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ABSTRACT The human microbiome plays important roles in health, but when disrupted, these same indigenous microbes can
cause disease. The composition of the microbiome changes during the transition from health to disease; however, these changes
are often not conserved among patients. Since microbiome-associated diseases like periodontitis cause similar patient symptoms
despite interpatient variability in microbial community composition, we hypothesized that human-associated microbial com-
munities undergo conserved changes in metabolism during disease. Here, we used patient-matched healthy and diseased sam-
ples to compare gene expression of 160,000 genes in healthy and diseased periodontal communities. We show that health- and
disease-associated communities exhibit defined differences in metabolism that are conserved between patients. In contrast, the
metabolic gene expression of individual species was highly variable between patients. These results demonstrate that despite
high interpatient variability in microbial composition, disease-associated communities display conserved metabolic profiles that
are generally accomplished by a patient-specific cohort of microbes.

IMPORTANCE The human microbiome project has shown that shifts in our microbiota are associated with many diseases, includ-
ing obesity, Crohn’s disease, diabetes, and periodontitis. While changes in microbial populations are apparent during these dis-
eases, the species associated with each disease can vary from patient to patient. Taking into account this interpatient variability,
we hypothesized that specific microbiota-associated diseases would be marked by conserved microbial community behaviors.
Here, we use gene expression analyses of patient-matched healthy and diseased human periodontal plaque to show that micro-
bial communities have highly conserved metabolic gene expression profiles, whereas individual species within the community
do not. Furthermore, disease-associated communities exhibit conserved changes in metabolic and virulence gene expression.
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The human body is an excellent culture vessel, providing nutri-
ents and a hospitable environment that support the growth of

countless microbes. Collectively, these microbial species consti-
tute the human microbiota. Nearly 500 years ago, Leeuwenhoek
observed these tiny “animalcules” under his microscope and re-
corded the great diversity in cell size and shape in human dental
plaque. In recent years, researchers have begun using marker gene
surveys to catalog the species that colonize different regions of our
bodies, including the oral cavity (1–3). These studies have primar-
ily used high-throughput sequencing of the highly conserved
rRNA gene to identify and quantify the numerous species consti-
tuting the microbiota (1, 2). Among the best-characterized
human-associated microbial communities are the extremely di-
verse gut and oral microbiota. It is now appreciated that our in-
digenous microbiota are tightly linked to health. Studies using
germfree mice have shown that key members of the microbiota
promote normal immune system development (4–6). However,
several human diseases, including diabetes, Crohn’s disease, and
periodontitis, are linked to disruptions in the gut and oral micro-

bial populations (3, 7–10). In light of these results, microbiota-
associated diseases such as periodontitis are increasingly exam-
ined through an ecological lens.

Microbiota-associated diseases are characterized by changes in
the relative abundances of different species during disease. Peri-
odontal disease is one such “microbial shift” disease associated
with massive reorganization of the microbiota residing in the sub-
gingival crevice, the region between the tooth surface and the gin-
gival epithelium (3, 11). While marked changes in microbial pop-
ulation structure are observed during periodontitis, the actual
community members can differ greatly from person to person
(12). In fact, both healthy and disease-associated oral microbial
communities vary significantly among people, among locations in
the mouth, and even on a daily basis at the same site within the
mouth (12, 13).

One possible explanation for the variability observed in marker
gene surveys is that a variety of organisms are capable of occupy-
ing the multitude of niches present in health- and disease-
associated communities. Thus, the question arises to what extent
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changes in the ecosystem are attributable to alterations in the
abundance of certain community members or changes in the ac-
tivities of existing organisms. Furthermore, while the species that
make up health- and disease-associated communities may change,
are there conserved metabolic changes in the microbiota associ-
ated with the transition to disease? Transcriptional profiling pro-
vides an avenue to explore bacterial behavior and metabolism in
complex communities (14, 15). In this study, we used massively
parallel RNA sequencing to profile changes in both the composi-
tion and gene expression of the human oral microbiota in health
and in periodontitis.

RESULTS
Disease-associated periodontal microbiota are more similar
than are health-associated communities. Patient-matched
healthy and diseased periodontal samples were collected from
10 patients with aggressive periodontitis (AgP) (Table 1). Each
healthy and diseased periodontal plaque sample was a pool of
populations from three healthy or diseased teeth from each pa-
tient. Thus, our study encompassed 30 total health-associated and
30 total disease-associated microbial periodontal populations.
This collection technique was important for two main reasons.
First, microbial periodontal plaque populations are very small,
especially those populating healthy teeth; therefore, our pooled
collection methods allowed us to obtain enough microbial cells to
isolate RNA for population-wide diversity and gene expression
analyses. Second, periodontal microbial populations have been
shown to differ widely from one tooth to another, and our ap-
proach allowed us to capture the mean microbial population com-
position for healthy and disease-associated plaque for each pa-
tient.

High-throughput sequencing of rRNA genes and of rRNA has
been used to identify and quantify species in microbial commu-
nities (16). In this study, we elected to use rRNA sequencing, be-
cause rRNA reflects organisms’ capacities to produce proteins and
alter community activity (16). Using rRNA sequencing (see Ta-
ble S1 in the supplemental material), we found that many bacteria
are present in both health- and disease-associated communities;
however, many of the most ribosome-rich microbes in disease
samples were those previously associated with infection, including
Tannerella sp., Prevotella sp., Treponema sp., and Porphyromonas
sp. (see Fig. S1A). Alpha diversity analyses of rRNA content in

health- and disease-associated populations showed that disease-
associated communities were significantly less diverse than
health-associated populations: they contained fewer overall spe-
cies (Fig. 1A) and were less species rich (Fig. 1B). Comparing
rRNA gene abundance to rRNA abundance for a subset of our
samples revealed a stronger correlation between these two mea-
sures for disease-associated populations than for health-
associated populations, suggesting that a larger fraction of the
disease-associated population is ribosome rich and thus can con-
tribute to overall community activity (see Table S2). In contrast,
rRNA gene abundance correlated less well with rRNA abundance
in healthy communities, indicating that many members of this
community have low ribosome content. Beta diversity analysis
comparing the relatedness of disease- and health-associated pop-
ulations from multiple individuals showed that disease- and
health-associated populations segregated into distinct groups
(PERMANOVA, P � 0.01), and diseased populations were less
dispersed than healthy populations (PERMDISP, P � 0.008)
(Fig. 1C). Additionally, disease-associated populations were more
related to the average disease state than to paired health-associated
populations from the same individual (Fig. 1D). These data show
that health-associated periodontal populations are highly diverse
and patient specific, while a few commonly found, ribosome-rich
organisms overwhelm health-associated microbiota during ag-
gressive periodontitis. Previous studies have shown that the oral
microbiota can vary from site to site within individuals (13), yet
our data suggest that common features are seen in microbial com-
munities associated with aggressive periodontitis.

Community gene expression analysis. Changes in the compo-
sition of the microbiota have previously been associated with nu-
merous diseases, including periodontitis, and the results of our
rRNA sequencing show that a few members of the community
produce a majority of the rRNA during periodontal disease. De-
spite these findings, it is unclear how specific activities of different
members of the community impact disease. To address this ques-
tion, we used high-resolution community transcriptional profil-
ing. We were able to obtain sufficient quantities of total RNA from
three patient-matched healthy and diseased samples representing
9 health- and 9 disease-associated periodontal plaque popula-
tions, which, following depletion of highly abundant human and
bacterial rRNA, were sequenced on an Illumina HiSeq system. In

TABLE 1 Aggressive periodontitis patient data

Sample Age (yr) Genderc PDa (full) CALb (full) Plaque indexd Bleeding (%) Smoking

Mean PDa per sampling site

Diseased Healthy

1 36 M 5 6 2 90 Yes 5 2
2 40 F 5 5 1 60 No 5 3
3 33 F 6 6 2 70 Yes 6 2
4 34 F 6.5 6.5 1 60 No 5 3
5 36 M 6 7 2 80 Yes 5 3
6 30 F 5 5 2 70 Yes 6 2
7 34 M 5 6.5 1 70 No 5 2
8 34 M 5.5 5.5 1 70 No 7 2
9 36 F 5.5 5.5 2 80 No 5 2
10 37 F 5 5 1 60 No 5 3
a PD, probing depth of the subgingival crevice (mm).
b CAL, clinical attachment loss of gingival epithelium (mm).
c M, male; F, female.
d 1, plaque detected by probe; 2, plaque visible to the naked eye.
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total, 1.5 billion RNA sequencing (RNA-seq) reads were obtained
(see Table S3 in the supplemental material). Prior to microbial
gene expression analyses, we aligned the reads to the Human Oral
Microbiome Database consisting of complete and draft genomes
(HOMD; 4.4 billion bp), the RefSeq human RNA database
(huRNA; 135 million bp), and the RefSeq viral genome database
(virusDB; 121 million bp). For each sample, between 55 and 65%
of the total reads aligned to these reference databases, and the
majority (�99%) of these reads were prokaryotic (see Table S4).

To quantify gene expression, reads were aligned to a 60-
organism “metagenome” comprised of completed and draft ge-
nomes representing microbes comprising 60 to 90% of total
healthy or diseased rRNA (see Supplementary File 1 at http://web
.biosci.utexas.edu/whiteley_lab/pages/resources.html). Since we
characterized both health- and disease-associated communities
with RNA-seq, we could analyze differential expression of the
�160,000 bacterial genes represented in our metagenome simul-
taneously between healthy and diseased sites in the same individ-
ual. For each sample, 28 to 85 million RNA-seq reads mapped to
the 60-organism metagenome, including 17.3 � 2.05 million
mRNA reads per sample. This sequencing depth provided suffi-
cient data for differential expression analysis at the community

and organismal levels (for raw read counts per gene, see Supple-
mentary File 2 at http://web.biosci.utexas.edu/whiteley_lab/pages
/resources.html; median, 12 to 21 reads per mRNA; mean, 75 to
156 reads per mRNA). In total, 66 to 91% of reads that mapped to
the HOMD, huRNA, and virusDB databases mapped to the 60-
species metagenome, suggesting that our reference metagenome
sufficiently represents the oral microbiome as determined by
shotgun metagenomic sequencing data.

Disease-associated communities change metabolic gene ex-
pression. Previous studies have used genomic information to pre-
dict disease-associated shifts in metabolism; however, these mod-
els are based on the genetic capacity of the population rather than
microbial community metabolic gene expression (17, 18). Our
RNA-seq approach allows modeling of the metabolism of the mi-
crobiota during health and disease based solely on gene expres-
sion. In this approach, we used Enzyme Commission (EC) num-
bers to assign biochemical function to the �160,000 genes present
in the 60-organism metagenome. EC numbers classify enzymes
based on the reaction that they catalyze (i.e., enzymes catalyzing
the same reaction will have the same EC number). This allowed us
to calculate changes in expression of metabolic enzymes for the
entire community during health and disease, resulting in a quan-

FIG 1 Ribosome quantification reveals that disease-associated periodontal microbiota are less diverse and contain fewer low-abundance species than do
health-associated populations. (A) Number of distinct 16S rRNA sequences (OTUs) observed in healthy (blue) and diseased (red) samples with increasing
numbers of sequences sampled from each population. Error bars indicate standard errors of the means (n � 10). (B) Shannon indices show that health-associated
populations are more species rich than diseased populations (*, P � 0.03, paired two-tailed Student t test). (C) Beta diversity was measured using the unweighted
Unifrac method to calculate relatedness of paired health-associated (blue) and disease-associated (red) microbial populations by assessment of shared and unique
species in each community. Principal coordinates 1 and 2 are plotted. Mean diseased and healthy centroids (mean � standard deviation) are indicated by ellipses.
Distances between samples and corresponding centroids are shown as blue and red lines, respectively. Black lines show distances between paired populations
from the same patient. (D) Mean Euclidean distance (mean � standard deviation) from each sample to corresponding centroids and corresponding paired
sample from same patient (**, P � 0.0005, paired two-tailed Student t test).
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titative, high-resolution view of metabolism. Among ~1,100
unique enzyme-encoding gene families in the oral metagenome,
~18% were differentially expressed (P � 0.05) at the microbiome
level during disease (Fig. 2; see also Supplementary File 3 at http:
//web.biosci.utexas.edu/whiteley_lab/pages/resources.html). Us-
ing the Kyoto Encyclopedia of Genes and Genomes (KEGG) (19)
metabolic pathway database, we were able to reveal enzymatic
steps whose genes were upregulated, downregulated, or un-
changed in the microbiome during disease (Fig. 3). These results
revealed that within each individual, disease-associated popula-
tions showed defined changes in expression of metabolic genes,
suggesting that specific metabolic shifts are occurring in disease-
associated communities. Specific pathways that showed enhanced
gene expression in all diseased sites included lysine fermentation
to butyrate, histidine catabolism, nucleotide biosynthesis, and py-
ruvate fermentation. The observation that these pathways were
observed in all three patients strongly suggests that they are im-
portant for stability of disease-associated populations and likely
contribute to the disease process. In support of this, butyrate levels
have been shown to increase during periodontitis (20) and likely
contribute to disease by preventing human cell proliferation (21).
These data provide the first metabolic reconstruction (from gene
expression data) of the microbial population in healthy and dis-
eased periodontal pockets and identified numerous pathways not
previously associated with disease along with one pathway (lysine
fermentation to butyrate) previously proposed to be important.

FIG 2 Differential expression of enzyme gene families in health and disease.
Log2 fold change during disease is plotted against the log2 mean read counts
per million total reads for each EC enzyme-encoding gene family. Gene fam-
ilies upregulated in health are shown in blue, while gene families upregulated
in disease are shown in red.

FIG 3 Differential metabolic gene expression in the diseased periodontal microbiome. Metabolic network reconstruction. Black lines indicate enzyme-
encoding genes that were expressed and unchanged in health and disease, red lines indicate genes upregulated during disease, and blue lines indicate genes
upregulated during health. Colored regions identify different sections of the metabolic pathway map. Those highlighted in yellow represent important pathways
that were upregulated in disease. Complete data showing all differentially regulated genes are available in supplementary files 2 and 3 at http://web.biosci.utexas
.edu/whiteley_lab/pages/resources.html. THF, tetrahydrofolate metabolism; TCA, tricarboxylic acid.
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In addition to defining community-level metabolic gene ex-
pression, our high-resolution RNA-seq analyses allow for identi-
fication of the individual microbes mediating shifts in metabolic
gene expression during disease. For example, while several oral
microbes have the capacity to produce butyrate, the Gram-
negative bacterium Fusobacterium nucleatum is the sole bacterium
responsible for community lysine degradation to butyrate in all
patients (Fig. 4A). In contrast, several bacteria were responsible
for enhanced expression of genes involved in histidine degrada-
tion and pyruvate fermentation during disease (Fig. 4B and C),
and the bacteria differed between patients. Collectively, these data
provide two novel insights into this microbiota-mediated disease.
(i) We propose that F. nucleatum is a keystone species during
periodontitis, functioning in all patients by shifting its gene ex-
pression to produce a metabolite (butyrate) that establishes a hos-
pitable growth environment for the disease-associated commu-
nity. Notably, the rRNA of F. nucleatum in health- and disease-
associated communities is proportionally identical (see Fig. S1 in
the supplemental material), indicating that the changes in gene
expression observed are not due to an increase in abundance in

disease-associated populations. While F. nucleatum and other
bacteria have been proposed as keystone species in the past, even
the most convincing data supporting these theories have arisen
from defined model communities containing few species grown in
animal models (22). Because the ability to serve as a keystone
species is dependent on the constituents of the community (which
vary between patients), our data provide the first evidence for the
role of this bacterium as a keystone species in a naturally occurring
microbial community during human infection. We also pinpoint
lysine fermentation as the key metabolic pathway contributing to
its keystone role, which was previously unappreciated. (ii) We also
show that, while metabolism is conserved at the community level,
for pathways like histidine degradation and pyruvate fermenta-
tion multiple microbes contribute to gene expression changes
(Fig. 4B and C). The interchangeability of community members in
each patient provides insight into why metagenomic analyses of
the oral microbiome have displayed little conservation. Remark-
ably, we observed that the bacteria contributing to expression of
known extracellular virulence factors vary between patients
(Fig. 4D), suggesting that in addition to metabolism, distinct mi-

FIG 4 Metabolic niche dynamics in diseased populations. (A) Production of butyrate is primarily due to F. nucleatum lysine fermentation. (B) Multiple species
that vary among patients fill histidine degradation and tetrahydrofolate (THF) metabolic niches. (C) Multiple species that vary among patients carry out pyruvate
fermentation. For panels A to C, community fold changes of EC enzyme-encoding gene expression are indicated at each arrow. (D) Different organisms fill
virulence niches in diseased periodontal communities. In patient 1, Tannerella forsythia is the major source of collagenase expression, whereas collagenase
expression is augmented by Prevotella tannerae in patient 2 and by Porphyromonas gingivalis in patient 3. Protease production follows similar patterns, whereby
combinations of different species express proteases in each patient. In panels A to D, heat maps indicate relative normalized expression (log2 reads per million
reads in each sample) of different enzyme-encoding genes or virulence genes by species in each patient. Abbreviations of species names and the color scale for heat
maps are indicated. CoA, coenzyme A.
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crobes produce conserved virulence determinants in each individ-
ual.

Community metabolic gene expression is highly conserved
relative to individual species. Our data suggest that metabolic
pathways are well conserved in health- and disease-associated
communities, while the organisms carrying out these processes
often vary between communities. If this were true, we hypothe-
sized that variance of gene expression at the individual gene level
(i.e., a gene within a single species) would be high, while variance
at the EC-binned level (orthologous genes from all species in the
community) would be low. In support of this hypothesis, variance
estimations show that as expression increases, dispersion in-
creases at the individual gene level while it decreases at the com-
munity EC expression level (Fig. 5A and B). Since the decreased
variance observed at the EC-binned level could potentially be due
to a condensation of the data to fewer total data points, we ran-
domly binned genes into 1,137 groups (equal to the number of
ECs) and performed the variance analyses on this artificial data
set. As expression increases in the randomly grouped gene set,
variance increases (Fig. 5C), demonstrating that the decreased
variance observed in EC-binned genes is indeed biological and not
due to compression of the data. These data indicate that an indi-
vidual gene (e.g., pyruvate formate lyase in a single microbe) dis-
plays high variability in expression between communities (i.e.,
patients); however expression of orthologous genes (e.g., pyruvate
formate lyase from all microbes) is highly conserved.

DISCUSSION

Previous studies of the human microbiota have indicated that
microbial diversity is high between individuals and can vary sig-
nificantly over time and between different locations on the same
individual. Thus, in studies focusing on the microbiota, it is im-
portant to ensure that sufficient samples are examined to capture
the breadth of this variability. Previous metatranscriptomics stud-
ies examining the human microbiota associated with bacterial
vaginosis, in feces treated with different drugs, and in feces from
people with various diets have successfully revealed conserved

community gene expression responses with as few as two biolog-
ical replicates per condition (14, 15, 23). Here, we provided a
complete transcriptome-based reconstruction of microbial me-
tabolism in nine patient-matched health- and disease-associated
periodontal plaque populations from three patients. Importantly,
the results of this reconstruction recapitulated a key phenomenon
consistently found during the transition to periodontal disease:
the increased production of short-chain fatty acids such as bu-
tyrate (20). This indicates that we were able to identify conserved
changes in microbial community metabolism in the face of high
interpatient variability in microbiota composition.

Our study represents an important advance in several ways.
First, we captured gene expression at an extremely high resolu-
tion, examining expression of 160,000 genes simultaneously. To
comprehensively analyze expression of such a large gene set, it was
important to achieve sufficient sequencing depth to accurately
determine differences among plaque communities. Therefore, we
focused our study on a relatively small patient group and were able
to compare gene expression of numerous high- and low-
abundance organisms in these communities. Also, our EC-based
computational approach allowed us to take a more global view of
microbial metabolism than previously appreciated. Other studies
have used KEGG orthologs to study metabolism (14, 15, 23).
While this approach is similar to ours, it is complicated by the fact
that many KEGG orthologs can encode proteins with the same
catalytic activity, whereas each enzyme is assigned only one EC
number for its specific catalytic activity. Therefore, our approach
truly distilled genes into functional rather than orthologous
groups, allowing us to accurately look at whole-community me-
tabolism in an ancestry-independent manner.

While population composition varied among plaque popula-
tions, we found that enzyme expression was well conserved. This
suggests that multiple organisms that vary among populations are
capable of filling conserved metabolic niches. This study is an
important step toward characterizing the influence of human mi-
crobiota on health and disease. While mRNA is not an exact pre-
diction of metabolic activity, it is a closer approximation of me-

FIG 5 EC expression is less variable than individual gene expression. (A) Variance estimations for genes in the metagenome determined in edgeR analyses. (B)
Variance estimations for EC expression determined in edgeR analyses. (C) Variance estimations for genes randomly binned into 1,137 gene groups determined
in edgeR analyses. Blue lines in panels A to C indicate the tagwise dispersion, while red lines show the common dispersions calculated with edgeR. BCV, biological
coefficient of variance.
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tabolism than 16S rRNA or genome-based predictions that have
been reported previously. RNA-seq is especially well suited for
studying human microbiota because it is highly sensitive, and
therefore, experiments can be performed with small amounts of
starting material, like dental plaque. Other approaches, including
proteomics or metabolomics, may aid in the understanding of
human-associated microbial metabolism but are technically chal-
lenging due to the sample sizes required for these techniques.

A major question that remains with all microbial shift diseases
is whether changes in microbiota composition and behavior cause
disease or are a consequence of disease. Here, we found that dif-
ferential expression of metabolic genes in certain pathways was
associated with the periodontal disease state. For instance, expres-
sion of butyrate production genes by F. nucleatum increased dur-
ing disease. Increased butyrate levels have been measured in dis-
eased periodontal pockets, and studies in cell culture have shown
that these butyrate concentrations can arrest human cell growth,
potentially delaying the healing process (20, 21). In combination
with the findings presented here, this suggests that F. nucleatum
butyrate production likely promotes disease. However, carefully
designed future studies will be necessary to better support this
hypothesis.

Several different metatranscriptomic approaches will help elu-
cidate the answer to the “chicken or egg” question in microbial
shift disease research. One potential approach is to carefully ex-
amine composition and behavior of the microbiota throughout
disease progression. In this approach, one could simultaneously
analyze the host symptoms and microbiota to determine whether
changes occur first at the host level or at the microbial level at
disease onset. An alternate approach would be to examine a large
number of healthy and disease-associated microbial communi-
ties. This would allow the characterization of common features of
health and disease, and one would expect to find intermediate
compositional and expression states that might get to the root of
the question. In addition, results from metatranscriptomics stud-
ies will help guide more directed studies to utilize mRNAs as
markers for disease.

MATERIALS AND METHODS
Study population. A total of 10 individuals seeking dental treatment in
the School of Dentistry, Ege University, Izmir, Turkey, were involved in
the present study. Ten systemically healthy, untreated patients with gen-
eralized aggressive periodontitis (AgP) were recruited from September
2011 to August 2012 (Table 1). The study was conducted in full accor-
dance with ethical principles, including the World Medical Association’s
Declaration of Helsinki, as revised in 2000. The study protocol was ex-
plained, and written informed consent was received from each individual
before clinical periodontal examinations and subgingival plaque sam-
pling. Medical and dental histories were obtained, and smoking habits
were recorded. Individuals with medical disorders, such as diabetes mel-
litus or immunological disorders, and those who had antibiotic or peri-
odontal treatment in the last 6 months were excluded from the study.

Individuals with AgP were diagnosed in accordance with the clinical
criteria stated in the consensus report of the World Workshop in Perio-
dontitis. Individuals had at least 6 permanent teeth, including incisors
and/or first molars, with at least one site with probing depth (PD) and
clinical attachment loss (CAL) of �5 mm and 6 teeth other than first
molars and incisors with similar PD and CAL measurements, and familial
aggregation (all individuals were asked if they had any family member
with current severe periodontal disease or a history of such).

Subgingival plaque sampling. For the diseased samples, the deepest 3
pockets were selected and pooled in a single Eppendorf tube. Supragingi-

val plaque was first removed from the sample teeth with sterilized Gracey
curettes and sterilized gauze. The site was then cleaned and isolated using
cotton rolls and air dried gently. Another sterilized Gracey curette was
inserted into the deepest part of the pocket and removed by applying a
slight force toward the root surface. The tip of the curette was then in-
serted in the Eppendorf tube containing RNALater and shaken until the
plaque was removed from the curette. For the healthy subgingival plaque
samples, in the same patient 3 healthy sites that did not show any sign of
inflammation and bleeding on probing were chosen and pooled in an
Eppendorf tube. The same procedures were followed for the subgingival
sampling. After 24 h, the samples were frozen and stored at �40°C until
the sample collection period was completed.

Clinical periodontal measurements. Subsequent to saliva and serum
sampling, clinical periodontal recordings, including plaque index, PD,
CAL, and bleeding on probing (BOP) (�/�), were performed at 6 sites
(mesiobuccal, midbuccal, distobuccal, mesiolingual, midlingual, and dis-
tolingual locations) on each tooth present, except the third molars, using
a Williams periodontal probe. CAL was assessed from the cement enamel
junction to the base of the probable pocket. BOP (deemed positive if it
occurred within 15 s after periodontal probing) was recorded dichoto-
mously by visual examination. All measurements were performed by two
precalibrated examiners (P.G. and N.N.). Interexaminer and intraexam-
iner calibration was analyzed using the kappa-Cohen test. The initial in-
traexaminer kappa values were 0.96 (PD) and 0.86 (CAL) for P.G. and
0.93 (PD) and 0.79 (CAL) for N.N. The interexaminer values were 0.92
(PD) and 0.75 (CAL).

Total RNA isolation. Subgingival plaque samples stored in RNALater
were centrifuged at 16,100 � g to collect whole cells. Cell pellets were
resuspended in 1 ml RNA Bee and transferred to a bead-beating tube.
Cells were lysed by bead-beating 3 times for 60 s and incubated on ice for
1 min between bead beatings. Lysed cell solutions were transferred to new
microcentrifuge tubes, and 200 �l chloroform was added. Tubes were
shaken vigorously for 1 min to mix and incubated for 5 min in an ice bath.
Samples were centrifuged at 13,100 � g for 30 min at 4°C to separate
aqueous and organic phases. The aqueous phase from each sample was
transferred to a new microcentrifuge tube, and RNA was precipitated with
an equal volume of isopropanol and 2 �g linear acrylamide for 16 h at
�80°C. Samples were thawed in an ice bath and centrifuged for 30 min at
13,100 � g at 4°C. Supernatants were removed, and RNA pellets were
washed with twice with ice-cold 75% ethanol by resuspension and cen-
trifugation for 10 min at 16,100 � g at 25°C. Following the second ethanol
wash, RNA pellets were air dried for 5 min at 25°C and resuspended in
22 �l RNase-free water. RNA concentrations for each sample were deter-
mined with a Nanodrop spectrophotometer (Thermo Scientific).

rRNA sequencing. rRNA sequencing was carried out by modifying 2
protocols from previous studies which sequenced bacterial 16S rRNA
genes (1, 2). Total subgingival plaque RNA for all 10 healthy and diseased
samples was used to reverse transcribe 16S cDNA with SSII reverse tran-
scriptase (RT) (Invitrogen) and the universal bacterial 16S 926 RT gene-
specific primer (see Table S5 in the supplemental material), which anneals
immediately downstream of the 16S rRNA V5 variable region. Negative-
control reactions with reaction mixtures lacking SSII were conducted on
all RNA samples in parallel to ensure that DNA was not copurified with
the total RNA. From each RT reaction, including negative-control reac-
tions, 2 �l was removed, and cDNA was used as the template to minimally
PCR amplify the 16S rRNA V4/V5 variable region using indexed sample-
specific primers 16SV5926R-BC0 through 16SV5926R-BC19 and the
common primer 16SV4515F (see Table S5). All RT-PCR products were
separated by agarose gel electrophoresis, stained with ethidium bromide,
and viewed with a GBox imaging system. Distinct cDNA bands were vis-
ible for all positive-control reactions, while negative-control reactions
with reaction mixtures lacking RT showed no product, verifying the ab-
sence of DNA contamination in the original RNA preparations. Paired-
end 250-bp sequencing was performed on the 16S cDNA libraries using an
Illumina MiSeq system at the University of Texas Genomic Sequencing
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and Analysis Facility (UTGSAF) with custom MiSeq16SV4515F forward,
MiSeq16SV5926R reverse, and MiSeq16SV4V5Index index sequencing
primers (see Table S5).

Total DNA isolation and 16S rRNA gene library preparation. To
organic phases from RNA isolations from healthy and diseased samples
from patients 1, 2, and 3, 500 �l Tris-EDTA (TE) buffer (pH 8.0) was
added, and samples were mixed by rotation for 10 min at 25°C to elute
DNA from organic phases. Samples were centrifuged for 30 min at 16,100
� g at 4°C, and the aqueous phase was transferred to a new tube. To each
sample, 750 �l ice-cold 100% ethanol, 25 �l 3 M sodium acetate (pH 5.5),
and 1 �l 1-mg/ml linear acrylamide were added and inverted to mix, and
samples were incubated for 4 h at �80°C. Samples were centrifuged for
15 min at 16,100 � g at 4°C, supernatants were discarded, and DNA pellets
were washed with 750 �l ice-cold 70% ethanol. Samples were centrifuged
for 5 min at 16,100 � g at 25°C, supernatants were discarded, and DNA
pellets were washed one more time with 750 �l ice-cold 70% ethanol.
Samples were centrifuged for 5 min at 16,100 � g at 25°C, supernatants
were discarded, and DNA pellets were dried for 5 min at 25°C. DNA was
resuspended in 22 �l TE buffer, pH 8.8. Sequencing libraries were pre-
pared by PCRs with 5 �l DNA, the 16SV4f-515F forward primer, and
unique bar-coded reverse primers for each sample (primers BC8 to BC13;
see Table S5 in the supplemental material). Paired-end 250-bp sequencing
was performed on the 16S cDNA libraries using an Illumina MiSeq system
at the University of Texas Genomic Sequencing and Analysis Facility
(UTGSAF) with custom MiSeq16SV4515F forward, MiSeq16SV5926R
reverse, and MiSeq16SV4V5Index index sequencing primers (see Ta-
ble S5).

Bacterial population analyses. The paired 250-bp forward and re-
verse MiSeq sequencing reads were assembled using fastq-join (24). Un-
assembled reads were discarded, improving read accuracy. Qiime (25) was
used to search the assembled 16S cDNA sequences from all 10 healthy and
10 diseased samples with Uclust against the 97% Greengenes reference
database (26) for species-level identification of operational taxonomic
units (OTUs) using the Qiime python script pick_otus_through_otu_t-
able.py (25). Prior to alpha diversity analyses, samples were rarefied, or
subsampled, 10 times at each step from 500 to 5,000 sequences with a
500-sequence step-size. Mean alpha diversity, or within-sample diversity,
was calculated using the Qiime python scripts alpha_diversity.py and col-
late_alpha.py to determine the number of observed species at each sub-
sampling depth in the rarefication analysis as well as the Shannon indices,
which reflect species richness within samples. Significant differences in
mean Shannon indices for diseased and healthy samples were determined
with a paired Student t test. Jackknifed beta diversity, or between-sample
diversity, was determined for 5,000 sequences per sample using the Qiime
python script jackknifed_beta_diversity.py. A multidimensional scaling
(MDS) analysis plot was generated from the average of 10 distance matri-
ces determined by unweighted Unifrac analysis (27) calculated by the
jackknifed_beta_diversity.py script and was used to determine the simi-
larity between sample populations. Briefly, Unifrac analysis takes into
account the number of shared and unique species between two popula-
tions and provides a distance metric that represents the overall similarity
of the two populations (27). Healthy and disease centroids on the MDS
plot were determined from the mean positions of the respective samples
on the plot. PERMANOVA and PERMDISP analyses were calculated us-
ing the Qiime script compare_categories.py to determine whether healthy
and diseased samples formed distinct groups and if the two groups had
unequal dispersions. Euclidean distances were calculated to determine
relatedness between paired healthy and diseased samples, and Euclidean
distances from samples to their respective healthy or disease centroids
were calculated. Significant differences between Euclidean distances to
centroids versus pairs for diseased and healthy samples were determined
with a paired Student t test.

Comparing 16S rRNA gene and 16S rRNA sequencing. 16S rRNA
gene and rRNA sequencing reads from patients 1, 2, and 3 were assembled
and assigned OTUs using Qiime (25), as described above for rRNA se-

quencing. To determine relatedness of 16S rRNA and rRNA gene se-
quencing, Spearman rank correlation analysis was performed using the
core R package to compare rRNA and rRNA gene sequencing OTU abun-
dances for healthy and diseased samples from each patient.

RNA-seq. Patients 1, 2, and 3 were selected for total RNA sequencing
to analyze microbial population gene expression in periodontal health
and disease because they demonstrated OTU patterns that were represen-
tative of the average healthy and diseased populations (see Fig. S1A and B
in the supplemental material) and there was sufficient RNA to make RNA-
seq libraries. Total RNA samples were treated with the RiboZero Epide-
miology kit (Epicentre) to deplete bacterial and eukaryotic rRNA and
purified by ethanol precipitation using 20 �g linear acrylamide to precip-
itate the RNA. Depleted RNA was fragmented with NEB RNA fragmen-
tation buffer, according to the manufacturer’s protocol. Fragmented RNA
was ethanol precipitated with linear acrylamide and eluted in RNase-free
water. RNA-seq libraries were prepared using the NEB Next Multiplex
Small RNA Library Prep Set for Illumina, according to the manufacturer’s
protocol. The resulting strand-specific cDNA libraries were stained with
SYBR gold nucleic acid stain (Invitrogen) and visualized on a GBox im-
aging system, and cDNA between ~150 and 300 bp was extracted, corre-
sponding to fragmented RNA between nucleotides (nt) 31 and 181. Gel
extracted cDNA was eluted in NEB polyacrylamide gel elution buffer,
ethanol precipitated, and resuspended in TE buffer (NEB). Libraries were
quantified and analyzed using a Nanodrop spectrophotometer (Thermo
Scientific) and a Bioanalyzer (Agilent). Single-end 50-bp sequencing was
conducted at the UTGSAF on an Illumina HiSeq2000 system producing
~1.5 billion sequencing reads (see Table S3).

RNA-seq fastq read processing. HiSeq reads were trimmed with Flex-
bar (28), as described previously (29), to remove contaminating adapter
sequences from the cDNA library preparation. Flexbar was run with set-
tings to collect reads 15 to 50 bp following adapter trimming for further
analysis, because these reads are specific: 15-bp sequences are predicted to
occur randomly only once per ~1 billion bp. Because our reference met-
agenome contained 161 million bp, the chance of a 15-bp read mapping
randomly to the genome was 10% and therefore should not skew our
results.

Determining origin of metatranscriptome sequencing reads. All
metatranscriptome data analysis was conducted on the Texas Advanced
Computing Center Stampede supercomputer. Human oral bacterial ge-
nome sequences (oral_microbiome.na.zip, �4 billion bp) were down-
loaded from the Human Oral Microbiome Database (30) (HOMD) avail-
able on the World Wide Web via ftp://ftp.homd.org/human_oral
_microbial_genomic_sequences/20130520/, the human RNA database
(human.rna.fna.gz) was downloaded on the World Wide Web through
NCBI RefSeq via ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA
_Prot/, and the viral genome database (viral.1.1.genomic.fna.gz, ~121
million bp) consisting of sequenced viruses and bacteriophage available
was downloaded through NCBI RefSeq via ftp://ftp.ncbi.nih.gov/refseq
/release/viral/. Reference sequences were indexed with Bowtie 2.0 (31).
Since the HOMD sequences exceeded the size limit for Bowtie 2.0 (31), the
sequences were split into two files with the custom Perl script FastaSplit.pl
(http://github.com/khturner/metaRNA-seq), and then each file was in-
dexed. Trimmed fastq sequencing reads were split into chunks of 10 mil-
lion reads using the UNIX split command. Each read chunk was mapped
separately to the four indexed reference sequences using Bowtie 2.0 (31),
keeping only 1 match for each fastq read for each reference. Unmapped
reads were discarded, and mapped reads were labeled to indicate whether
they mapped to either of the 2 human oral microbiome indexed databases
(HOMD1 and HOMD2), the indexed human RNA database, or the in-
dexed viral RNA database. The resulting labeled mapped reads in sam file
format for each read chunk in each sample were concatenated and sorted
by read name using the UNIX cat and sort commands. Since initially we
were interested in whether a read was of bacterial origin, human origin, or
viral origin, if a single fastq read mapped to both HOMD1 and HOMD2,
the read mapped to HOMD2 was discarded; however, if a read mapped to
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multiple references (e.g., HOMD and human), it was labeled in the file
using the custom Perl script MatchMarker.pl (http://github.com
/khturner/metaRNA-seq). The numbers of uniquely mapping reads and
reads mapping to multiple reference databases for each sample were de-
termined using the UNIX uniq and pattern-matching grep commands.

Generating a reference metagenome for differential gene expression
analysis. Genomes for differential gene expression analyses were selected
using 16S rRNA sequencing for patients 1, 2, and 3. Reference genome
sequences and annotations were downloaded in Fasta and GFF formats,
respectively. Genomes were downloaded, concatenated, and processed to
include only protein-encoding genes using the custom Perl scripts
GenomeMerge.pl and HOMDpull.sh (http://github.com/khturner
/metaRNA-seq) to generate an annotated metagenome to serve as a ref-
erence. Individual genome sequences and annotations were obtained
from NCBI Genbank (ftp://ftp.ncbi.nih.gov/genbank) and HOMD (http:
//www.homd.org/index.php?&name�seqDownload&type�G). When
available, EC numbers for genes were downloaded from KEGG (19) using
the custom Perl scripts PullEC.pl and HOMD_GenomeMerge.pl (http:
//github.com/khturner/metaRNA-seq).

Differential gene expression analyses. Trimmed RNA-seq reads pro-
duced by Flexbar (28) were mapped against the indexed reference metag-
enome, and reads mapping to each gene were counted using the custom
UNIX shell script MapCount_RNASeq.sh (http://github.com/khturner
/metaRNA-seq), which depends on Bowtie 2.0 (31) and the Python pack-
age HTSeq (https://pypi.python.org/pypi/HTSeq). The trimmed se-
quencing reads were read into the script and mapped to the metagenome,
and the number of reads in each sample mapping to each annotated gene
in the metagenome was counted. Paired differential gene expression was
determined using the custom UNIX shell script calcRNASeqPaired.sh
(http://github.com/khturner/metaRNA-seq), which depends on the R
package edgeR (32) and the supporting R script Pairwise_edgeR.r (http:
//github.com/khturner/metaRNA-seq). This analysis normalizes read
counts between samples, fits the data to a negative binomial distribution,
and determines pairwise differential expression using the patient-
matched samples.

Differential expression analysis of EC enzymes. EC numbers ob-
tained from the HOMD and KEGG databases were added to the table
containing raw read counts per gene produced by MapCount_RNASeq.sh
(above). Genes lacking EC numbers were removed from the table, and the
table was sorted by the EC numbers. The total number of reads mapping
to each EC number was calculated using the custom Perl script ECcoun-
ter.pl (http://github.com/khturner/metaRNA-seq), to produce a table
containing the number of reads mapping to each EC number in each
sample. Differential expression of EC enzymes was determined using the
custom UNIX shell script Pairwise_edgeR.sh (http://github.com
/khturner/metaRNA-seq), which depends on the R package edgeR (32)
and the supporting R script Pairwise_edgeR.r (http://github.com
/khturner/metaRNA-seq).

Nucleotide sequence accession numbers. rRNA sequencing data are
available at http://datadryad.org/ at doi:10.5061/dryad.d41v4, and RNA-
seq sequencing data are available at NCBI in the sequence read archive
under BioProject accession number SRP033605.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.01012-14/-/DCSupplemental.

Figure S1, TIF file, 4 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, DOCX file, 0.1 MB.
Table S3, DOCX file, 0.1 MB.
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Table S5, DOCX file, 0.1 MB.
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