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Summary
Background Early diagnosis of major depressive disorder (MDD) could enable timely interventions and effective
management which subsequently improve clinical outcomes. However, quantitative and objective assessment tools
for the suspected cases who present with depressive symptoms have not been fully established.

Methods Based on a large-scale dataset (n = 363 subjects) collected with functional near-infrared spectroscopy
(fNIRS) measurements during the verbal fluency task (VFT), this study proposed a data representation method for
extracting spatiotemporal characteristics of NIRS signals, which emerged as candidate predictors in a two-phase
machine learning framework to detect distinctive biomarkers for MDD. Supervised classifiers (e.g., support vector
machine (SVM), k-nearest neighbors (KNN)) cooperated with cross-validation were implemented to evaluate the pre-
dictive capability of selected features in a training set. Another test set that was not involved in developing the algo-
rithms enabled the independent assessment of the model’s generalization.

Findings For the classification with the optimal fusion features, the SVM classifier achieved the highest accuracy of
75.6% § 4.7% in the nested cross-validation, and the correct prediction rate of 78.0% with a sensitivity of 75.0% and
a specificity of 81.4% in the test set. Moreover, the multiway ANOVA test on clinical and demographic factors con-
firmed that twenty out of 39 optimal features were significantly correlated with the MDD-distinctive consequence.

Interpretation The abnormal prefrontal activity of MDD may be quantified as diminished relative intensity and
inappropriate activation timing of hemodynamic response, resulting in an objectively measurable biomarker for
assessing cognitive deficits and screening MDD at the early stage.
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Introduction
Major depressive disorder (MDD) is a chronic mood dis-
order and negatively affects workplace performance,
physical health, and quality of life.1 Approximately 3.8%
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Research in context

Evidence before the study

Major depression is a chronic illness of considerable
morbidity, with high rates of relapse and recurrence. As
a non-invasive, continuous and economical technique
for measurement of brain hemodynamic activity, func-
tional near infrared spectroscopy (fNIRS) is being
increasingly applied for investigation of the association
between the social cognition of people with depression
and their prefrontal cortex activation. A search in
PubMed with the terms, ((MDD) OR (depression) OR
(depressive) OR (depressed)) AND ((fNIRS) OR (NIRS) OR
(functional near infrared spectroscopy)) AND ((machine
learning) OR (classification) OR (pattern recognition) OR
(discriminant analysis)) AND ((biomarker) OR (marker)),
was conducted to investigate the previous studies using
machine learning for recognizing depression-distinctive
pattern in fNIRS data. Among these reports on prior to
April 9th, 2022, four relevant studies were identified,
but the sample sizes are relatively small to provide a
definitive conclusion. Few evidence to support a quanti-
tative neuroimaging biomarker and pathophysiology
elucidation for depression, particularly involving the
influence from confounding variables.

Added value of the study

Based on the topographic fNIRS technology that allows
sensitive and real-time detection of cerebral hemoglo-
bin changes, this study was performed on a time-series
signals dataset with the standard measurement proce-
dure regarding probe setting and task paradigm. A two-
phase machine learning framework was developed to
identify the depression-distinctive biomarkers, which
presented distinguishing features of hemodynamic
intensity and activation timing in depressed patients. A
large-scale dataset collected with the same experimen-
tal paradigm not only enables the development of
advanced machine learning approaches to analyze spa-
tiotemporal characteristics from fNIRS signals at single-
channel level, but also makes a more comprehensive
validation on the model performance due to the inde-
pendent test set and sample diversity.

Implications of all the available evidence

The high accuracy discrimination results demonstrated
the multi-dimensional profile of cognitive deficits cap-
tured in the fNIRS patterns could objectively confirm
and distinguish the underlying neuropathological
symptoms of depression. Furthermore, two validation
approaches were applied to explore the prediction per-
formances and hemodynamic responses affected by
various demographic factors. This analysis could draw
attention to the heterogeneity observed amongst
depressed cases and contribute to developing con-
founder-free biomarkers for aiding differential
diagnosis.
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of the world’s general population was estimated to suf-
fer from depression, which was ranked by the World
Health Organization (WHO) as the largest contributor
to global disability.2,3 Individuals with MDD are at
increased risk for developing several medical disorders,
e.g., hypertension, dementia, and cerebrovascular dis-
ease.4 Moreover, severe cases of depression carry a high
risk of suicide if it is not caught early.

Accuracy diagnosis and early intervention in the ini-
tial stages of MDD is essential for prompt treatment to
reduce severe morbidity and mortality. However, the
diagnosis of MDD mainly relies on clinical interviews
and subjective evaluation of depressive symptoms,
which are not applicable for large scale population
assessment or continuous monitoring of the disease
progression due to medical burden and shortage of
mental health professionals.5 There seems to be an
increasing view from the field of neuroscience that the
pathophysiology of psychiatric disorders may be
reflected by abnormal activities in the cerebral cortex.6,7

To measure the physiological markers in people suffer-
ing from MDD, functional near-infrared spectroscopy
(fNIRS) offers the most suitable modality by detecting
functional changes in cerebral activity.8 The topo-
graphic fNIRS is able to continuously measure brain
hemodynamic parameters in the form of oxygen-,
deoxygen- and total hemoglobin concentration changes
(i.e., ΔHbO, ΔHbR & ΔHbT), which are considered as
sensitive indicators for the investigation of psychiatric
disorders.9

Previous research found that fNIRS showed abnor-
mal functions of the prefrontal cortex (PFC) in people
with MDD during the verbal fluency test (VFT).10 The
decreased brain activity correlated with symptom sever-
ity is statistically recognized as low integral values of
fNIRS waveform patterns in the frontal and temporal
regions for MDD.11,12 Discriminant analysis with statis-
tical approaches was able to reveal significant discrepan-
cies in the probability distributions of signal patterns
between people with MDD (MDDs) and healthy con-
trols (HCs), however, it remains insufficient to use
fNIRS to establish the diagnosis of MDD.13 In recent
years, machine learning (ML) has been explored from
classification to treatment outcomes prediction for psy-
chiatric disorders due to its ability in automatically
learning from empirical data to recognize complex
patterns.14,15 Despite early concept studies did not
include external validation due to the lack of an inde-
pendent dataset,16,17 the preliminary results still indi-
cated that machine learning is a promising analysis tool
for discovering biomarkers and elucidating pathophysi-
ology of MDD. In our previous work,18,19 the frontal-
temporal hemodynamic signals collected from 210 sub-
jects were investigated based on the group-level and
channel-cluster-level statistics test, and results revealed
the significant difference in the intensity of prefrontal
www.thelancet.com Vol 79 Month May, 2022
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activity during VFT test between MDD and Healthy
Controls (HCs). With 164 new subjects extending to the
sample set, this study aims to use ML models to imple-
ment effective feature selection and to explore MDD-dis-
tinctive patterns from a large-scale dataset, the impact of
confounding factors would be evaluated on the model
robust for application of NIRS measure in establishing
the diagnosis.
Methods

Participants and ethics
In this study, people with stable newly diagnosed or
existing major depressive disorder from the outpatient
psychiatric clinic at the National University Hospital,
Singapore were recruited. Age and gender-matched
healthy controls were also recruited from the commu-
nity. People are regarded as suitable to participate in the
experiment if they fulfill the following criteria: (i) age
between 21 years and 65, (ii) right-handed, (iii) English-
speaking and (iv) participants who have the capacity to
consent to the research. The exclusion criteria are: (i)
mental retardation, (ii) comorbid other psychiatric disor-
ders such as schizophrenia, anxiety disorders, personal-
ity disorders, substance abuse, (iii) history of seizure,
stroke or head injury, (iv) currently psychotic or suicidal,
(v) visual, auditory and speech impairment and (vi)
unstable medical illnesses.

By examination of valid fNIRS channels, we selected
an effective sample set consisting of 177 people with
MDD [male/female: 80/97; mean age: 39.0; standard
deviation (SD): 13.9]; and 186 healthy subjects (male/
female: 75/111; mean age: 36.4; SD: 14.2) from the com-
munity. Psychiatric diagnosis was made by a psychia-
trist with professional qualifications, based on
Structured Clinical Interview for DSM Disorders
(SCID) for both patients and controls.20 The cutoff
value for scores was determined by: Five (or more) of
the symptoms including depressed mood, loss of inter-
est, poor sleep, weight loss, fatigue, psychomotor retar-
dation, poor concentration, suicidal thought, social
impairment) have been present during the same
2�week period and represent a change from previous
functioning; at least one of the symptoms is either (1)
depressed mood or (2) loss of interest or pleasure. In
addition, the evaluation for severity of depressive symp-
toms and psychosocial functioning was based on the
day of participation using the 17-item Hamilton rating
scale for depression (HAM-D) and global assessment of
functioning (GAF).21,22 All participants gave written
informed consent and were recruited from May 2017 to
June 2020. The study was in accordance with the Decla-
ration of Helsinki, and the ethical principles in the Bel-
mont Report. It was approved by the Domain Specific
Review Board of the National Healthcare Group, Singa-
pore (protocol number 2017/00509).
www.thelancet.com Vol 79 Month May, 2022
Data preparation
Hemoglobin changes in the frontal-temporal regions
were quantified by the NIRS signals recorded during
the verbal fluency task (VFT), which is considered a
neuropsychological test to elicit functional abnormali-
ties relevant to major psychiatric disorders.23 The NIRS
apparatus and measurement procedure were fully
described in our earlier research.18,19 According to the
modified Beer-Lambert law,24 the concentration
changes in oxygen-hemoglobin (ΔHbO) and deoxygen-
hemoglobin (ΔHbR) could be derived from NIRS sig-
nals measured during the task period. Further analyses
focused on the spatiotemporal characteristics of ΔHbO,
which were considered to more directly reflect task-
related cortical activation than other signals, as evi-
denced by the strong correlation to the blood oxygen-
ation level-dependent signal measured by fMRI and by
the findings of animal studies.25,26 The time course of
ΔHbO was normalized by linear fitting between 10 s
baseline at the end of the pre-task period, and 5 s in the
post-task period. A moving average with a window
width of 50 sampling points (5s) was applied to remove
high frequency noise from ΔHbO signals. Noise chan-
nels with saturation or low intensity were filtered out,
and the subject data with at least 30 available channels
were included for further analysis.27 Pre-processing of
NIRS signals was conducted in Brainstorm and Nir-
storm plugin.28,29
Machine learning framework
In order to develop a quantitative tool for individual
diagnostic in practical utility, we performed extensive
research efforts on specialized machine learning (ML)
approaches to identify neuroimaging biomarkers of
MDD. Figure 1 showed an outline of the proposed ML
framework, which involved a sequence process of the
fNIRS feature extraction, selection, classification, and
validation. In the feature extraction, the time-series
ΔHbO and CHbO across the 60s task period of word pro-
duction during the VFT was chosen at each channel
and each subject. Subsequently, a total of 16 variables
were generated, e.g., integral raw, centroid (CUM) posi-
tive, etc., to represent the spatiotemporal characteristics
of the hemodynamic response (see Supplementary: Can-
didate Feature Extraction).

By adopting the statistical test or genetic algorithm
(GA)30 as the feature selection method, our ML frame-
work identifies the most informative decision variables
from the extracted features while reducing the space of
possible solutions. Then we established five supervised
classification algorithms (i.e., k-nearest neighbors
(KNN), support vector machine (SVM), discriminant
analysis (DA), decision tree (TREE), and Naÿve Bayes
(NB)) for modeling the correlation between the selected
features and the corresponding diagnostic outcomes.
The explanation of these models and the specific
3



Figure 1. The process of ML framework, including feature extraction, statistics-based or GA-based feature selection, supervised learning models, and validation. Statistical criteria-based fea-
ture ranking steps: (1)! (2)! (3)! (6)! (9)! (10). GA-based feature searching steps: (1)! (4)! (5)! (6)! (7)! (8)! (5)! (6)! (9)! (10).
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parameters assigned to each classifier could be found in
Supplementary: Feature Selection and Tables 1, 2. In the
process of searching for the optimal features, the loss
function of each model was estimated by five-fold cross-
validation to effectively avoid over-fitting. Moreover, an
independent test and the nested cross-validation
(Nested CV) were implemented to validate the gener-
alizability of the classifiers as well as the potential bio-
markers.

All fNIRS data, including 363 subjects, were ran-
domly shuffled; then 80% of them, a total of 272 sub-
jects (129 MDDs and 143 HCs) were treated as the
training set, and the remaining 20%, 91 subjects (48
MDDs and 43 HCs) as the test set. As shown in Figure 1,
in order to objectively evaluate the classification perfor-
mance, the analysis methods were only performed in
the training set (blue box) while the final selected fea-
tures were validated in the test set (orange box). As for
the five-fold Nested CV (grey box) for calculating the
mean and standard deviations of prediction metrics, the
training (141 MDDs and 149 HCs) and test (36 MDDs
and 37 HCs) data at comparable sample distribution
were randomly selected for each split to validate the rep-
licability of results across different sub-datasets.
Evaluate the effect of demographic heterogeneity on
classification models
The effect of demographic factors on cortical activation
patterns of MDD was studied in terms of the predictive
robustness of classifier and statistics test. Firstly, MDDs
and HCs were divided respectively into different groups
by a specific factor, as shown in Supplementary Table 5.
We sought to confirm the evaluation reliability which
targeted at the groups including more than 10 samples,
thus the evaluation metric applied in potential con-
founders was set as: (1) Factors could be involved in the
analysis of accuracy, including gender, age, years of edu-
cation, smoking, alcohol misuse, and past medical his-
tory; (2) Only sensitivity was assessed for exclusive
factors in people with MDD, including duration of
MDD, antidepressant use, and family psychiatric his-
tory.

Estimation of the accuracy or sensitivity of a clas-
sifier would be repeated ten times using leave-one-
out cross-validation and reporting the mean and
standard deviation results across different grouping
samples. The KNN algorithm can highly be overfit-
ting to the training set and affect the evaluation con-
clusion, thus SVM and DA classifiers with preferable
performances were chosen to assess the factors. Fur-
thermore, to investigate the association between the
characteristics of hemodynamic response and clini-
cal/demographic factors, the multiway analysis of
variance (ANOVA) was applied for quantifying the
significance level of identified biomarkers due to the
influencing factors.
www.thelancet.com Vol 79 Month May, 2022
Role of funding source
No funding source or sponsor has a role in study
design; data collection, analyses or interpretation; prepa-
ration, review or approval of the report. The correspond-
ing author had full access to all of the data and the final
responsibility to submit for publication.
Results

Classification results of two-phase feature selection
model
In the two-phase feature selection, the genetic algorithm
(GA) approach was applied to find the optimal feature
channels from the training dataset and adopted a spe-
cific classification model to estimate the fitness of
selected features. After 300 iterations, the searching
algorithm can be substantially converged at an informa-
tive and reduced feature set. Two examples of conver-
gence with SVM and DA are respectively shown in
Supplementary Figure 3, where both the loss of five-fold
cross-validation and the prediction error rate gradually
decreased to stable minimums. The metric of test accu-
racy was not involved in the GA searching process so
that the effectiveness of method could be fairly validated
on the final features. Furthermore, the feature dimen-
sion was reduced from 520 to 39 while employing SVM
as classifier and up to 60 with KNN, which also demon-
strated better dimension reduction ability and efficiency
in MDD-related biomarkers discovery.

The performances of GA feature selection method
using different classifiers for the identification of MDD
cases were demonstrated in Table 1. Both the five-fold
cross-validation and independent test accuracy revealed
that the model SVM cooperated with 39 features pattern
could differentiate people with MDD from controls with
the best performance. For the classification of training
set, the accuracy of correctly classified cases and non-
cases by SVM was 82.4% with a sensitivity of 85.3%
(true positive = 110 of the 129 MDDs) and a specificity
of 79.7% (true negative = 114 of the 143 HCs). As for the
test set, the accuracy of correctly classified was 78.0%
with a sensitivity of 75.0% (true positive = 36 of the 48
MDDs) and a specificity of 81.4% (true negative = 35 of
the 43 HCs). In the outer loop of nested CV, the aver-
aged accuracy with standard deviation of 0.756 § 0.047
was obtained over five splits of dataset.

The 39 feature channels selected by the GA and SVM
classifier could be recognized as neurophysiological bio-
markers that accurately identify the hemodynamic pat-
tern of people with MDD. The group-level comparisons
of discriminative features between the MDDs and HCs
were plotted on a common scale in Figure 2, wherein
the fusion features belong to nine feature variables.
Figure 2 (b) and (c) illustrate the ΔHbO and CHbO map-
ping of group-level statistics on averaging of HCs and
MDDs. Six out of the seven integral variants of time-
5



Classifier KNN SVM DA TREE NB
Feature Number 60 39 32 8 21

GA Conv.

Train Set (3/4) 5-Fold CV 81.6% 76.9% 75.4% 67.3% 75.0%

Accuracy 100.0% 82.4% 82.0% 82.7% 79.4%

Sensitivity 100.0% 85.3% 85.3% 75.2% 86.1%

Specificity 100.0% 79.7% 79.0% 89.5% 73.4%

Test Set (1/4) Accuracy 78.0% 78.0% 75.8% 65.9% 72.5%

Sensitivity 79.2% 75.0% 75.0% 60.4% 68.8%

Specificity 76.7% 81.4% 76.7% 72.1% 76.7%

Nested CV

Train Set (4/5) 5-Fold CV 0.77 § 0.02 0.72 § 0.02 0.72 § 0.02 0.67 § 0.01 0.71 § 0.02

Accuracy 1.0 § 0.0 0.79 § 0.01 0.78 § 0.01 0.80 § 0.00 0.78 § 0.01

Sensitivity 1.0 § 0.0 0.80 § 0.01 0.80 § 0.01 0.71 § 0.03 0.84 § 0.01

Specificity 1.0 § 0.0 0.79 § 0.02 0.76 § 0.01 0.89 § 0.03 0.73 § 0.02

Test Set (1/5) Accuracy 0.72 § 0.04 0.76 § 0.05 0.73 § 0.05 0.67 § 0.06 0.72 § 0.04

Sensitivity 0.74 § 0.03 0.77 § 0.06 0.76 § 0.08 0.59 § 0.12 0.78 § 0.07

Specificity 0.69 § 0.06 0.74 § 0.06 0.71 § 0.04 0.75 § 0.06 0.65 § 0.09

Table 1: Classification results with fusion features and different classifiers.

Articles

6

series data measured from MDDs were significantly
lower than HCs during the VFT. Figure 2 (a) shows the
CHbO mapping of group-level statistics on averaging of
two groups, two of centroid variants, i.e., ‘Centroid
(CUM) Positive’ and ‘Centroid (CUM) Zero-Norm’, for
MDDs were observed slightly smaller mean value (ear-
lier activation timing) and larger standard deviation
(scattered in wider range) than HCs. The statistical cor-
relations on the selected variables can be found in Sup-
plementary Table 4.

The locations of 39 feature channels were superim-
posed on a cerebral cortex atlas using the probabilistic
registrations for NIRS channels (NFRI functions toolbox)31

and shown in Figure 3. According to the spatial probability
of probes and Brodmann's map,32 it was observed that
these channels were mainly distributed on the left ante-
rior-dorsolateral prefrontal cortex as well as part of the
inferior frontal gyrus. The color gradient of channels indi-
cated the number of features selected for the SVM model,
e.g., CH-1 in red represented three feature variants
(‘Integral Raw’, ‘Integral (CUM)’ and ‘Centroid (CUM)
Positive’) at this channel were included to improve out-
comes of individual classification.
Prediction quality impacted by demographic factors
To assess the prediction robustness of classifier, we
compared the accuracy or sensitivity of SVM and DA
models across various demographic factors. Figure 4
(a�c) showed the accuracy comparisons in gender, past
medical history, and years of education respectively.
There was no obvious or consistent discrepancy of pre-
diction accuracy for both classifiers, which implied
these factors did not account for the classification rate.

As for the factor of age shown in Figure 4 (d), it is
noticed that SVM presented higher accuracy than DA
among subjects under 50 whereas DA was more effec-
tive to classify the older group with age� 50. In Figure 4
(e), (f), the accuracies in chronic smokers were higher
than that in non-smokers for both classifiers, while
»10% higher accuracy was achieved in chronic drinkers
than non-drinkers for SVM. These performance differ-
ences were mainly due to the increasing recognization
rate of people with MDD who smoke or alcohol misuse.

The influences of family history of MDD and antide-
pressant use on classification sensitivity were examined
respectively and shown in Figure 4 (g), (h). The result-
ing sensitivity in patients with family history of MDD
was »7.5% higher than those without family history for
DA classifier, while the sensitivity classified for patients
in antidepressant treatment was »8.9% higher than for
unmedicated patients using SVM. To perform analysis
on sensitivity differences among durations of MDD, we
divided the people with MDD into five groups by the
years of illness, each group with comparable sample
size. As illustrated in Figure 4 (i), the sensitivity trend
for SVM follows a decreasing pattern, which is not
applicable to DA classifier. The averaged sensitivity of
80.0% in the MDDs with a duration of < 12 months
indicates that DA is more promising for early detection
of MDD.

In addition, the ANOVA test results on statistical cor-
relation between the identified biomarkers and clinical/
demographic factors were summarized in Supplemen-
tary Figure 4. Among the optimal 39 features applied in
SVM classifier, twenty of the features were significantly
correlated with MDD symptoms, which contributed to
the main characteristics of hemodynamic response for
differing MDDs from HCs. Less than five features were
confirmed significant differences due to the effects of
other factors, e.g., gender, age, medical history, etc. The
statistics result from DA classifier also demonstrated
www.thelancet.com Vol 79 Month May, 2022



Figure 2. Box-plot comparisons of fusion features selected by GA and SVM between HC and MDD groups.
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that the determined features could effectively represent
the MDD-distinctive pattern in cortical activity. All the
involved features and the respective statistical signifi-
cance (p-value) were listed in Supplementary Tables 7, 8.
Discussion
We proposed data transformation and feature selection
methods to discriminately analyze the pattern of time-
series NRIS signals. For the classification on the opti-
mal features by five supervised models, the linear SVM
model achieved the highest nested cross-validation accu-
racy of 75.6% § 4.7% and the prediction rate of 78.0%
(Table 1), which were superior to that using rank-based
significant features and NB classifier (66.9% § 5.3%
and 76.9%, Supplementary Table 6). However, the num-
ber of samples used for training and testing strongly
affects the outcome of a classifier. Most previous studies
usually produced results either on a small number of
samples or have not yet been validated in external sam-
ples due to the lack of independent datasets.15 In this
study, the results were achieved on 363 subjects with
comparable case-control samples, and the outcomes of
classifiers were comprehensively verified by nested
cross-validation and independent test set, which pre-
sented an outstanding generalization capability of this
proposed framework amongst the classification studies
conducted in a large-scale dataset, e.g., a correct predic-
tion rate of 74.6% for recognizing people with MDD in
fNIRS data33 and accuracies 60.8»61.7% at indepen-
dent subgroup with high depression severity in resting-
state fMRI data.34

The determined 39 features by GA and SVM were
verified to contain 19 features without the presence of
significant intra-class correlation, which revealed that
the present feature selection approach was capable of
identifying the features that were weak biomarkers by
standalone but possessed a strong joint power of classi-
fying people with MDD. Taken together, in comparison
with other imaging modalities, e.g., positron emission
tomography (PET) and functional magnetic resonance
imaging (fMRI), fNIRS possesses advantages of non-
ionizing radiation, long time monitoring, real-time
measurement, easy operation, and lower cost.10 The
proposed ML approach further enables this optical tech-
nique to offer patient-oriented monitoring benefits with
accurate, objective and individual assessment of MDD.

Cortical oxygen-hemoglobin changes measured by
fNIRS offer a direct and sensitive indicator of cerebral
neurophysiological function. In this study, as quantified
with diminished relative intensity and inappropriate
activation timing in the specific prefrontal regions of
people with MDD, the abnormal hemodynamic
response provides further evidence for the biological
basis to diagnose MDD. More specifically, consistent
with the results from prior research,11,12 the determined
MDD-related biomarkers in our findings revealed that
www.thelancet.com Vol 79 Month May, 2022



Figure 4. Effects of demographic factors on classification performances of SVM and DA classifiers.
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the defined integral variants representing the intensity
of cortical activity were significantly lower in MDDs
than in HCs. In addition, to settle several disputes about
the limited replication in the anomaly activation timing
of MDD,18,35 two centroid variants indicating the effi-
ciency of hemodynamic response were first proposed
and observed to be significantly dispersed among MDDs.
As another independent indicator for evaluating the cogni-
tive behaviour from the VFT outcome, the number of
words generated by people with MDD (16.2 § 6.5) was
fewer compared to controls (19.8§ 5.7) with statistical dif-
ference (p-value < 0.001, 95% confidence interval by two-
tailed t-test). In brief, our analyses provide converging evi-
dence to support that those who suffered from MDD
would show objectively measurable cognitive deficits, i.e.,
trouble concentrating and difficulty generating words,
when performing the VFT task.

The presented biomarkers of MDD were verified to be
robust across demographic variables through two valida-
tions. The prediction performances evaluated by consider-
ing the influence of independent factors indicated that
both SVM and DA classifiers were able to achieve the aver-
aged accuracy > 74.6% or sensitivity > 73.1% at any spe-
cific factor-of-interest groups. In addition, the multiway
ANOVA test on clinical and demographic factors con-
firmed the identified biomarkers were strongly associated
with the MDD-distinctive consequence. Therefore, the
results further evidenced that these promising models
and biomarkers may be used to elucidate the underlying
neural-activity heterogeneity for depression.

The comparisons of classification performance in
factor-of-interest allowed for analyzing the potential
implication of demographic heterogeneity on the hemo-
dynamic pattern presented in fNIRS signals, which also
offered improvement strategies to establish a more pre-
cise model. It was observed that people with MDD who
were chronic smokers, misused alcohol, having long
duration of illness, or psychiatric family history were
more sensitive to recognization. This finding implies
MDD interacted with these factors probably aggravate
cognitive deficits of brain function and exhibit signifi-
cant biomarkers. As mental health professionals in clin-
ical settings require differentiating MDDs from HCs as
accurately as possible. Further development on integrat-
ing multiple classifiers and other biological parameters
to form a complementary structure would improve pre-
diction quality and enhance anti-confounding effects.
For example, the performance difference related to age
groups suggests that we could choose SVM to recognize
MDD in the young group while DA is preferable for
diagnosing the elderly group. Moreover, previous study
identified inflammatory biotypes derived from periph-
eral cytokine measurements as the potential biological
predictors for personalizing depression treatments,36 so
data fusion between neuroimaging and inflammatory
biomarkers provides comprehensive indicators to evalu-
ate the progress of depression.
It should be noted though, that this study has several
limitations. Firstly, the diagnosis data was obtained by a
single psychiatrist, it would be desirable that the diag-
nostic process is performed by plural clinicians and
cross-site to check the classification robustness across
different clinical settings. Secondly, in the case of the
opportunistic screening for depression, the suspected
cases ask for medical attention can range in seriousness
from mild, temporary episodes of sadness to severe, per-
sistent depression. However, the studied sample set
involved only two groups of subjects, i.e., MDDs and
HCs, and recognizing different subtypes of depression
would be beyond the ability of this algorithm. Therefore,
increasing the diversity of samples and developing sen-
sitive biomarkers aimed at severity assessment for
depression are required before applying the fNIRS-
assisted diagnosis in practical settings. Thirdly, the
fNIRS measures and machine learning techniques may
have potential applications in other important but more
challenging diagnostic problems. For instance, MDD
commonly co-occurs with borderline personality disor-
der (BPD). Since people with BPD often present depres-
sive symptoms, it can be difficult to distinguish
between MDD and BPD. Future research on appropri-
ate cognitive tasks and analysis models is required for
pattern mining from the brain activity of people with
BPD and co-occurring depression. Lastly, the continu-
ous-wave fNIRS technology is not yet useful for depth-
sensitive, tomographic, and concentration measure-
ments. Another promising NIRS modality, time-
domain diffuse optical spectroscopy has recently been
introduced in tracking the microvascular blood flow of
multi-layered brain model.37,38 With the application of
this cost-effective system, researchers may obtain more
cortical hemodynamic information for evaluating the
pathological changes, locations, and causes of depres-
sion.

In conclusion, early and accurate identification of
MDD contributes to a better treatment outcome, explo-
ration of cost-effective biomarkers as part of the diag-
nostic criteria can be helpful in the fast case-finding as
well as monitoring the course of the disorder. This
study developed a machine learning framework to
detect the distinctive pattern of MDD from a large-scale,
case-control NIRS dataset and established a biomarkers-
based objective analysis tool for the assessment of sus-
pected cases. The statistical and discriminant analysis
results further demonstrated the possibility of neuroim-
aging technique in clarifying the pathophysiological fea-
tures of MDD and future data-driven diagnostics.
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