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Evolution of health care 
At the beginning of the 20th century, the emerging sciences

of physiology, pathology, chemistry, biochemistry, microbi-

ology and radiology had the potential to change medicine

from a practice based on mythology and anecdotal observa-

tions to one grounded in experimental science. Particularly

powerful was the development of the germ theory, which

identified microorganisms as the cause of many diseases

prevalent at that time. The medical profession did not,

however, easily incorporate science into practice until

several decades later, when the development of academic

medical centers enabled a science-based approach and the

first major transformation of medical practice. 

The impact of science on medicine has been striking. The

strengths of the reductionist method, which simplifies the

concept of pathogenesis to the smallest number of causal

factors, are shown by the burgeoning understanding, at a

molecular level, of human biology and the underlying causes

of many diseases. Spectacular medical therapies abound,

and new technology has continued to enhance the capabili-

ties of medicine. Nonetheless, the weaknesses of the reduc-

tionist scientific approach are also reflected in our

health-care system in which complex chronic diseases

account for most of the health-care expenditures. We have

created a model that focuses on acute treatment instead of

on the prevention of chronic disease (Figure 1).

The reductionist focus on specific and single etiological

causes of disease is a useful strategy to understanding patho-

genesis, but is limited in truly explaining disease. Even for a

microbial disease for which an etiological agent is known,

the outcome of infection is highly dependent on the state of

the host’s immune system and their general health status. In

genetic diseases resulting from well understood molecular

mechanisms, such as sickle-cell disease, there is a highly

variable course: some individuals have severe unremitting

crises leading to death by their early twenties, whereas

others live well beyond their fifties. 

Chronic diseases develop as a consequence of an individual’s

baseline susceptibility coupled with their exposure to envi-

ronmental factors (Figure 2a). These may trigger initiating

events, leading to the accumulation of pathological changes

and the onset and progression of chronic disease (Figure

2b). Today, most health-care expenditure is focused on the

later stages of this process, long after the development of

many underlying pathological changes. Until recently, it

could be argued that the focus on treating disease was justi-

fied because the ability to predict, track, and prevent its

onset was not technically feasible. This is no longer the case,

and the emerging sciences of genomics, proteomics,

metabolomics, medical technologies and informatics are rev-

olutionizing the capability to predict events and enable inter-

vention before damage occurs. Personalized risk prediction
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and strategic health-care planning will facilitate a new form

of care, which we have called ‘prospective health care’ [1].

The current approach to health care is well demonstrated by

the structure of the current medical record in the USA

(Figure 3). The medical record is the documentation of the

physician’s interaction with the patient on any given visit. It

begins with a notation of the ‘chief complaint’, the reason for

the patient’s visit to the physician; this already presumes that

it is a problem that is bringing the patient to see their doctor.

What follows is a logical ‘work up’ of the problem. The

present medical record outlines a proven approach to identi-

fying disease and to developing a plan to mitigate against it. 

Prospective health care is a new approach that incorporates

all the power of current disease-oriented medicine but is

based on the concept of strategic health planning, a proactive,

prospective approach to care. In this system, individuals will

be evaluated to determine their baseline risk for various dis-

eases, their current health status, and the likelihood of their

developing specific clinical problems given their risks. In

order to provide an individual with their personalized health

plan (as part of their prospective personal health record), new

capabilities and tools are needed. For example, knowledge

and tactics are needed to measure an individual’s baseline

risk for major chronic diseases. Predictive biomarkers - mea-

surable biological factors that predict disease development,

such as low-density lipoprotein (LDL) for cardiovascular

disease - need to be identified and tracked over time to deter-

mine whether the individual’s likelihood of developing any

particular disease is increasing or decreasing [2]. In addition,

tools are needed to anticipate the development of specific

clinical events associated with the chronic disease (for

example, myocardial infarct as a consequence of coronary

artery disease) and to support appropriate therapeutics

based on the individual’s needs [3].

Facilitating accurate risk assessment and
evidence-based support 
The key elements of all risk-prediction tools, from baseline

risk assessment to analysis of appropriate therapeutics, will

benefit from the molecular understanding of the pathogenesis

of disease, along with the identification of predictive factors,

particularly biomarkers that anticipate or quantify the patho-

genic process. Such factors may be determined in part through

the analysis of currently available clinical data, including

family history, clinical examination, and conventional labora-

tory analyses. Analysis of such information already provides

valuable insight into the likelihood of an individual developing

a disease. The power of such information, however, is rarely -

if ever - sufficient to predict accurately the precise timing of an

event or the best therapeutic options (Figure 4). This type of

prediction will require additional tools and better predictive

biomarkers, which are emerging.

Be it disease events and their timing, adverse outcomes of

treatment, weather forecasting, or the orbit path of a satel-

lite, prediction requires a mathematical equation, distribu-

tion or rule that is a statistical representation of the

measured outcome of many past events. The predictive

model is composed of predictor variables gathered from
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Figure 1
The consequences of reactive health care. (a) A graph of US health-care spending shows that nearly three-quarters of a total of $1.5 trillion is
committed to the treatment of chronic disease. Little is spent on prevention. (b) The most common chronic diseases and the US national expenditure
on treating them are indicated. Sources: American Heart Association, American Cancer Society, American Lung Association, and National Institute of
Diabetes and Digestive and Kidney Diseases.
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studied cohorts - the particular factors that are likely to

influence the future outcome. Predictive modeling encom-

passes various procedures for creating models - from regres-

sion to neural networks - that distinguish predictors from

many other factors that are not as valuable for anticipating

the outcome [4-7]. In marketing, for example, a customer’s

income, age, sex, and purchase history might predict the

likelihood of a future sale, but their place of birth might be

an irrelevant variable. 

Physicians use a cognitive predictive modeling process, built

on experience with numerous patients, lectures, literature

reading, and so on, to build internal heuristics for rapidly

anticipating or ascertaining problems on the basis of what

they judge to be the most salient factors. A key feature of

mathematical predictive models that sets them apart from

human heuristics is that the data input can be more compre-

hensive, and the uncertainty of the predictions can be

quantified as a result of a confidence interval used with stan-

dard regression methods or a high probability density used in

Bayesian statistical methods [8,9]. Therefore, with mathe-

matical models, the inputs are more comprehensive and the

outputs are more objective. Ultimate decision-making by

physicians is critical, however, as humans are more flexible in

appreciating outlying issues for which a model might be

unable to account. Thus, mathematical models can serve as

guidelines and default options to raise the overall standard of

care, but not to determine the final diagnosis or treatment

plan. An ideal scenario for the practice of health risk assess-

ment is to take advantage of highly accurate predictive

models as guidelines to help standardize the quality of care

while still giving physicians full flexibility to use good clinical

judgment to consider variables not accounted for by a model. 

Predictive models have been used for risk assessment related

to very clearly defined clinical problems, such as recurrence
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Figure 2
Mechanisms of pathogenesis and disease progression. (a) The reductionist concept is that disease occurs as a consequence of a pathogenic factor, for
example a microbe (top). This is overly simplistic. Disease is a consequence of susceptibility to pathogenic factors as well as exposure to them (bottom).
The emergence concept provides important opportunities for better understanding disease risks, tracking pathogenesis and earlier intervention [42].
(b) Disease progression is shown from baseline risk to irreversibility. Diseases develop as a consequence of inherited susceptibilities and environmental
exposure. Over time, pathology increases, reversibility decreases and costs increase (red line). Earlier intervention could clearly reduce the costs and the
disease burden [42].
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and survival time, to guide difficult treatment choices for

various cancers, and to recommend disease-management

choices for patients with heart failure [10-12]. Nonetheless,

unlike in other industries, there has not been widespread or

standardized use of predictive models in clinical practice.

Part of the reason for this is that predictive models created

from randomized clinical trials or from prospective data

cohorts like the Framingham Heart Study (a population-

based study initiated in 1948 with the aim of identifying

major risk factors associated with heart disease) were origi-

nally based on a limited range of clinical and demographic

data from narrow populations, for which results could not be

easily generalized [13,14]. Furthermore, when predicting

dichotomous outcomes (for example, heart attack or no

heart attack over a given time-frame), such models often

have a concordance index (a measure of classification accu-

racy) under 90%, leaving concerns that too many false pre-

dictions could be made. Thus, predicting the likelihood of

the risk of a heart attack over ten years represents a useful

guide for physicians in identifying patients at risk, but to be

more useful, clinical medicine requires predictive models

that can predict events accurately over far shorter time-

frames. To achieve this, more relevant and specific data will

need to be collected for analysis (Figure 5). 

Genomic research drives the discovery of
predictive factors and personalized medicine 
Among the most important contributions that genomic

research will make to clinical medicine will be to provide a

source of relevant predictive biomarkers for use in the

development of specific risk assessments, including baseline

risk evaluation, disease progression tracking, disease event

prediction, and therapeutic support tools. When accurately

measured, genomic factors that lie in the causal pathway of

disease or therapeutic response, or factors such as single-

nucleotide polymorphisms (SNPs) that are highly associated

with causal genes, will serve as better predictors of adverse

outcomes than much of the data now being collected. Stable

DNA gene predictors will enhance baseline clinical risk

assessment and primary prevention, and dynamic mRNA,

protein and metabolic factors will enhance refined risk

assessments to track disease progression, predict events, and

guide therapeutic choices. 

Demographic, clinical, and family-history predictors that are

relatively easy and cost-effective to collect will probably retain

their value. But such information alone is associated with

many false-positive and false-negative predictions for any

given individual. Furthermore, there is an upper limit to the

predictive value of many current basic clinical and laboratory

tests in anticipating disease pathogeneses well before they

occur. Disease genes or SNPs linked to these causal genes, dis-

covered through biological studies, will serve as more accurate

markers of disease susceptibility. Depending on the complex-

ity of the disease pathogenesis, such genes may account for a

very small to a very large amount of the variation seen in the

natural history of a disease. Even in the most complex cases,

however, a collection of interrelated genes or SNPs, along with

a comprehensive family-history assessment, can serve as a

stable baseline of risk assessment that can guide the use of

more refined risk assessments - ones that incorporate

dynamic molecular factors, reflecting the interaction between

the individual’s stable genome and the changing environment. 

The advantage of genotypic data for baseline prediction is

that it can be collected at birth. Baseline risk assessments

using basic family and demographic data or static genomic

information will probably have lower specificity (a higher

number of false positives) than molecular measures that are

dynamic and change with someone’s environment and

development. Nonetheless, baseline assessments will effec-

tively identify the people who require further evaluation

using molecular information that reflects disease develop-

ment. These general concepts also hold true for secondary

prevention (for example, heart attack in an individual with

diabetes), but the use of stable genomic data may be less

valuable when dynamic indicators have already manifested

and are part of the same pathway of disease as the gene pre-

dictors. In the long term, the decreasing cost of genotyping

may facilitate the use of DNA information for a more ratio-

nal and standardized approach to baseline risk assessment.

Identifying the appropriate disease genes and predictors for

baseline risk assessment will be further facilitated by new

clinical research and the HapMap project. The International

HapMap Consortium is characterizing common patterns of
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Figure 3
The traditional medical record compared with the prospective approach.
Physicians are currently trained to evaluate patients using the approach
on the left. This clearly demonstrates a focus on identifying and rectifying
disease. The process can be broadened to include strategic health
planning, as demonstrated by the prospective evaluation and record on
the right.
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DNA sequence variation and the extent of linkage disequilib-

rium in the human genome. This will facilitate the character-

ization of genotypes and identification of key SNPs related to

chronic disease; traditional and advanced association algo-

rithms will allow the analysis of the HapMap [15-19]. Online

Mendelian Inheritance in Man (OMIM), a database of

disease risk genes, already reveals an increasing number of

disease-related stable genomic factors that could be useful in

predictive risk assessment [20]. Furthermore, the role of an

individual’s gene variants in altering the metabolism and

efficacy of drugs they take is already proving critical in drug

development and in certain areas of clinical practice, such as

oncology [21]. 

For individuals whom genes, SNPs, family history, or clinical

information identify as high risk for a particular disease,

comprehensive surveillance will be needed to track possible

disease progression and to provide therapeutic support. Such

tracking will include the measurement of dynamic factors,

including gene-expression, proteomics and metabolomic

assessments. The use of such analyses to track disease devel-

opment is still rudimentary but can be expected to be incor-

porated into personalized health plans in the future. For

example, children with a family history of type 1 diabetes can

have a baseline risk assessment that considers various SNPs

as predictors of developing the disease. Children at enhanced

risk could undergo a comprehensive surveillance protocol,

tracking their levels of factors that destroy pancreatic �-cells

and that produce changes in insulin secretion [22,23]. This

process could be used to guide clinical research on preventive

interventions for type 1 diabetes. When effective therapies are

found, the same types of analyses could guide identification

of patients at risk and appropriate intervention. 

Initial applications of technologies such as these are being

developed to predict outcomes in established conditions. For

example, gene-expression microarray tests and proteomic

techniques show promise for identifying the aggressiveness

of cancer, allowing the creation of predictive models for

likely survival time with and without treatment [24-27].

Moreover, gene expression in circulating mononuclear cells

is being used to predict organ rejection in patients with heart

transplants, obviating the need for myocardial biopsy in

some conditions [28].

These examples highlight the need for predictive tools in the

selection of treatment options. By including potential thera-

pies in these models, physicians can assess therapeutic

options to select their risk/benefit ratios. The highest possi-

ble predictive accuracy will be necessary for such screening

and decision support to be clinically useful. For example,

coronary artery bypass grafting supported by cardiopul-

monary bypass on pump is associated with a number of

serious adverse outcomes, including stroke. Current predic-

tive models for stroke as a result of ‘on-pump’ coronary

artery bypass grafting, a surgery in which blood is pumped

by a machine while the heart is being operated on, have a

relatively low sensitivity and specificity; none of the models

currently has an overall concordance index over 80%. New

SNPs and proteomic quantification of coagulation factors,

cytokines and C-reactive protein, which may be causally

related to susceptibility to stroke after bypass, may, however,

increase the accuracy of future models enough to make them

useful in improving therapeutic decision-making - in this

case whether to prescribe standard cardiopulmonary bypass,

or the more difficult but stroke-lessening off-pump bypass

approach, or other therapies [29].
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Figure 4
Towards focused prevention and effective intervention. As shown in Figure 2b, the typical time of intervention currently occurs after the disease burden
has started to increase. Emerging health risk assessment and evaluation tools will permit early detection (using either clinical observations or molecular
biomarkers) and will facilitate prevention and early intervention. Intervention before disease is detected may enable the damage to be prevented.
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Risk assessment for breast cancer
Breast cancer provides a useful example of how genomic

research and predictive models can improve clinical care.

For personalized prevention and early intervention, it is nec-

essary to predict baseline risks, provide surveillance for early

detection, and facilitate optimal individualized therapy if

disease develops. For baseline risk measurement, a tool was

developed in 1989 to estimate the likelihood that a woman at

a given age and defined risk factors will develop breast

cancer over a specified time. The model to do this, termed

the Gail breast cancer model, aids physicians in developing a

personalized strategy for further screening and treatment.

This model was constructed from case-control data of the

Breast Cancer Detection Demonstration Project (BCDDP)

and included age at menarche, age at first live birth, number

of previous biopsies, and number of first-degree relatives

with breast cancer as indicators [30]. 

Newer predictive models include as predictors more robust

family history (for example, in the so-called Claus model)

and causal disease genotypes such as BRCA1 or BRCA2 (for

example, in the BRCAPRO model), and these have advan-

tages in predicting breast cancer compared with the original

Gail model. Whereas the Gail model is a logistic regression,

the Claus model uses a genetic modeling approach to deter-

mine age-specific breast cancer development probabilities

from family history.  BRCAPRO, a Bayesian model, is focused

on BRCA1 and BRCA2 and the risk of breast cancer. Many of

these newer baseline risk models for breast cancer can be

accessed through a tool called CancerGene [31].  A current

challenge is determining optimal ways to use these models

in conjunction with one another, or designing ways to

combine clinical information, and genetic and family history

data into a single predictive model.

More work is necessary to facilitate accurate prediction of

breast cancer. The incorporation of BRCA1 and BRCA2

disease alleles as predictors does aid in risk assessment of

cancer but does not predict most forms of breast cancer in

the population. Breast cancer is a feature of many other syn-

dromes with known genetic mutations, for example Li-Frau-

meni syndrome (caused by a germline p53 mutation),

Cowden syndrome (a PTEN mutation), and Peutz-Jegher

syndrome (an STK11 mutation) [32,33]. Other genotypes

associated with increased risk of breast cancer are located in

several genes, including BRCATA on 11q, BRCA3 on 13q21,
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Figure 5 
Facilitating risk assessment by linking a dynamic predictive modeling system to clinical decision support. Clinical data and the results of biomarker
analyses (left) are collected from a cohort of people (top) and stored in disease model libraries, and models are developed from them (middle). Other
populations can be used to verify the data (top right). The models can be used to identify risk prediction factors for particular diseases or events and can
be compared against an individual’s profile to determine their risk, or to diagnose disease progression (right). Data from each patient can then be fed
back into the model, in order to improve it. Abbreviations: EEG, electroencephalogram; EKG, electrocardiogram; fMRI, functional magnetic resonance
imaging; GIS, geographic information systems; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight mass spectrometry; MEG,
magnetoencephalogram; MS/MS, tandem mass spectrometry; SNPs, single-nucleotide polymorphisms.
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RB1CC1 on 8q11, BWSCRIA on 11p15.5, and BRIP1 on 17q22

[34]. Tools have not yet been developed to be used effec-

tively in primary care screening for cancer risk, but it can be

assumed that with further research, useful baseline screen-

ing tools will become available [35]. 

A validated ‘SNP chip’ to test for the presence of disease geno-

types for multiple alleles should help improve the sensitivity of

the test for use in baseline risk assessment in the broader pop-

ulation [36]. When they become cost-effective, early screening

of a broader range of relevant genotypes could be incorporated

into personal health plans. Because genotype data are static, a

one-time screen has lifelong benefit by determining whether

or not the patient should be entered into a more comprehen-

sive breast-cancer surveillance program. Although no high-

throughput genotyping tool is currently available for

breast-cancer onset prediction, Genomic Health, Inc. has

commercialized its Oncotype Dx 21-gene predictor of breast

cancer recurrence [37], and Veridex, LLC has published

research on its gene-expression tests, reporting improvements

in the accuracy of predicting cancer prognosis [38]. These

enhancements are based on molecular tumor analysis; the

Oncotype Dx test has already been used to enhance Adjuvant

Online!, a predictive model for cancer recurrence and survival

[39,40]. Such tools, as well as those described earlier, provide

evidence that clinical-genomic predictive models may soon

have utility in clinical practice. 

Future clinical research and/or other means of monitoring

clinical information will be vital to validate and add addi-

tional discoveries in genome biology for application to clini-

cal care. Bioinformatics tools can help cull the literature for

factors that may have an association with a particular

adverse outcome, and clinical experts can identify the factors

that should be evaluated as risk factors in prospective

patient cohorts. To support increasingly accurate risk assess-

ments, we envisage a process in which the validation of new

genomic biomarkers by biostatistical means will be coupled

to the use of current best practice. Over time, improving

development of accurate predictive models will become an

output of clinical practice. 

The application of these new technologies to health care will

not only provide a far more detailed understanding of health

and its evolution toward disease, but will also support the

ability to predict events and anticipate appropriate interven-

tions. Highly accurate risk assessment is an important com-

ponent of a shift to prospective health care. Causal genomic

factors and their products will play key roles as predictors of

disease in tools used for clinical decision support. Clinical

research is necessary to validate the accuracy of newly devel-

oped predictive models and the relative usefulness of new

biomarkers. The creation of systems to facilitate this type of

information gathering, as well as the use of model-based

clinical decision support, is critical for enabling us to provide

prospective health care. 

Just as a century ago the emerging sciences transformed

medicine, the new sciences of the early 21st century will

again transform health care. Whereas a century ago micro-

biology and biochemistry drove fundamental change, the

current drivers will include the emerging technologies of

genomics, proteomics and metabolomics, coupled with

bioinformatics, medical informatics, biostatistics, data

mining and decision sciences [41,42]. 
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