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Abstract

Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide
association studies. However, most current research focuses only on testing the global association whether the rare variants
in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index
method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by
them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector
(BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there
any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the
association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by
imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate
that the BRVD is more powerful for testing the global association than the existing methods, such as the combined
multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk
index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has
also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few
causal rare variants that have been verified in the literature.
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Introduction

Testing the phenotypic association of millions of individual

SNPs across the genome has been one of the major goals of the

genome-wide association study (GWAS). To date, hundreds of

putative disease gene loci have been detected based on the

common disease common variant assumption. However, the

detected genetic variants typically account for only a small fraction

of disease heritability. Nowadays, it has been widely acknowledged

that the missing disease heritability may be due to rare variants.

Many studies show that the rare variants tend to have larger effects

than common variants. As pointed out in [1], most rare variants

can have much greater odds ratio than common variants, and

many non-synonymous rare mutations from exon sequencing are

functional variants for some common diseases. The rare variant

effects have been investigated in some studies. For example, [2]

found that the rare variants in the IFIH1 gene are strongly

associated with Type I diabetes, and [3] found that multiple rare

variants in NPC1L1 are associated with reduced sterol absorption

and plasma low density lipoprotein levels. Therefore, development

of statistical methods that are powerful enough to detect causal

rare variants has become essential for the GWAS.

The statistical power of genetic variant detection depends on the

sample size, the variant effect and the minor allele frequency

(MAF). Since the MAF of the rare variant is low, the single variant

testing-based methods, such as the x2-test and Fisher’s exact test,

that are traditionally used in common variant association studies,

tend to have a low power. To address this issue, methods that test

the collective effect of rare variants for a given genomic region

have been developed, see e.g., the combined multivariate and

collapsing (CMC) test [4], weighted sum statistic (WSS) test [5],

and sequence kernel association test (SKAT) [6]. The CMC and

WSS tests are variant pooling methods, in which the rare variants

are collapsed or summed into a super-variant and then the disease

association is tested with this super-variant. Their power can

depend on the weighting scheme they employed, which often

emphasizes low frequency alleles in controls. Numerous alternative

methods [7,8] are largely their variations. The SKAT test is

developed based on random effect models, which assumes a

common distribution for the genetic effects of variants at different

sites and tests for the null hypothesis that the distribution has zero

variation.

Although testing the collective effects of rare variants is

challenging, identifications of the rare variants which, if any, are

driving the association (i.e., the so-called causal rare variants) is

even more challenging and scientifically more interesting. Along

this research direction, some methods have been developed, e.g.,

the RARECOVER method [9], variable threshold (VT) method
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[10], evolutionary mixed model for pooled association testing

(EMMPAT) method [11], hierarchical generalized linear model

(HGLM) method [12,13], and Bayesian risk index (BRI) method

[14]. The RARECOVER method uses a greedy search algorithm

to determine an association set of variants. The VT method selects

all variants with the MAF lower than a varying threshold to be

included in the association set. The RARECOVER and VT focus

mainly on the global association test and lack a formal test to

determine the marginal effect of each variant, and thus are unable

to formally determine which variants are most likely driving the

association. The EMMPAT simultaneously evaluates the effects of

all variants under the framework of mixed effect models. This is

similar to HGLM, where the regression coefficients are simulta-

neously estimated for all variants. As a consequence of the

simultaneous parameter estimation, when the number of variants

is greater than the number of subjects, the variant effects evaluated

by EMMPAT and HGLM might not be very reliable due to the

multicollinearity of variants. The BRI is a Bayesian method, which

can evaluate the marginal effect of each variant by allowing for

uncertainty into which variants are included in the association set.

While BRI has made a solid step toward detection of causal rare

variants, it is unclear whether it can identify causal rare variants

consistently for small-n-large-P problems, in which the number of

variants can be much greater than the number of subjects. In

addition, BRI assumes the effect of each causal variant to be the

same. Since this is not true for real problems, the performance of

BRI may be sub-optimal. In this paper, we propose a new

Bayesian method, the so-called Bayesian Rare Variant Detector

(BRVD), for identification of causal rare variants. The new

method simultaneously answers two questions:

N (Global association test) Are there any of the variants

associated with the disease?

N (Causal variant detection) Which variants, if any, are driving

the association?

The BRVD ensures the causal rare variants to be consistently

identified in the small-n-large-P situation by imposing some

appropriate prior distributions on the model and model specific

parameters. In addition, to enhance detection of causal rare

variants, the BRVD specifies for each variant a different prior

selection probability (or weight) which is adversely proportional to

its MAF. To accelerate the computation, we also propose a

parallel version of BRVD based on the strategy of divide-and-

conquer. The parallel BRVD has an embarrassingly parallel

structure and can be conveniently applied to the problems for

which the number of variants is extremely large. Our numerical

results indicate that the BRVD can be more powerful for testing

the global association than the existing methods, such as CMC,

WSS, SKAT, C-alpha, RARECOVER, VT, and BRI, and more

powerful than BRI for identification of causal rare variants. The

BRVD has also been successfully applied to the early-onset

myocardial infarction (EOMI) data: It identified a few causal rare

variants that have been verified in the literature.

Materials and Methods

The global association test and Bayesian factor
Assume that n subjects are sequenced in a genomic region with

P SNPs. Let X be a n|P genotype matrix coded as Xij~0,1,2 for

the number of copies of the minor allele measured for individual i
at SNP j, let Z be a n|q matrix of covariates, e.g., age and race,

and let Y be a n-dimensional binary vector indicating the disease

status of the n subjects. The BRVD uses a logistic regression model

to relate the covariates and a subset of variants to the disease status

variable. Let j denote a subset of variants, and let DjD denote the

number of variants included in j. Let Mj denote the logistic

regression model corresponding to the subset j, which can be

expressed as

logit P(Y~1DMj)~a0zZ azXj bj, ð1Þ

where Xj denotes the genotype matrix corresponding to the subset

j, and a0, a~(a1, . . . ,aq) and bj~(bj
1, . . . ,bj

DjD) are the regression

coefficients. For this model, the global association test is to test the

hypotheses

H0 : DjD~0 versus H1 : DjDw0: ð2Þ

Let V0 denote the parameter space of the null model M0, i.e., the

domain of the parameters a0 and a. Let V1 denote the parameter

space of the alternative models, which can be expressed as

V1~V0||Mj[MVj, where M denotes the set of all possible

models with DjDw0 and Vj is the domain of bj.

Let p(a0, a) denote the prior distribution of (a0, a), let

p(MjDH1) denote the prior probability imposed on the model

Mj under the hypothesis H1, and let p(bjDMj,H1) denote the

prior distribution of bj. Then the Bayesian factor for the test (2)

can be expressed as

BF (H1 : H0)~

P
Mj[M

p(Mj DH1)
Ð

f1(Y Da0, a,Mj, �bj)p(a0, a)p(bj DMj,H1)da0d ad bjÐ
f0( Y Da0, a)p(a0, a)da0d a

~
D p(DDH1)

p(DDH0)
,

ð3Þ

where f0(:) and f1(:) denote the likelihood functions of the null and

alternative models, respectively; D denotes the data; and p(DDH1)
and p(DDH0) are the Bayesian evidence corresponding to the

hypotheses H1 and H0, respectively. As in [14,15], (3) can also be

expressed as the weighted average of the individual Bayes factors

for comparing each model in H1 to the null model M0 with the

weights given by the prior probability p(MjDH1); that is,

BF (H1 : H0)~
X

Mj[M
p(MjDH1)BF (Mj : M0), ð4Þ

where BF (Mj : M0) is defined as the ratio ofÐ
f1(Y Da0, a,Mj, bj)p(a0, a)p(bjDMj,H1)da0d ad bj andÐ
f0(Y Da0, a)p(a0, a)da0d a. Let p(H0) denote the prior proba-

bility imposed on the null model, and let p(H1)~1{p(H0) denote

the total prior probabilities imposed on the alternative models.

Then the respective posterior probabilities of H0 and H1 are given

by

p(H0DD)~
p(H0)

p(H0)zp(H1)BF (H1 : H0)
, p(H1DD)~1{p(H0DD):

A value of BF(H1 : H0)w1 means that the alternative hypothesis

is more strongly supported by the data under consideration than

the null hypothesis. Harold Jeffreys [16] gave a scale, which is

reproduced in Table 1, for interpretation of Bayes factors.

Decisions about which hypothesis is more likely true can be made

based on the scale of Bayes factors.

The Bayes factor (3) depends on the prior distributions, p(a0, a),
p(MjDH1), and p(bjDMj,H1). In particular, the dependence on the

model prior p(MjDH1) can be substantial. This inevitably leads to

ð3Þ
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ambiguity in interpretation of Bayes factors. To minimize the

ambiguity, we suggest to choose the priors p(MjDH1) and

p(bjDMj,H1) such that the Bayesian evidence of H1 is maximized.

The resulting prior is the so-called type-II maximum likelihood

prior [17]. Since maximizing the evidence over general priors is

impossible, we further suggest to maximize the evidence over a

specified class of priors. This will be detailed below. We note that a

similar strategy has been suggested in [18] for testing a point null

hypothesis. Since a0 and a are common parameters for all models,

p(a0, a) is fixed to a Gaussian-truncated-inverse-gamma prior in

all simulations of this paper.

The prior and posterior distributions
Let ai, i~0,1, . . . ,q, be subject to the independent Gaussian

prior:

ai*N(0,s2
a), i~0,1, . . . ,q, ð5Þ

where the variance s2
a is subject to a truncated inverse-gamma

prior

s2
a*IG(a,b; A,B), ð6Þ

defined on the interval ½A,B�, where a and b are the shape and

scale parameters, respectively. The density function of (6) is given

by

f (s2
a)~

1

Q(a,b=A){Q(a,b=B)

ba

C(a)

e{b=s2
a

s
2(az1)
a

,

where Q(a,x)~
Ð x

0
e{tta{1dt=C(a) is an incomplete gamma

function and can be evaluated numerically. In the literature, s2
a

is usually assumed an inverse-gamma prior distribution. Here s2
a is

restricted to take values from the bounded interval ½A,B�. As

shown in Lemma 1 of File S1 (Section S1), this restriction plays an

important role in establishing the posterior consistency [19,20] for

the model (1). The posterior consistency means the true density of

Y can be estimated consistently by the density of Y under the

models sampled from the posterior distribution. For the same

reason, we let bj
1, . . . ,bj

DjD be subject to the independent Gaussian

prior

bj
i *N(0,s2

b), i~1,2, . . . ,DjD, ð7Þ

with the variance s2
b being subject to the truncated inverse-gamma

prior IG(a,b; A,B). For simplicity of computation, we further

assume s2
a~s2

b; that is, ai and bj
i have the same prior variance.

Let ni denote the prior selection probability of variant i. Let

dj(i)~1 if variant i is included in the subset j and 0 otherwise.

The prior probability of the model Mj under H1 is given by

p(MjDH1)~
PP

i~1 n
dj(i)

i (1{ni)
1{dj(i)

1{PP
i~1 (1{ni)

: ð8Þ

To enhance selection of causal rare variants, we suggest to set ni as

a decreasing function of MAF. In this paper, we set

ni~
1

1zPci
, ð9Þ

where ci is restricted to the interval ½E,1) for some constant Ew0.

In this paper, we set ci~cLz(cR{cL)(log(MAFi){
minj log(MAFj))=( maxj log(MAFj){ minj log(MAFj)), where

MAFi denotes the minor allele frequency of variant i, and cL and

cR are hyperparameters to be specified by the user. In addition, we

fix cR~0:99 and choose cL[½E,cR� such that the Bayes factor

BF(H1 : H0) is maximized. Note that (9) is not necessarily optimal.

In practice, one may try different settings for ci and cR.

As shown in File S1 (Section S1), the above prior setting,

together with the identifiability condition of the true model, leads

to the consistency of causal variant selection. Our priors are

different from the conventional ‘‘Gaussian–inverse-gamma–beta’’

priors in two aspects. First, we let s2
a and s2

b be subject to the

truncated inverse-gamma prior, which ensures the eigenvalues of

the prior covariance matrix of (a0,a1, . . . ,aq,bj
1, . . . ,bj

DjD) to be

bounded. While the boundedness condition cannot be achieved

with the inverse-gamma prior. Second, we define ni in (9) as a

decreasing function of P. As explained in [21], this is important for

variant selection in the small-n-large-P scenario, because it

controls for the multiplicity: If P grows large, then ni?0. Under

appropriate conditions, it can be shown that the resulting a priori

model size
PP

i~1 ni is bounded by a function (of n) of order o(nf)

for some fv1. While this condition cannot be satisfied if ni is

subject to a beta prior for which both the shape and scale

parameters are constants independent of n.

Let p(H0) and p(H1) denote the prior probabilities imposed on

H0 and H1, respectively. Then the posterior distribution of the

model (1) is given by

p(a0, a ,Mj, b j DD)~
p(H1)p(a0, a,Mj, bj,DDH1)I(DjD§1)zp(H0)p(a0, a,DDH0)I(DjD~0)

p(H1)p(DDH1)zp(H0)p(DDH0)
,

ð10Þ

where I(:) is the indicator function, and p(a0, a,Mj, bj,DDH1)

and p(a0, a,DDH0) are given in File S1 (Section S0).

In all simulations of this paper, we fixed the hyperparameters

a~1, b~1, A~0:01, B~100:0, and cR~0:99. The choice of a,

b, A and B allows s2 to vary over the interval ½0:01,100� which is

large enough for most rare variant selection problems. The only

remaining hyperparameter is cL, which can be determined by

maximizing the Bayes factor BF(H1 : H0) over the interval ½E,cR�.
For most examples of this paper, we tried cL = 0.4, 0.5, …, 0.9,

0.95, 0.99 or a subset of them.

Table 1. Jeffrey’s grades of evidence (Jeffreys, 1961).

Grade BF(H1:H0) p(H1|D)
Evidence against
H0

1 1,3 0.50,0.75 Barely worth
mentioning

2 3,10 0.75,0.91 Substantial

3 10,30 0.91,0.97 Strong

4 30,100 0.97,0.99 Very strong

5 .100 .0.99 Decisive

The posterior probability p(H1 DD) is calculated with the prior probabilities
p(H0)~p(H1)~1=2.
doi:10.1371/journal.pone.0069633.t001

ð10Þ
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Bayes factor estimation
For the global association test, the key step is Bayes factor

estimation. As implied by (4), an exact evaluation of the global

Bayes factor needs to sum over all models under H1. When P is

large, this is prohibitive. For this reason, [14,15] suggested to

replace the sum over the entire model space M with the sum over

the models sampled by a Markov chain Monte Carlo (MCMC)

algorithm. However, the resulting estimator is shown to provide

only a lower bound for the global Bayes factor. In this paper, we

propose to estimate the global Bayes factor using the stochastic

approximation Monte Carlo (SAMC) algorithm [22]. The

resulting estimator is consistent.

To facilitate the description of the SAMC algorithm, we define

the following notations. Let v~(a0, a,Mj, bj,H1) for a model

simulated from the posterior distribution (10) under H1, and let

v~(a0, a,H0) for a model simulated under H0. Define

y(v)~
p(H1)p(a0, a,Mj, bj,DDH1), under H1,

p(H0)p(a0, a,DDH0), under H0,

� �
which is the unnormalized posterior distribution of the model (1).

Let U(v)~{log y(v), which is called the energy function in

terms of physics. To apply the SAMC algorithm to estimate the

Bayes factor, we partition the sample space as follows: Treat V0 as

a single subregion, i.e., setting E0~fv : DjD~0,v[V0|fH0gg,
and partition V1 according to the energy function into m

subregions: E1~fv : U(v)ƒu1,v[V1|fH1gg,
E2~fv : u1vU(v)ƒu2,v[V1|fH1gg, …,

Em{1~fv : um{2vU(v)ƒum{1,v[V1|fH1gg,
Em~fv : U(v)wum{1,v[V1|fH1gg, where u1, . . . ,um{1 are

pre-specified numbers. The sample space V1 can also be

partitioned according to the value of DjD. However, when P is

large, this alternative partition often leads to a slower convergence

of SAMC, as which encourages SAMC to sample the models of

different sizes instead of those of low energy values.

SAMC seeks to draw samples from each of the subregions with

a pre-specified frequency. For the time being, we assume that all

the mz1 subregions are non-empty; that is,
Ð

Ei
y(v)dvw0 for

i~0,1, . . . ,m. Let p~(p0,p1, . . . ,pm) denote the vector of desired

sampling frequencies of the mz1 subregions, where 0vpiv1 andPm
i~0 pi~1. Henceforth, p is called the desired sampling

distribution. Let hi~log(
Ð

Ei
y(v)dv=pi) for i~0,1 . . . ,m, let

h~(h0,h1, . . . ,hm), and let H denote the domain of h. Let

h(t)~(h
(t)
0 ,h

(t)
1 , . . . ,h(t)

m ) denote the working estimate of h obtained

at iteration t. Let v(tz1) denote a sample drawn at iteration tz1

from the MH kernel Kh(t) (v(t),:), which is constructed with the

proposal distribution T(v(t),:) and admits (11) as the invariant

distribution:

f
h(t) (v)!

Xm

i~0

y(v)

e
h

(t)
i

I(v[Ei): ð11Þ

Define R(h(t),v(tz1))~e(tz1){p, where

e(tz1)~(e
(tz1)
0 , . . . ,e(tz1)

m ) and e
(tz1)
i ~1 if v(tz1)[Ei and 0

otherwise. Note that the dependence of R(:,:) on h(t) is implicit

through the sample v(tz1). To have the algorithm complied with

the notation of stochastic approximation, h(t) is still included in the

function R(:,:). Let fatg be a positive, non-decreasing sequence

satisfying the conditions,

(i)
X?
t~0

at~?, (ii)
X?
t~0

at
t v?, ð12Þ

for some t[(1,2�. In the context of stochastic approximation,

fatgt§0 is called the gain factor sequence.

In this paper, we assume that H is compact; that is, assuming

that the sequence fh(t)g can be kept in a compact set. Extension of

this algorithm to the case that H~Rmz1 is trivial with the

technique of varying truncations studied in [23,24], which ensures,

almost surely, that the sequence fh(t)g remains in a compact set. In

simulations, we can set H to a huge set, e.g.,

H~½{10100,10100�mz1
, which, as a practical matter, is equivalent

to setting H~Rmz1. Let J(v) denote the index of the subregion

that the sample v belongs to, which takes values in f0,1, . . . ,mg.
With the above notations, one iteration of SAMC can be described

as follows.

Algorithm 0.1 (The SAMC algorithm)
(a) (Sampling) Simulate a sample v(tz1) by a single MH update with the

target distribution as defined in (11):

(a. 1) Generate v’ according to a proposal distribution T(v(t),v’). Refer

to File S1 (Section S2) for the definition of T(v(t),v’).
(a. 2) Calculate the ratio

r~e
h
(t)
kt

{h
(t)
k’

y(v)T(v’,v(t))

y(v(t))T(v(t),v’)
, ð13Þ

where kt~J(v(t)) and k’~J(v’) are the indices of the subregions that v(t)

and v’ belong to, respectively.

(a. 3) Accept the proposal with probability min(1,r). If it is accepted, set

v(tz1)~v’; otherwise, set v(tz1)~v(t).

(b) (h-updating) Set

h(tz1
2
)
~h(t)zatz1R(h(t),v(tz1)): ð14Þ

If h(tz1
2
)[H, set h(tz1)~h(tz1

2
)
; otherwise, find a value of c such that

h(tz1
2
)
zc1mz1[H and set h(tz1)~h(tz1

2
)
zc1mz1, where 1mz1

denotes a constant (mz1)-vector of ones.

SAMC is an adaptive MCMC algorithm for which the invariant

distribution of the MH kernel changes from iteration to iteration.

Due to the adaptive change of the invariant distributions, SAMC

possesses a self-adjusting mechanism: If a proposal is rejected, then

the sample v(tz1) will be retained in the current subregion, the h-

value associated with the current subregion will be adjusted to a

larger value, and the overall rejection probability of the next

iteration will be reduced. This mechanism warrants the algorithm

not to be trapped by local energy minima. The SAMC algorithm

represents a significant advance in simulations of complex systems

for which the energy landscape is rugged.

The proposal distribution T(v,v’) is usually assumed to satisfy

the local positive condition: For every v[V, there exist E1w0 and

E2w0 such that

Ev{v’EƒE1[T(v,v’)§E2, ð15Þ

where Ev{v’E denotes a distance norm between v and v’. This

is a natural condition in MCMC theory. In practice, this kind of

proposals can be easily designed for both discrete and continuum

systems as discussed in the literature [22]. Regarding the

Bayesian Detection of Causal Rare Variants
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convergence of SAMC, [22] established the following result:

Under the conditions (12) and (15) and some regularity conditions,

for all non-empty subregions,

h(t)
i ?C0zlog

ð
Ei

y(v)dv

 !
{log pizpeð Þ, a:s:, ð16Þ

as t??, where pe~
P

j[fi:Ei~1g pj=(mz1{m0),

m0~#fi : Ei~1g is the number of empty subregions, and C0

is a constant which can be determined by imposing a constraint on

h(t)
i , e.g.,

Pm
i~0 exp(h(t)

i )~1.

For global association tests, we set the desired sampling

distribution to be uniform, i.e., setting

p0~p1~ � � �~pm~1=(mz1). For mathematical simplicity, we

have constrained V0 and V1 to two large compact sets by

restricting (a0, a, bj) to the set ½{10100,10100�1zqzDjD
, which, as a

practical matter, is equivalent to R1zqzDjD. The gain factor

sequence fatg is set in the form

at~
t

maxft,t0g
, ð17Þ

where t0w0 is a user-specified number. It is easy to verify that (17)

satisfies the condition (12). A large value of t0 will allow the SAMC

sampler to reach all subregions quickly, even when m is large. The

proposal distribution T(v,v’) is described in File S1 (Section S2).

It is easy to see that it satisfies the condition (15). Then, by (16), we

have the following result:

Pm
i~1 e

h
(t)
i

e
h
(t)
0

?BF (H1 : H0), a:s:, ð18Þ

as t??. That is, SAMC provides a consistent estimator for the

Bayes factor.

Rare variant detection
In this section, we describe how to detect rare variants when the

global association test shows positive support for the hypothesis

H1.

Identification of important variables based on the marginal

inclusion probability has been widely used in Bayesian variable

selection, see, for example, [25] for the case of large-n-small-P

normal linear models, and [26] for small-n-large-P generalized

linear models. Let qj denote the marginal inclusion probability of

variable j. A conventional rule is to choose the variables for which

the marginal inclusion probability is greater than a threshold value

q̂q; i.e., setting bjjq̂q~fxj : qjwq̂q,j~1, . . . ,Png as an estimator of j�,

the set of true model variables. Based on [26], we show in Lemma

2 of File S1 (Section S1) that this rule possesses the properties of

sure screening and consistency for rare variant detection under the

priors given in Section 0. The sure screening property implies that

for some choice of q̂q[(0,1),

P(j�5bjjq̂q)?1,

as the sample size n tends to infinity. The property of variant

selection consistency implies that

P(j�~bjj0:5)?1,

as the sample size n tends to infinity.

To implement the rule bjjq̂q for causal variant detection, one needs

a consistent estimator for the marginal inclusion probability under

H1 and a method for determining the threshold value q̂q. In

SAMC, the marginal inclusion probability can be consistently

estimated as follows. Let (v(1), h(1)), . . . ,(v(N), h(N)) denote the

samples drawn by SAMC in a run. Liang [27] showed that SAMC

is actually a dynamic importance sampling algorithm and for any

integrable function r(v), as N??,

PN
t~1 e

h
(t)

J(v(t)) r(v(t))PN
t~1 e

h
(t)

J(v(t))

?Epr(v), a:s:, ð19Þ

where Epr(v) denotes the expectation of r(v) with respect to the

target distribution p(vDD). This result implies

q̂qj~

PN
t~1 e

h
(t)

J(v(t)) I(xj[jt)PN
t~1 e

h
(t)

J(v(t)) I(DjtD§1)

?qi, a:s:, ð20Þ

as N goes to infinity; that is, the estimator q̂qj is consistent.

To determine the threshold q̂q, [26] proposed a multiple

hypothesis testing-based procedure based on the work [28]. This

procedure is adopted in the paper and briefly described in File S1

(Section S3).

Empirical Power Simulations
To explore the power of the proposed method versus other

alternative methods for the global association tests and rare variant

detection, we simulated 200 datasets, with 100 simulated under H0

and 100 under H1. Each dataset consists of 250 cases and 250

controls, and each subject consists of q~2 covariates. The first

covariate is binary, which mimics the gender of the subjects. The

second covariate is drawn uniformly from the interval ½10,85�,
which mimics the age of the subjects. The regression coefficients of

the two covariates are set to a1~0:25 and a2~0:01, respectively.

The genotypes of each subject are simulated by resampling from a

haplotype dataset given in the package SKAT. The haplotype

dataset is generated by the calibrated coalescent model with a

mimicking linkage disequilibrium (LD) structure of European

ancestry. To emphasize rare events, the variants with MAF greater

than 5% have been removed from the haplotype dataset before

resampling. For the 100 datasets simulated under H1, the first 10

variants are assumed to be causal with the regression coefficients

given by (2:09,1:90,1:85,1:82,1:57,1:96,1:40,1:93,2:20,2:00),

which represents a random sample drawn from N(2,0:252). Then

we remove the zero-MAF variants from the resampled dataset and

keep only the first 600 non-zero MAF variants for further analysis.

Because of this deletion step, the number of causal variants

becomes a random variable for each dataset. For the 100 datasets

simulated under H1, the number of causal variants ranges from 5

to 9, and has a mean value of 7.81 with standard deviation 0.92.

The average MAF of the first 9 variants is 0.833% with standard

deviation 0.0012. Among the first 9 variants, the maximum MAF

is 1.155%. Variants 1 and 2 have very low MAFs, which are

0.183% and 0.293%, respectively. Due to their low MAFs,
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identification of the causal variants, especially for variants 1 and 2,

has put a great challenge on the existing methods.

Comparison with Other Methods
We compare the BRVD with the competing Bayesian method

Bayesian risk index (BRI) for both global association tests and causal

variant detection. We also compare BRVD with the commonly

used non-Bayesian methods, including CMC, WSS, SKAT, and

RARECOVER, for global association tests. Among the four non-

Bayesian methods, CMC and WSS belong to the class of variant

pooling methods, SKAT belongs to the class of random effect

model-based methods, and RARECOVER belongs to the class of

variable selection methods. These methods can be briefly

described as follows.

N Bayesian risk index (BRI) [14]: For a model Mj, the BRI

defines the risk index as the sum of the selected variants, i.e.,

Rj~X dj,

where dj~(dj(1), . . . ,dj(P))’ is a binary vector which indicates

the variants included in the model Mj. Then it conducts an

approximate Bayesian analysis for the model

logit P(Y~1DMj)~a0zZ azRjbj,

under a Beta-Binomial prior for the model size. The prior

specification for (a0, a,bj) is avoided in BRI, as it directly works

on the marginal likelihood P(Y DMj) with the parameters

(a0, a,bj) replaced by their MLE. The significance of global

association is determined using the Bayes factor calculated in (4)

with posterior samples. The rare variants are selected based on the

marginal Bayes factor which, for any two variants, is defined as the

ratio of the odds of their posterior marginal inclusion probabilities

to the odds of their prior marginal inclusion probabilities.

N Combined multivariate and collapsing (CMC) test [4]: CMC is a

variant pooling method in which the rare variants are grouped

according to their allele frequency. After grouping, the rare

variants are collapsed into an indicator variable, and then a

multivariate test such as Hotelling’s T2 test is applied to the

collection formed by the common variants and the collapsed

super-variant.

N Weighed sum Statistic (WSS) test [5]: WSS is a variant pooling

method. It first calculates for each subject a genetic score,

which accumulates the rare variants counts within the same

gene with a weighting term that emphasizes alleles with a low

frequency in controls. Then the scores for all subjects are

ordered, and the WSS is computed as the sum of the ranks for

the cases. The significance is determined by a permutation

procedure.

N Sequence kernel association (SKAT) test [6]: SKAT is a random

effect model-based method. It assumes a common distribution

for the genetic effects of different variants and test for the null

hypothesis that the distribution has zero variance.

N RARECOVER [9]: RARECOVER is a variable selection-based

method. It selects variants in a manner of forward variable

selection: Starting from a null model without any genetic

variants, the variants are added into the model one by one

based on their statistical significance. The significance of global

association is determined by a permutation procedure.

The implementation of BRI is available in the R package BVS,

the implementation of SKAT is available in the R package SKAT,

and the implementations of CMC, WSS, and RARECOVER are

available in the R package AssotesteR. In this paper, all the

methods are run under their default settings unless otherwise

stated.

Results

Global Power
We first aim to examine the power of the BRVD versus

alternative methods for global association tests. The BRVD has a

prior hyperparameter cL to tune. To determine the value of cL, we

tried the values 0.4, 0.5, …, 0.9, and 0.99 for all the 200 simulated

datasets. For each dataset and each value of cL, SAMC was run

for 5:05|106 iterations, where the first 50000 iterations were for

the burn-in process and the samples generated from the remaining

iterations were used for inference. The gain factor sequence was

set in (17) with t0~1000, and the sample space V1 was partitioned

into m~99 equally spaced (in energy values) subregions with

u1~341 and um{1~439. Figure 1 (a) & (b) show the average

posterior probability �pp(H1DD,cL) versus cL for the datasets

simulated under H1 and H0, respectively, where the average is

calculated over 100 datasets. To indicate the dependency of the

average posterior probability on cL, we include cL in the notation.

For the datasets simulated under H1, �pp(H1DD,cL) attains its

maximum at cL~0:6; and for the datasets simulated under H0,

�pp(H1DD,cL) attains its maximum at cL~0:99. This is interesting: A

small value of cL encourages selection of variants, while a large

value of cL discourages selection of variants. This is consistent with

our design of the study: More variants are preferred to be selected

for the datasets simulated under H1. Figure 1 shows �pp(H1DD,cL)

versus different values of cL: �pp(H1DD,cL) changes only about %2

over the interval 0:4ƒcL
ƒ0:99 for the datasets simulated under

H1, and changes only about 7% for the datasets simulated under

H0. Therefore, we may conclude that the posterior probability

p(H1DD,cL) is quite robust to the choice of cL.

Since BRVD, BRI and SKAT are all developed under the

regression setting, they are able to adjust for covariates, such as

age, gender, race, etc. For this reason, we first compare the powers

of these three methods with the simulated covariates adjusted in

regression. Figure 2 compares the ROC curves for the global

association test, which plots the global false-positive rate (gFPR)

versus global true-positive rate (gTPR) as the global BF threshold

varies for BRVD and BRI, and the p-value threshold varies for

SKAT. As in BRI, the gFPR is calculated as the ratio of the

number of null datasets (the datasets simulated under H0) for

which a global association has been detected versus the total

number of null datasets, and the gTPR is calculated as the number

of associated datasets (the datasets simulated under H1) for which a

global association has been detected versus the total number of

associated datasets. Figure 2(a) shows that for this example, BRVD

has about the same power as SKAT and much greater power than

BRI to detect a global association. Note that in this plot, we have

followed the procedure suggested in Section 2.1 to calculate the

gFPR for the null datasets with cL~0:99 and calculate gTPR for

the associated datasets with cL~0:6. To show the performance of

BRVD is robust to the choice of cL, we plot in Figure 2(b) a few

ROC curves, where for each curve both gFPR and gTPR were

calculated at the same value of cL. The plot indicates that the

BRVD is very robust to the choice of cL for global association

tests.
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The CMC, WSS and RARECOVER cannot be adjusted for

covariates. To compare with them, we re-run the BRVD, BRI and

SKAT methods on the simulated datasets with the covariates

omitted. The effect of covariate omission on test power has been

discussed in the literature [29,30,31]. The results seem mixed.

Under certain situations, such as rare diseases and large sample

sizes, omitting the covariates, which are known to affect disease

susceptibility and are independent of tested genotypes, can

increase the power to detect new genetic associations; whereas,

for common diseases, it can decrease the power [31]. For BRVD,

SAMC was run for these datasets with the same setting as for the

case with covariates adjusted. Figure 3(a) compares the ROC

curves of the six methods for global association tests. It shows that

when covariates are omitted, BRVD has much greater power than

all other methods. Compared to Figure 2(a), we may conclude that

BRVD is more robust to covariate omission than the SKAT

method. This is important for the success of a method, as in

practice we may inevitably have some covariates omitted due to

the limitation of our measurements. Figure 3(b) compares the

ROC curves of BRVD calculated with different values of cL. It

shows again that the power of BRVD is robust to the choice of cL

for global association tests.

In addition to the power, we also explored the type-I error of

the global association test based on the testing statistic

maxcL[L p(H1DD,cL) for the simulated examples, where

L~f0:4,0:5, . . . ,0:9,0:99g and the prior probabilities

p(H0)~p(H1)~1=2. The results, for both cases with and without

covariate adjustment, are summarized in Figure 4. Following from

Table 1, we suggest to choose 0.75 as the threshold value of

maxcL[L p(H1DD,cL); that is, rejecting H0 if

maxcL[L p(H1DD,cL)w0:75. With this threshold value, the result-

ing type-I errors are 0.01 and 0.02 for the cases with and without

covariate adjustment, respectively.

Rare Variant Detection
Our next aim is to detect rare variants that are associated with

the disease, provided that the global association test shows a

positive support for the hypothesis H1. Figure 5 compares the

ROC curves of BRVD and BRI for rare variant detection, which

are calculated based on the 100 datasets simulated under H1. The

ROC curves plot the marginal false-positive rate (mFPR) versus

marginal true-positive rate (mTPR) as the marginal inclusion

probability threshold varies for BRVD and the marginal BF

threshold varies for BRI. As in BRI, the mFPR is calculated as the

ratio of the number of non-associated variants for which a

marginal association has been detected versus the total number of

non-associated variants, and the mTPR is calculated as the ratio of

the number of associated variants for which a marginal association

has been detected versus the total number of associated variants.

In drawing Figure 5, the marginal inclusion probabilities for both

BRVD and BRI have been averaged over 100 datasets. The left

panel of Figure 4 shows the ROC curves for the case with

covariates adjusted, and the right panel shows for the case with

covariates omitted. In both cases, the BRVD has much greater

power than BRI for detection of causal rare variants, especially

Figure 1. The average posterior probability �pp(H1DD,cL) versus cL for the datasets simulated under H1 (plot (a)) and under H0 (plot
(b)).
doi:10.1371/journal.pone.0069633.g001
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when cL is small, e.g., cL~0:4, 0.5 and 0.6. When cL~0:99,

under which all alleles are treated equally, the BRVD has about

the same power as BRI. It is worth noting that the BRVD yields its

worst result at cL~0:99.

For global association tests, we suggest to choose the value of cL

such that the Bayes factor BF(H1 : H0) is maximized. Figure 5

suggests that this is still a reasonable rule for determining the value

of cL even when our aim is to detect causal rare variants. At

cL~0:6, BRVD performs reasonably well: The top 9 variants

(ranked in marginal inclusion probabilities) include 7 causal

variants, and variants 1 and 2 are ranked 22 and 19, respectively.

For this example, we find that a smaller value of cL may result in a

greater power of BRVD to detect causal rare variants. For

example, at cL~0:4, the top 10 variants include all 9 causal

variants, and variants 1 and 2 are ranked 4 and 9, respectively. At

cL~0:5, the top 10 variants include 8 causal variants (1,3–9), and

variant 2 is ranked 15. This is remarkable, as both variants 1 and 2

have very low MAFs. In BRI, although the variants 3–9 have high

ranks in their marginal BFs, variants 1 and 2 are ranked 542 and

68, respectively. This implies that BRI essentially fails to detect

variants 1 and 2. The results of this example suggest an alternative

rule for determining the value of cL: If we aim to detect rare

variants, we may choose a small value of cL such that some rare

variants, such as those singleton variants, can be ranked high in

their marginal inclusion probabilities, provided that the association

set includes some singleton variants in a priori knowledge.

Figure 6 illustrates how to identify causal variants based on their

marginal inclusion scores. The left panel of Figure 6 shows the

result for cL~0:6. At the FDR level of 0.05, 10 variants are

identified as causal variants, and 7 of them (including variants 3–9)

are true causal variants. At the FDR level of 0.01, 7 variants are

identified and 6 of them (variants 4–9) are true. The right panel of

Figure 6 shows the result for cL~0:5. At the FDR level of 0.05, 11

variants are identified as causal variants, and 8 of them (variants 1,

3–9) are true. At the FDR level of 0.01, 7 variants are identified

and 6 of them (variants 4–9) are true. The results for other values

of cL are similar.

Application to the Early-Onset Myocardial Infarction
(EOMI) Exome Sequence Data

The EOMI data (downloaded from dbGaP) is from the

NHLBIJs Exome Sequencing Project (ESP), which was designed

to identify genetic variants in coding regions (exons) of the human

genome that are associated with heart, lung and blood diseases.

The dataset consists of 278,263 SNPs in 905 subjects (467 cases

and 438 controls) with European origin (EA). After removing the

common variants (with MAFw5%) and the variants with zero

MAFs, the number of variants is reduced to 113,438. A direct

application of BRVD to this dataset is time consuming as it may

need an order of 108 iterations. In addition, the whole dataset

need to be scanned once for each iteration. To resolve this issue,

we propose, based on the strategy of divide-and-conquer, the

following procedure:

Figure 2. Global ROC curves for BRVD versus BRI and SKAT for the simulated example (with covariate adjustment). Each plot
represents a ROC curve as we vary the global BF threshold for BRVD and BRI, and vary the p-value threshold for SKAT.
doi:10.1371/journal.pone.0069633.g002
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Parallel BRVD

(a) (Dividing) Divide the variants into subsets that are of an

acceptable size in computation.

(b) (Parallel conquering) Apply BRVD to each of the subsets and

identify putative associated variants from the subsets for which the

hypothesis H1 is supported.

(c) (Combining) Combine the variants identified at step (b) into a

new dataset, the so-called selected subset data; and then apply

BRVD to the selected subset data to identify causal rare variants.

For each subset, the logistic regression model is potentially

misspecified because the causal variants located in other subsets

are not included in the regression. If some causal variants are

missed, we can expect that the BRVD will find some surrogate

variants within the subset for the missing causal variants, and the

number of surrogate variants can often be greater than the

number of missing causal variants. For this reason, we suggest a

high FDR level, say, 0.25 or even higher, to be used for identifying

putative causal variants from each subset. For the selected subset

data, we can expect that it will include the causal variants,

surrogate variants of some causal variants, and some noise

variants. It is obvious that Lemma 1 and Lemma 2 are still

applicable to the selected subset data. By these two lemmas, the

parallel BRVD can also select causal variants consistently.

The global association test can also be done on the selected

subset of variants. However, a direct application of the BRVD to

this subset can lead to a biased test, although for which the power

can be very high. This is the same for all other testing procedures.

To avoid the bias, a permutation method can be used to evaluate

the p-value of the test. For example, one can permute the response

variable a large number of times. For each of permuted datasets,

the parallel BRVD can be applied to identify a selected subset of

variants and then obtain a Bayes factor for the global association

test based on the selected subset. Finally, a p-value can be

calculated based on the Bayes factors of the permuted datasets.

For the EOMI dataset, we divide the variants into 22 subsets

according to the chromosomes where they belong to. The

numbers of variants on the 22 chromosomes range from 1,271

(on chromosome 21) to 11,491 (on chromosome 1), which are all

acceptable to our current computing facility. BRVD was run 5

times for each subset at each value of cL~0:6, 0.7, 0.8 and 0.9,

and each run consisted of 2:5|107 iterations. The gain factor

sequence was set in (17) with t0~5000, and the sample space V1

was partitioned into m~599 equally spaced (in energy values)

subregions with u1~601 and um{1~1199. Table 2 summarizes

the posterior probabilities of H1 for the 22 chromosomes. The

support for the hypothesis H1 is overwhelming:

maxcL[L �pp(H1DD,cL) is greater than 0.5 for all 22 chromosomes,

where the probability �pp(H1DD,cL) is calculated by averaging over 5

independent runs and L~f0:6,0:7,0:8,0:9g denotes the set of

values of cL we have tried. According to the value of

maxcL[L �pp(H1DD,cL), the chromosomes can be classified into two

groups: chromosomes 13, 2, 3 and 19 are in the first group with

maxcL[L �pp(H1DD,cL)§0:7, and all other chromosomes are in the

second group with 0:5v maxcL[L �pp(H1DD,cL)v0:57. Among the

first group chromosomes, chromosomes 13 and 2 provide

‘‘substantial’’ evidence for the global association.

Figure 3. Global ROC curves for BRVD versus BRI, SKAT, CMC, WSS and RARECOVER for the simulated examples (without covariate
adjustment). Each plot represents a ROC curve as we vary the global BF threshold for BRVD and BRI, and vary the p-value threshold for SKAT, CMC,
WSS and RARECOVER.
doi:10.1371/journal.pone.0069633.g003
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Since all chromosomes show positive support for the global

association, putative associated variants should be identified from

each of them. For illustration, we here work on the first group

chromosomes only. Figure 7 illustrates the selection of putative

associated variants from chromosome 13. At a FDR level of 0.25,

24 variants were identified from this chromosome. In the same

procedure, 42, 32, and 39 variants were identified from

chromosomes 2, 3, and 19, respectively. Putting all the selected

variants together form a selected subset of 137 variants.

The BRVD was then applied to the selected subset of variants

with the same setting as described above except for sample space

partitioning and L. For the selected subset data, V1 was

partitioned into m~299 equally spaced (in energy values)

subregions with u1~601 and um{1~899, and the values of cL

we tried include 0.5, 0.6, …, 0.9. A smaller value of cL was tried

here as P~137 is very small for the selected subset. At each value

of cL, the BRVD shows a decisive support to the hypothesis H1

with the estimate of the posterior probability p(H1DD) being nearly

equal to 1. For example, at cL~0:5, the BRVD produced an

estimate of 1{3:6|10{75 for p(H1DD). As discussed above, this

estimate of p(H1DD) can be biased for the global association test.

At cL~0:5, the BRVD identified 10 variants as causal variants at

the FDR level 0.1, and identified 14 variants as causal variants at

the FDR level 0.2. Table 3 shows the 14 variants in the order

(from high to low) of their marginal inclusion probabilities. Among

the 14 variants, there are two variants with the MAF lower than

1%. The results for other values of cL are similar.

Our method is surprisingly successful for this example: A few

rare variants identified by it have been verified in the literature. It

is reported that SLC1A4 is associated with atherosclerosis [32],

TMEM44 regulates low-density lipoprotein receptor (LDLR)

levels which in turn is a critical factor in the regulation of blood

cholesterol levels [33], GPC6 is associated with breast cancer [34],

and schizophrenia and bipolar [35] and PCBP4 is associated with

lung cancer [36].

For comparison, BRI and SKAT were also applied to this

example. BRI was run for 50,000 iterations for each of the 22

subsets. The outputs show that only chromosome 2 provides

‘‘substantial’’ evidence for the global association with a Bayes

factor of 7.1. The Bayes factors for all other chromosomes are less

than 1. On chromosome 2, BRI identified three SNPs,

rs65245292, rs179455352 and rs28827533, whose marginal Bayes

factor are all greater than 10. It is interesting to point out that both

SNPs, rs65245292 and rs28827533, have been identified by

BRVD as shown in Table 3. Although the SNP rs179455352 is not

included in Table 3, it has been selected by BRVD in the parallel

conquering step.

SKAT produced a small p-value for each of the 22 subsets,

ranging from 2:3|10{7 (chromosome 12) to 0.0016 (chromo-

some 21). According to the p-values, all chromosomes are

associated with heart, lung and blood diseases. This result suggests

that SKAT may be liberal in global association tests. To explore

the relationship between the p-value and the chromosome length,

we plot in Figure 8(b) the scatterplot of W{1(1{pi) versus log(Li),
where pi denotes the p-value of chromosome i, Li denotes the

length of chromosome i, and W denotes the CDF of the standard

normal distribution. The scatterplot indicates that SKAT tends to

produce a smaller p-value for a longer chromosome; that is, it

tends to be sensitive to the proportion of causal variants.

Figure 4. Type-I errors of BRVD for the simulated examples.
doi:10.1371/journal.pone.0069633.g004
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Figure 5. Marginal ROC curves for BRVD and BRI: Left panel: ROC curves with covariates adjusted; right panel: ROC curves with
covariates omitted.
doi:10.1371/journal.pone.0069633.g005

Figure 6. Illustrative plot for causal rare variants detection. The dashed curve shows the fitted density function for the marginal inclusion
scores of non-associated variants, and the vertical bar shows the classification rules at the FDR level 0.05 (solid line) and the FDR level 0.01 (dashed
line). The left panel is for cL~0:6 and the right panel is for cL~0:5.
doi:10.1371/journal.pone.0069633.g006
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Similarly, we plot in Figure 8(a) the scatterplot of

W{1( maxcL[L �pp(H1DDi,c
L)) versus log(Li) for BRVD, where Di

denotes the subset corresponding to chromosome i; and plot in

Figure 8(c) the scatterplot of W{1(p(H1DDi)) versus log(Li) for

BRI, where p(H1DDi) is calculated from the Bayesian factor with

the prior probabilities p(H0)~p(H1)~1=2. Although BRI is not

as sensitive to the chromosome length as SKAT, its results suggest

that it is pretty conservatives in global association tests. As

discussed above, the literature results show that chromosome 3

and chromosome 13 are also associated with heart, lung and blood

diseases, but BRI failed to identify these associations. In summary,

the comparison implies that BRVD outperforms both SKAT and

BRI for this real-data example.

Computational time
The computation time for the BRVD depends on the sample

size (n) and the number of variants (P). Table 4 recorded the CPU

time cost by BRVD on an Intel Xeon E5-2690 processor for

running 105 iterations under different settings of n and P. A linear

regression analysis of the CPU time versus n and P produces a R2

of 99.76%, which indicates an adequate fitting of the regression.

Both P and n are significant for the regression, and their p-values

are 4:9|10{6 and 7:4|10{4, respectively. Figure 9 plots the

CPU time of BRVD versus P for the EOMI data (with n~905). It

indicates a strong linear relationship between the CPU time and

P. Since the number of iterations is usually set to be proportional

to the value of P, this analysis implies that the CPU time of the

BRVD can increase as a quadratic function of P.

In analyzing the CPU time of BRVD, we fixed cL to 0.9. We

note that the CPU time of BRVD can slightly increase as cL

decreases for fixed values of n and P, because a smaller value of cL

tends to result in a larger model. However, the effect of cL is not

significant, because, under the control of multiplicity, the sizes of

the selected models are always tiny compared to the value of P.

The CPU time of the BRVD is dominated by the part of data

scanning that needs to be performed for each iteration.

Discussion

In this paper, we have developed a new Bayesian method, the

so-called BRVD, for detection of causal variants. The BRVD

simultaneously addresses two issues: (i) Are there any of the

variants associated with the disease, and (ii) Which variants, if any,

are driving the association. The BRVD is developed based on the

theory of posterior consistency, under which the causal variants

can be identified consistently. The numerical results indicate that

the BRVD is more powerful for global association tests than the

Table 2. BRVD results for the EOMI data.

Chromosome size cL mean SD

13 1811 0.9 0.9516 0.0046

2 8383 0.8 0.8059 0.0079

3 6534 0.9 0.7356 0.0080

19 8216 0.9 0.7069 0.0016

other 1271,12491 — 0.5,0.57 —

Size: the number of variants included in each chromosome; cL : the selected

value of cL ; mean: �pp(H1 DDi ,c
L), i.e., the average value of p(H1 DDi ,c

L) over five

independent runs at the selected value of cL ; SD: standard deviation of

�pp(H1 DDi ,c
L).

doi:10.1371/journal.pone.0069633.t002

Figure 7. Variant selection from Chromosome 13 for the EOMI data: The dashed curve shows the fitted density function for the
marginal inclusion scores of non-associated variants, and the vertical bar shows the classification rules at the FDR level 0.25.
doi:10.1371/journal.pone.0069633.g007
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existing methods, such as CMC, WSS, SKAT, C-alpha, RARE-

COVER, VT, and BRI, and also more powerful for detection of

causal variants than the BRI method. In this paper, we have also

developed a parallel version of BRVD based on the strategy of

divide-and-conquer. The parallel BRVD can be conveniently used

for the datasets for which the number of variants is extremely

large.

Since the BRVD is developed under the framework of logistic

regression, it can be directly applied to identify gene-gene and

gene-environment interactions by including in the model some

interaction terms of SNP-SNP and SNP-covariates. A gene-gene

and/or gene-environment interaction network can then be

constructed. This method is very flexible, depending on the

specification of interaction terms. For example, to explore complex

higher-order interactions, a partially linear tree-based regression

model [37] may be used.

Although BRVD has a high power for both the global

association tests and causal variants detection, its power can be

further improved by employing a more sophisticated weighting

scheme for the variants. The current weighting scheme depends

on the MAF only. In the future, one may incorporate other

biological information, e.g., the gene information, into the

weighting scheme. This may help further to identify the causal

variants whose MAFs are extremely low. In the current

Table 3. Top 14 variants identified by BRVD for the EOMI data at a FDR level of 0.2.

No. Variant Gene Chrom MAF No. Variant Gene Chrom MAF

1 rs65245292 SLC1A4 2 1.38% 8 rs194325058 TMEM44 3 3.26%

2 rs194408716 FAM43A 3 2.54% 9 rs28827533 PLB1 2 1.05%

3 rs39586979 C13orf23 13 2.76% 10 rs19961331 EFHB 3 4.81%

4 rs39424253 FREM2 13 3.76% 11 rs94197611 GPC6 13 0.99%

5 rs51994587 PCBP4 3 1.33% 12 rs128695828 NO-Gene 3 1.49%

6 rs39424254 FREM2 13 3.76% 13 rs242610172 ATG4B 2 1.55%

7 rs549728 GZMM 19 2.38% 14 rs57867517 ZNF304 19 0.94%

doi:10.1371/journal.pone.0069633.t003

Figure 8. Significance of global association tests versus chromosome length for the EOMI data: (a) BRVD; (b) SKAT; and (c) BRI.
doi:10.1371/journal.pone.0069633.g008
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implementation of the BRVD, the SAMC algorithm is used for

sampling from the posterior. At each iteration, a variant is

randomly selected to undergo a model update of variant addition,

deletion, or exchange. In the future, a SAMC algorithm with an

adaptive proposal may be used. The new version of SAMC allows

one to select a variant for model update based on the working

estimate of marginal inclusion probabilities. In the limit case, the

new version of SAMC will update the model according to the

marginal inclusion probabilities of all variants. Therefore, it can

converge faster than the standard version of SAMC.

For global association tests, the BRVD can also be used in

conjunction with other frequentist methods, such as SKAT, if one

is interested in a p-value measurement for the significance of the

test. One can first apply the BRVD to select a subset of variants

and then conduct the association test on the selected subset of

variants using the frequentist method. Since all the existing rare

variant testing methods seem to be sensitive to the proportion of

causal variants [38], the combined use of the BRVD and

frequentist methods can generally reduce the sensitivity of the

test methods to the proportion of causal variants.

The BRVD is general in the sense that it can be used for rare

variants, common variants, and also a joint analysis of common

and rare variants. In the case of joint analysis, its power for

detecting rare variants will not be affected much if ci in (9) is

chosen appropriately as an increasing function of MAF. We note

that in the literature some other Bayesian variable selection

methods have also been developed and can potentially be used for

variant selection [39,40,41]. However, none of these methods is

directly comparable with BRVD. The method [39] is developed

for linear regression under the framework of large-n-small-P, and

thus cannot be applied to the small-n-large-P logistic regression

problems considered in this paper. The method [40] is developed

for linear regression, although for the small-n-large-P problems;

hence, it cannot be compared with BRVD for logistic regression.

The method [41] aims to identify biomarkers, for which the model

incorporates the biological information on known pathways and

gene-gene networks. Since these information are not available for

the problems considered in this paper, this method cannot be

directly compared with BRVD. Also, we note that although

BRVD and the methods [40,41] are all applicable to the small-n-

large-P problems, BRVD has a theoretical advantage over the

other two methods: BRVD is consistent, i.e., the causal variables

Table 4. CPU time cost by the BRVD on an Intel Xeon E5-2690
processor (2.9 GHz) for running 105 iterations.

Case n P CPU(s)

1 500 600 7.67

2 905 1,271 17.21

3 905 1,811 19.02

4 905 6,534 26.99

5 905 8,383 29.88

6 905 11,491 34.73

7 905 24,944 53.82

n: sample size; P: number of variants.
doi:10.1371/journal.pone.0069633.t004

Figure 9. The CPU time of BRVD versus the number of variants for the EOMI data (with n~905).
doi:10.1371/journal.pone.0069633.g009
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can be identified by it in probability 1 as the sample size n??;

while this is unclear for the other two methods.

In this paper, BRVD is developed for dichotomous phenotypes

only. The framework of BRVD can be easily extended to

continuous phenotypes. For continuous phenotypes, linear regres-

sion can be used to relate the phenotype to the variants, and

appropriate prior distributions that lead to the posterior consis-

tency need to be specified for the model and model specific

parameters. Alternatively, one can impose a non-local prior on the

model parameters as in [42]. Under the non-local prior, it can be

shown that the causal variants can be consistently identified if the

total number of variants is bounded by the number of subjects.
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