information for evaluation and finding statistical analyses. Normalization was done by time spent in 

activity. In this figure, the uncertain activities are the unconstrained activities during inter-cigarette 

intervals. This figure indicates that eating is one of the main sources of false detection. 

 

Figure 8. Number of false positive detection per hour in activity for the controlled portion. (a) HMGs 

detection (b) smoking events detection. The blue bar belongs to IMU, the yellow one to IMU + Lighter. 

4.2. Free-Living Results 

Table 5 shows the number of candidate HMGs and the number of detected smoking-HMG, true 

negative smoking events (TNSE), true positive smoking events (TPSE), false negative smoking events 

(FNSE), FPSE, and some statistics for the detection of smoking events. The proposed algorithm detected 

6354 smoking-HMGs out of 52617 candidate HMGs using only IMU data. By incorporating lighter 

events (321 lighting events), a total 2641 HMGs were detected as smoking-HMGs. In the free-living 

portion, the participants reported a total of 303 smoking events. 18 participants reported fewer than 

seven cigarettes, 13 participants reported between seven and 14 cigarettes, and 4 participants 

reported more than 20 cigarettes. By comparing the participants’ self-report and the lighter event 

logs, 26 lighter events occurred outside of the self-report periods. For five subjects, multiple lighter 

events happened inside one smoking event. No lighter events were detected for 16 self-reported 

smoking events. By incorporating lighter events, in the free-living portion of the study, a total of 29 

false positive smoking events were detected. While nine of them belongs to physical activity, 10 of 

them belongs to sedentary, one of them belongs to eating, two of them belong to sleeping and seven 

of them belong to unreported activities. Figure 9 shows the number of FPSE per hour for self-reported 

activities by the participants using a smartphone application.  

 

 

 



Sensors 2019, 19, 570 13 of 18 

 

Table 5. Free-living test results. 

HMG detection 

 
Candidate HMGs Detected smoking-HMGs 

Only IMU data 52,617 6723 

IMU data + lighter  52,617 2707 

Smoking event detection 

 
TNSE FPSE FNSE TPSE Recall Precision F1-score Accuracy 

Only IMU 

data 
0 328 103 216 0.677 0.397 0.5 0.333 

IMU data + 

lighter 
0 29 21 282 0.93 0.906 0.918 0.849 

 Ground truth1 Detected (IMU + Lighter) 

Number of cigarettes 303 311 

Number of smoking-HMG per cigarette - 8.9 (±5.2) 

Smoking duration(min)/cig. Average, 

(SD) 8.3 (±7.8) 7.5 (±1.5) 

1 According to the self-report of participants. 

 

Figure 9. Number of false positive smoking event (FPSE) per hour for major activities reported by 

participants in free-living portion. The blue bar belongs to IMU, the yellow one to IMU + Lighter. 

5. Discussion 

The proposed approach validated the efficacy of combining the IMU and electronic lighter for 

automatic monitoring of smoking. By using only the IMU device in the controlled portion of the 

study, 77% and 86% F1-score (in the person-independent validation) were achieved for the detection 

of smoking-HMGs and smoking events, respectively. These metrics were higher than those produced 

in all previous research. The inclusion of a lighter, however, produced an even higher degree of 

certainty about the identification of a true smoking event as indexed by the clear improvements of 

the F1-scores (86% for HMGs, 98% for smoking events). 

The dataset of this study recorded unobtrusively, represented realistic smoking behaviors. The 

participants reported that wearing the wrist device was not obtrusive or concerning. The procedures 

generated lots of background data to confuse smoking hand movement as non-smoking one. In the 

controlled portion, the subjects performed four types of smoking activity: sitting + smoking, standing 

+ talking + smoking, walking + talking + smoking and walking + smoking. But smoking during the 

free-living portion of data collection encompassed unrestricted normal activities of daily living, 

including those that contain hand gestures similar to smoking. 

In the controlled portion of the study, the proposed algorithm detected 230 FPHMG attributable 

to eating, while 308 FPHMG were associated with uncertain activity. However, subjects spent a total of 

5.2 h eating and 23.5 h of unconstrained activity. Figure 8 shows that the most challenging task of the 

IMU-based approach was to separate smoking HMGs from eating. In terms of smoking events, 

eighteen of the total FPSE were created by eating activity, whereas fourteen belonged to the uncertain 
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activity. When we visually compare IMU sensor signals belongs to smoking and eating activities, the 

similarity of hand gesture rate, duration and signal amplitude can be clearly identified (Figure 3). 

By employing timestamps from the lighter, non-smoking-HMGs during eating, resting, and cell 

phone conversation were reduced significantly (Table 4). In the controlled portion, a reduction of 

FPHMG from 902 to 395 (56.2%), and FPSE from 39 to 3 (92.3%) was achieved. However, some non-

smoking-HMGs in a smoking event (which were naturally formed by hand movements during a 

conversation, scratching head or face etc.) could not be reduced by using lighter data. Also, 3 false 

smoking events were added by the false press of the lighter by a participant. 

For smoking behavior detection in the free-living condition, this research used the largest-to-

date dataset with 821 h of sensor data from 35 participants. During the free-living portion, the 

proposed method detected 6723 smoking-HMGs within 52617 candidate HMGs by using only IMU 

device. When using the lighter, this number was reduced to 2707 smoking-HMGs. Table 5 shows that 

the accuracy of free-living smoking detection (F1-score 50%) using only IMU data was low compared 

to the controlled portion. By including lighter timestamps, smoking events were determined more 

accurately (91.8% F1-score, 84.9% accuracy); these scores show the lighter provided a powerful tool 

for reducing FPHMG and FPSE. 

From the free-living data, a total 29 FPSE were detected. According to the self-report of 

participants, 22 FPSE belonged to different activities (eating, sedentary, physically active and sleeping) 

and seven FPSE were detected for the unreported part of the free-living study. There may be several 

reasons for these false positive detections. The participants might have used the lighter mistakenly 

when they were physically active, to light items other than cigarettes (e.g., a candle), or to light 

someone else’s cigarette. Another reason might be that chain-smoking participants did not mark the 

end of one cigarette and beginning of the next cigarette in self-report. Or might be participants forgot 

to report their smoking. According to the questionnaire part of the study, 5 participants forgot to 

report some smoking events. 

A total of 21 smoking events was not detected, which could be attributed to errors in self–report 

or by lighting cigarettes with a different lighter. The proposed approach would be appropriate for 

regular smokers who are inclined to use the dominant hand for smoking and who are willing to light 

their cigarettes using the personal lighter. No lighter events were detected for 16 self-reported 

smoking events. This shows that the subjects may have used their personal lighters or different 

lighters, instead of the provided instrumented one. Usage of dominant hand was another issue here, 

which is a clear limitation of the current approach. Employment of another IMU device on the non-

dominant hand is a potential option, but that would add an additional burden for the smokers. 

By using only the IMU device in the free-living portion, the number of the FPSE was 328 which 

were associated with eating, sitting, and other activities. Statistics such as average smoking duration 

and average smoking-HMG number per cigarette provided in the Tables 4,5 provide some possible 

explanations for this low value of precision. In the control portion, average cigarette consumption 

duration was computed as 4.7 min and average smoking-HMG number per cigarette was computed 

as 13. But in the free-living portion, these two parameters changed to 7.5 min and 8.9 smoking-HMG, 

respectively. These values suggest that the participants consumed cigarettes more quickly with a 

higher number of HMG in the surveillance condition. But in real life, they consumed more slowly 

with fewer HMGs. This variation in smoking behavior could affect the accuracy of smoking detection. 

In the free-living condition, the time between two puffs is longer than during the controlled portion, 

so the smoking detection algorithm groups these puffs as different smoking events. Also, this 

smoking behavior negatively affects the recall rate. More sophisticated smoking-HMGs grouping 

algorithms could potentially improve the detection results for smoking events. Here, the inclusion of 

the lighter provided a simpler but more accurate solution. Another reason might be that smoking 

activities that performed in the control portion of the study model did not match with the real-life 

smoking activities. In the control portion of the study, participants performed four types of smoking 

activities. But many different types of smoking activities are possible in free-living condition. 

Although the participants had been instructed to smoke as normal way. Tables 4,5 show the smoking 

behavior of the participants have changed in the surveillance condition. This problem can solve by 
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training the model using a dataset which has ground truth information and collected in real-life 

conditions.  

Some other issues need to be considered when interpreting the results from the free-living 

component of the study. For that condition, only an approximate ground truth was available, which 

was collected by having participants log in their cell phones prior to and after performing daily 

activities including cigarette smoking. The ground truth was itself subject to errors. For example, 5 

participants forgot to report some smoking events. Also, some participants did not report the end 

time of their activities. Given that self-reports were not consistently veridical with actual smoking 

behavior, errors of self-report are likely major contributors to the false positive/negative detections 

in this research. Some FPSE may truly identify non-reported smoking events. Also in the free-living 

condition, participants were allowed to take off the IMU device when showering or bathing. Some 

participants may have oriented the system incorrectly when reapplying the device or may have 

reattached the device too loosely. Either of these issues would have introduced additional error. 

The use of the non-dominant hand for smoking or the absence of HMGs during smoking are 

other possible sources of error. As an example of the latter possibility, users might smoke by holding 

a cigarette between their lips without any hand movements and thus not generate HMGs. This was 

not observed in controlled portion of the study, but it could have occurred in free-living conditions. 

This study can be compared with two previous studies that that examined smoking behavior 

under natural conditions. In [30], 4 participants wore two 9D-IMUs, one on the elbow and one on the 

wrist, for four hours per day for three days. In this limited 48 h dataset, participants reported 30 

smoking events. That method detected 27 true events and eight false events and reached 83% F1-

score. In [31], breathing pattern was captured from a RIP sensor and hand gestures were captured 

using a 6D IMU worn on the wrist for puff and lapse (quitting smoking period) detection from newly 

abstinent smokers. In a free-living condition, the method was applied to 3 days of post-quit data from 

32 lapsers. The method detected 28 lapse episode correctly and 14 episodes falsely (75% F1-score). 

The wrist-only model in that study detected 24 of the 32 lapse events and 49 false episodes (45% F1-

score). But the study reported no metrics about detected smoking duration and number of hand 

gestures. 

Accurate analysis of smoking behavior can be possible with quantitative measurement of 

smoking-related metrics. To achieve this measurement, each smoking-related metrics should be 

measured by a proper sensor system. For instance, IMU based sensors are appropriate for the number 

of cigarettes, the number of puff per cigarette and interpuff interval measurement. But, some other 

metrics such as smoke inhalation volume, smoke holding duration and inhale/exhale duration can be 

measured by tracking breathing signal via RIP sensor. Another important requirement is the 

measurement tools or systems should not change the nature of the smoking activity. This is possible 

with wearable and unobtrusive systems. The main advantage of the system described in the present 

research, relative to other systems, is that it relies on a simple and low-cost platform that overcomes 

the limitations of single IMU-based approaches. The evaluation of this system was based on the 

largest data set reported to date for detection of smoking using IMU technology. The results 

suggested that the system used in the present research generated better overall detection 

performance under both controlled and free-living conditions than previously tested systems. 

As with any wearable device, the limitation of the proposed system is that the user must wear 

and use the device (wear the hand gesture sensor and use the instrumented lighter in this case). 

However, the purpose of the system is to provide objective, accurate information about smoking and 

smoke exposure. Any wearable system can be defeated by non-compliance. Therefore, we assume 

compliant users who are interested in cessation. 

This study has some other limitations that offer opportunities for further development and 

refinement of the detection system. First, the system tested in this research used only one wrist device. 

In future studies, the addition of a second wrist device would allow for the detection of smoking with 

the non-dominant hand. Second, the PACT wrist device did not have real-time streaming; the data 

could only be accessed offline. This is one of the weaknesses of the current system for Just-In-Time 

Adaptive Interventions (JITAIs). The proposed algorithm can be implemented in a smartphone, 
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smartwatch or a cloud-based server to continuously analyze real-time sensor signals if the IMU data 

are arranged to stream via a Bluetooth or Wi-Fi module. The proposed algorithm could even be 

implemented to the microcontroller of the wrist device upon applying some optimization algorithm. 

These tasks are left open for the future. Third, the wearable sensor system used in this research was 

somewhat bulky and perhaps not well suited for long-term, every-day use. The approach, however, 

could be extended to smartwatches, as those contain IMUs. Another shortcoming is, a one-day trial 

in the free-living for each participant is not enough to evaluate test-retest reliability and the effect of 

the sensor system on smoking behavior 

6. Conclusions 

This study suggests a practical and reliable method for monitoring cigarette smoking behavior 

in free-living conditions. The research indicated that the combination of an IMU sensor with an 

instrumented lighter provides better results for smoking behavior analysis than reported in previous 

studies examining smoking detection. In the controlled portion of the research, the system achieved 

a very high accuracy in the person-independent scenario for smoking-HMG (86% F1-score) detection 

and smoking event (98% F1-score) detection. Under free-living conditions, the proposed method 

achieved 91% F1-score and 84% accuracy. These findings provide a foundation for a wide variety of 

applications and suggest that this approach can be used in a range of studies to provide accurate, 

bias-free measurements of smoking behavior in free-living conditions. 
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