
January 2017 | Volume 8 | Article 51

Review
published: 19 January 2017

doi: 10.3389/fendo.2017.00005

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Annette Gilchrist,  

Midwestern University, USA

Reviewed by: 
Omar Omar,  

University of Gothenburg, Sweden  
Jukka Pajarinen,  

Stanford University, USA

*Correspondence:
Nadim J. Hallab 

nhallab@rush.edu

Specialty section: 
This article was submitted to  

Bone Research,  
a section of the journal  

Frontiers in Endocrinology

Received: 06 November 2016
Accepted: 06 January 2017
Published: 19 January 2017

Citation: 
Hallab NJ and Jacobs JJ (2017) 

Chemokines Associated with 
Pathologic Responses to  

Orthopedic Implant Debris. 
Front. Endocrinol. 8:5. 

doi: 10.3389/fendo.2017.00005

Chemokines Associated with 
Pathologic Responses to  
Orthopedic implant Debris
Nadim J. Hallab* and Joshua J. Jacobs

Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA

Despite the success in returning people to health saving mobility and high quality of life, 
the over 1 million total joint replacements implanted in the US each year are expected 
to eventually fail after approximately 15–25 years of use, due to slow progressive subtle 
inflammation to implant debris compromising the bone implant interface. This local 
inflammatory pseudo disease state is primarily caused by implant debris interaction 
with innate immune cells, i.e., macrophages. This implant debris can also activate an 
adaptive immune reaction giving rise to the concept of implant-related metal sensitivity. 
However, a consensus of studies agree the dominant form of this response is due to 
innate reactivity by macrophages to implant debris danger signaling (danger-associated 
molecular pattern) eliciting cytokine-based and chemokine inflammatory responses. 
This review covers implant debris-induced release of the cytokines and chemokines 
due to activation of the innate (and the adaptive) immune system and how this leads 
to subsequent implant failure through loosening and osteolysis, i.e., what is known of 
central chemokines (e.g., IL-8, monocyte chemotactic protein-1, MIP-1, CCL9, CCL10, 
CCL17, and CCL22) associated with implant debris reactivity as related to the innate 
immune system activation/cytokine expression, e.g., danger signaling (e.g., IL-1β, IL-18, 
IL-33, etc.), toll-like receptor activation (e.g., IL-6, tumor necrosis factor α, etc.), bone 
catabolism (e.g., TRAP5b), and hypoxia responses (HIF-1α). More study is needed, 
however, to fully understand these interactions to effectively counter cytokine- and 
chemokine-based orthopedic implant-related inflammation.

Keywords: implant debris, inflammasome, orthopedics, allergy, chemokines, CXC

iNTRODUCTiON

Total hip and knee replacements are examples of incredibly successful medical technologies with 
overall success rates of >90% at 10 years after surgery (1). However, the rate of failure grows with 
increasing time after surgery, where survival rates at 15–20 years post-op are very low at less than 
50%. Currently, greater than 40,000 hip arthroplasties are revised each year in the US because of 
non-infection (aseptic)-related implant failure (painful implant loosening), and this is expected to 
increase by approximately 140% for total hip and 600% for total knee revisions over the next 25 years 
(1). Painful loosening is a serious long-term complication because of the risks of clinical/surgical of 
revision surgery.

Implant debris-induced biological reactions have been well established as the central cause of 
long-term implant failure (2, 3). However, other mechanisms of long-term implant failure have also 
been shown to contribute to the pathogenesis of implant failure, such as high fluid pressures forcing 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2017.00005&domain=pdf&date_stamp=2017-01-19
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
https://doi.org/10.3389/fendo.2017.00005
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:nhallab@rush.edu
https://doi.org/10.3389/fendo.2017.00005
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00005/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00005/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2017.00005/abstract
http://loop.frontiersin.org/people/390078


2

Hallab and Jacobs Chemokines and Orthopedic Implants

Frontiers in Endocrinology | www.frontiersin.org January 2017 | Volume 8 | Article 5

fluid between the bone and implant, endotoxin contamination 
(lipopolysaccharide from Gram-negative bacterial membranes), 
stress shielding where reduced stresses imposed on bone leads to 
decreased remodeling (4). Various mechanical factors, such as 
micromotion, may play a role in the induction of aseptic loosen-
ing not only directly but also indirectly through the formation of 
additional implant debris such as wear particles. Aseptic implant 
failure due to inflammation is responsible for >70% of total hip 
arthroplasty revisions and >44% of total knee arthroplasty revi-
sions (2, 5). Local bone loss (or peri-implant osteolysis) is initiated 
by inflammatory responses to innate immune system interactions 
with small implant wear particles (generally <10 µm in diameter) 
resulting in persistent cytokine- and chemokine-induced inflam-
mation in the peri-implant milieu (6). The focus of this review 
will be the identification of the central chemokines and cytokines 
involved in these innate and adaptive inflammatory reactions to 
implant debris (e.g., wear particles and metal ions).

iNNATe iMMUNe SYSTeM ReSPONSe TO 
weAR DeBRiS PARTiCLeS

Macrophages
Innate immune implant debris-induced inflammation is 
caused predominantly by macrophages, which react to aseptic 
(non-infected) implant debris upregulating pro-inflammatory 
transcription factors (e.g., NF-κB) and secreting inflammatory 
chemokines such as IL-8, monocyte chemotactic protein-1 (MCP-
1), and MIP-1, and cytokines such as IL-1β, tumor necrosis factor 
α (TNF-α), and IL-6 (7) (Figure 1). Anti-inflammatory cytokines 
such as IL-10 modulate this inflammatory process, but how and 
which anti-inflammatory cytokines and chemokines dominate 
remains largely unknown.

Non-pathogenic-derived stimuli have been found to activate 
immune cells via danger signal pathways (8–11). This “inflamma-
some” pathway senses and transduces “danger-associated molec-
ular patterns” (12) such as implant debris into an inflammatory 
response (13, 14). Other non-biological-derived danger signals 
include such cell damaging stimuli as UV light and particulate 
adjuvants present in modern vaccines (15, 16).

When particles activate the inflammasome pathway, cells 
release mature IL-1β, IL-18, IL-33, and other cytokines and 
chemokines as follows:

Debris Phagocytosis Lysosome damage ROS
reactive oxygen sp

→ → →
( eecies

Inflammasome NALP ASC Caspase IL-
and other I

)

(
( / )→ → →3 1 1β

LL- -family cytokines and chemokines (MCP- , etc.)1 1) .
 

Once phagocytosed by APCs such as macrophages, particles, 
such as asbestos and implant debris, induce danger signaling 
through mechanisms such as lysosomal destabilization. This lyso-
somal destabilization then causes a cascade of NADPH (nicotina-
mide adenine dinucleotide phosphate-oxidase), and an associated 
increase in reactive oxygen species, which then activates the intra-
cellular multi-protein “inflammasome” complex composed of 
NALP3 (NACHT-, LRR-, and pyrin domain-containing protein 3) 

in association with ASC (apoptosis-associated speck-like protein 
containing a CARD domain) (17, 18). This inflammasome activa-
tion then activates Caspase-1, which does not act as an apoptosis 
stimulus (despite its caspase nomenclature) but rather converts 
cytokines such as IL-1β and IL-18 (and others) from their inactive 
into their active form. Recent studies demonstrate a polarization 
toward an M1 phenotype for macrophages in response to implant 
debris challenge (released metal ions and particles) (Figure  1) 
(19). Thus, given that wear particles are biologically active and 
influence the innate immune pathway, the amount, appearance, 
rate of production, time of exposure, and antigenicity of the wear 
particulates (and their breakdown products) are all important 
factors (8, 20). The macrophage M1-associated cytokines released 
after contact with wear debris include IL-1α, IL-1β, IL-6, IL-10, 
IL-11, IL-15, TNF-α, transforming growth factor α, granulocyte-
macrophage colony-stimulating factor (GM-CSF), macrophage 
colony-stimulating factor (M-CSF), platelet-derived growth 
factor, and epidermal growth factor (Figure 1) (21–23).

ADAPTive iMMUNe ReSPONSeS

Lymphocytes
All metal implants release implant debris through wear and cor-
rosion (24, 25) and the released metal ions, while not sensitizers 
on their own, can act as haptens, activating the immune system 
by forming complexes with native proteins (26–28). Nickel is the 
most common delayed type hypersensitivity (DTH) sensitizer in 
humans followed by cobalt and chromium (29–32).

Lymphocytes have been shown that they can play a cen-
tral role in the failure of some kinds of orthopedic implants 
(33–36). The subtypes of T-cells that dominate implant 
debris-associated responses are T-helper (TH) cells (33–36). 
These TH responses have been characterized as a type IV DTH 
response. DTH response to metal implant debris is an adaptive 
slow cell-mediated type of response. Metal-antigen sensitized 
and activated DTH T-cells release various chemokines, which 
recruit and activate macrophages [Figure  2; (37)] such as 
IL-3 and GM-CSF (promotes hematopoesis of granulocytes); 
monocyte chemotactic activating factor (promotes chemotaxis 
of monocytes toward areas of DTH activation); IFN-γ and 
TNF-β (produce a number of effects on local endothelial cells 
facilitating infiltration); and migration inhibitory factor (signals 
macrophages to remain in the local area of the DTH reaction). 
A DTH self-perpetuating response can create extensive tissue 
damage. Forms of metal sensitivity testing such as lymphocyte 
transformation test and patch testing (for skin reactions) are 
the only means to predict/diagnose those individuals that will 
have an excessive immune response to metal exposure that 
may lead to premature implant failure (approximately >1–2% 
patients/year) (37).

TH1 cells have been implicated as mediating metal DTH 
responses as characterized by production of IFN-γ and IL-2 and 
to a lesser degree IL-17. DTH response-associated chemokines 
fractalkine and CD40 indicate the possibility of TH17 activity 
(vs non-observed TH2 cell-mediated IL-10 responses) (36, 38). 
However, the chemokines involved in TH1 responses such as 
MIG (monokine induced by gamma interferon, i.e., CXCL9) 
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FiGURe 1 | Schematic of how the innate immune responses particularly inflammasome danger signaling is central to chemokine and cytokine 
implant debris-induced local inflammation and the pathology of implant loosening/failure (courtesy of Bioengineering Solutions inc.).
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and CXCL10 (39) have not been investigated in the context of 
adaptive immune responses to implant debris and greater under-
standing of their roles is critically needed. Specific lymphocyte 
responses (e.g., TH1 cells) may be underestimated and falsely 
attributed to innate immune responses because relatively very 
few activated lymphocytes locally can release macrophage-asso-
ciated chemokines. It has been difficult to readily identify these 
responses in peri-implant tissues, by such signature cytokines 
as IL-2, interferon-γ, TNF-α, and IL-2 receptors (40). But some 
studies using mRNA detection instead of tissue immunohisto-
chemistry (IL-2) have shown the increased expression of these 
TH1 cytokines (38).

Bone Responses
Osteoclasts
The role of osteoclasts has been purported to be central to oste-
olysis, as they are the primary bone-resorbing cells. RANK(L) 
signaling is central for the activation of osteoclasts and activates a 
variety of downstream signaling pathways required for osteoclast 
development, but cross talk with other signaling pathways also 
fine-tunes bone homeostasis both in normal physiology and 
disease (41, 42). The degree to which other cells with the potential 
to resorb bone (e.g., macrophages) dominate implant debris-
induced osteolysis remains controversial. The roles of released 
cytokines such as TNF-α are important to bone-related diseases 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 2 | innate immune system (i.e., macrophage) interactions with implant debris produces danger signaling (inflammasome) and pathogen 
(NF-κB)-associated cytokines such as iL-1β and tumor necrosis factor α (TNF-α) and increased expression of costimulatory molecules such as 
CD80/86, iCAM1, and HLADR where the effects on chemokine receptors such as CCR2 and CCR4 are incompletely understood. These innate 
responses can trigger adaptive immune responses where destructive TH1 type cytokine profiles that then require T-regulatory cells (e.g., IL-10) to control this 
response (courtesy of BioEngineering Solutions Inc.).
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(43), but their relative contribution to bone loss due to potent 
macrophage activation vs that of osteoclast activation alone, in 
implant debris-induced osteolysis, is not completely understood.

Osteoclasts (in  vitro) have been shown capable of phago-
cytosing a wide size range of ceramic, polymeric, and metallic 
wear particles. After particle phagocytosis, they remain fully 
functional, hormone responsive, bone-resorbing cells (44, 45). 
However, we have reported that when fully differentiated in vitro, 
osteoclasts lose the ability to release inflammatory cytokines (46), 
thus indicating a diminished role for osteoclasts in recruiting and 
potentiating implant debris-induced inflammation and perhaps 
osteolysis as well.

Osteoblasts
Osteoblasts have shown the potential when stimulated in  vitro 
by wear particles to produce osteoclastogenesis factors RANKL 
and M-CSF and cytokines such as IL-6 and IL-8 as well as VEGF. 
These in  vitro investigations also demonstrated debris-induced 
decreased de novo synthesis of type 1 collagen as well as increased 
expression of matrix metalloproteinase 1 (MMP-1) (47–50). The 
caveat here is the important limitation “in vitro studies” and thus 
the degree to which osteoblasts are able to transduce implant 
debris stimuli into an inflammatory or functional effects is less 
well established in vivo.

Soft Tissue Responses
Fibroblasts
Soft tissue cells such as fibroblasts are also actively involved 
in osteoclastogenesis and bone resorption (51, 52). The most 
prominent fibroblasts responses to implant wear debris were 
MMP-1, MCP-1, IL-1β, IL-6, IL-8, cyclooxygenase 1 (cox-1), 
cox-2, leukemia inhibitory factor, transforming growth factor 
beta 1, and TGFβ receptor type I. Additionally, downregulation 
of bone maintenance regulator such as osteoprotegrin (OPG) has 
been reported to decrease in osteoblasts/soft tissue cells exposed 
to implant debris and may contribute to regulatory RANKL/OPG 
imbalance in bone homeostasis contributing to the pathogenesis 
of implant debris-associated aseptic loosening/bone loss (53).

Toxicity Responses
Toxicity responses are another facet of innate immune activation 
where apoptosis and hypoxia responses have been found to be 
induced by implant debris (54). While there is a plethora of 
reports by us (55–57) and others (58) implicating implant metals 
as “toxic” at high (and possibly clinically relevant) concentrations, 
there is little in terms of mechanism specificity, i.e., how implant 
metals induce this toxicity or what type of toxicity responses hap-
pen first. Additionally, confusing is the misidentification of metal 
ion-induced apoptosis rather than the more accurate pyroptosis 
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(inflammatory apoptosis) when inflammatory cytokines have 
been identified. One specific mechanism that has been identi-
fied has been that of metal-induced hypoxia-like responses 
(54). Soluble and particulate metal debris have been shown to 
induce hypoxia-like pathology resulting in HIF-1α compensa-
tory responses to metal implant debris by promoting both the 
induction of hypoxia (HIF-1α) and tissue angiogenesis (VEGF) 
providing a specific mechanism, which explains why local soft 
tissue growths (fibro-pseudotumors) and apoptosis responses 
can form in some people with certain orthopedic implants 
(54). The induction of apoptosis-like responses associated with 
implant debris has also been correlated with implant debris 
in  vivo, such as caspase-3 associated with macrophages, giant 
cells, and T-lymphocytes in local tissues (capsules and interfacial 
membranes) of patients with aseptic hip implants (59). But, it is 
important not to confuse apoptosis with that of danger signaling 
and other inflammatory pathways because early studies using 
pan-caspase inhibitors (which inhibit danger signaling) errone-
ously concluded that inhibition of apoptosis by a pan-caspase 
inhibitors mitigates implant-induced inflammation osteolysis 
(60), when in fact it was the pan-caspase inhibition of inflam-
mation pathways that decreased inflammation (8, 11). The role 
of apoptosis, pyroptosis, and pyronecrosis in implant-induced 
inflammation is still unclear and controversial.

CeNTRAL CHeMOKiNeS iN iMPLANT 
DeBRiS-iNDUCeD iNFLAMMATiON

Chemokine expression by macrophages, fibroblasts, and osteo-
blasts exposed to implant debris is also a central innate immune 
effector reaction to implant debris enhancing migration to and 
inhibiting migration away from the site of implant debris (23, 
61). The roles of chemokines relevant to the context of orthopedic 
implant debris include pro-inflammatory cytokine production, 
pyroptosis, apoptosis, angiogenesis, and collagen production, 
which act together to product aseptic bone resorption around 
implants. However, mostly macrophages and MSCs have been 
implicated as the major source of this chemokine in periprosthetic 
tissues induced by different types of wear particles like titanium, 
CoCr, and UMHWPE (62, 63). This migration of macrophages 
and osteoclasts to the sites around implants leads to accelerated 
osteolysis (64). The chemokines, particular to implant aseptic 
loosening pathology, include IL-8, MCP-1 MIP-1α, CCL17/thy-
mus and activation-regulated chemokine (TARC), and CCL22/
monocyte-derived chemokine (MDC) (64), which have been 
identified in peri-implant tissues and associated with implant 
debris reactivity (65–67).

iL-8
IL-8, a CXC chemokine, is released by peri-implant cells such as 
macrophages, epithelial cells, MSCs, mast cells, and endothelial 
cells. It has been well established as present in periprosthetic tis-
sues with implant debris and has been put forward as a biomarker 
of peri-implant osteolysis (47, 68, 69). Surprisingly, implant 
debris can induce the production of IL-8 by human osteoblasts 
(47, 70, 71). However, the main effector cells producing IL-8 are 
human macrophages that have migrated to the site of implant 

debris-induced inflammation (63). IL-8 attracts activated 
macrophages and neutrophils (PMNs) and which together with 
osteoclasts act to over ride the balance of bone homeostasis 
resulting in bone loss over time. However, the degree to which 
IL-8-dependent neutrophil attraction and activation affects 
implant–bone integrity over time is not clear. This may be due to 
the difficulty in modeling this system in vitro.

Monocyte Chemotactic Protein-1
Increased expression of chemokines MCP-1 (CCL2), MIP1a 
(CCL3), and MIP 1α (CCL4) was observed in local tissues around 
failed arthroplasties and also produced by macrophages in cell 
culture after exposure to different types of wear particles (72). 
In contrast to MIP1α, an increased release of MCP-1 was also 
observed from fibroblasts after exposure to titanium and PMMA 
particles (73). MCP-1 (CCL2) potently chemoattracts monocytes 
but can also recruit macrophages, natural killer cells (NK cells), 
and T cells through the CCR2 or CCR4 receptors (74, 75). MCP-1 is 
produced by fibroblasts, osteoblasts, monocytes, and macrophages 
(74, 75). Thus as expected, implant debris can induce the produc-
tion of MCP-1 in human fibroblasts, osteoblasts, monocytes, and 
macrophages together recruiting innate immune reactivity [i.e., 
monocytes and macrophages; (72, 73)]. MCP-1 has been found 
in peri-implant tissues of failed total joint implants, highlighting 
the potential of MCP-1 as potential biomarker of inflammation 
and osteolysis (72, 76). Implant debris particles such as PMMA 
or UHMWPE particles increased MCP-1 expression in RAW 
264.7 macrophage cells (77, 78) where supernatant from particle-
challenged macrophages caused THP-1 macrophages to migrate 
and was neutralized with the addition of antibody to MCP-1 (77, 
78). While there has been some controversy as to whether block-
ing MCP-1/CCR2 interaction is effective at blocking macrophage 
recruitment in vitro (78), in vivo studies have shown that injected 
MCP-1 in a murine femoral implant model resulted in exogenous 
macrophage recruitment (RAW 264.7 cells) to the site of injection 
when challenge with of UHMWPE particles and that inhibiting 
the interaction of MCP-1/CCR2 decreased macrophage migra-
tion (22). However, while the use of injected CCR2-deficient 
macrophages resulted in less recruitment to the site of particle 
and MCP-1 challenge, there was still recruitment, demonstrat-
ing the pleiotropic nature of other CCRs and chemokines (79). 
However, the role of MCP-1 may be more complex. Kim et al. 
reported blocking MCP-1-induced formation of TRAP(+)/
CTR(+) multinuclear cells was critical to blocking bone resorp-
tion (80). These findings show that MCP-1 is a potent chemokine 
involved in the complex pathology of osteolysis. However, there 
is a lack of in vivo (human or animal) data to indicate that inter-
ruption of a single, albeit potent, chemokine receptor interaction 
(MCP-1/CCR2) will reverse or prevent particle-induced inflam-
mation (that is danger signal based) and prevent any resulting 
osteolysis (without significant negative consequences) given the 
multitude of other powerful inflammatory cytokines involved in 
this process and detailed in the following sections.

MiP-1
Other chemokines such as MIP-1 have a less clear role in implant 
debris-induced inflammation. MIP-1 (MIP-1α CCL3 and 
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MIP1β CCL4) is produced by a variety of peri-implant cell types 
including adaptive (lymphocytes) and innate (monocytes and 
macrophages), and tissue (fibroblasts and epithelial) cells (81). 
MIP-1α is likely central feature of adaptive immune responses 
(T-cells and B-cells) to implant debris; but to date, little evidence 
has shown that MIP-1 is central to adaptive (DTH) type immune 
responses observed in peri-implant tissues with elevated metal 
debris (33, 35, 82). However, monocytes, neutrophils, dendritic 
cells, and NK cells are also effected by MIP-1, to foster adap-
tive immune responses (83, 84). In vitro, metal (titanium) and 
polymeric (PMMA) implant wear debris was found to increase 
the production of MIP-1α by primary human monocytes/mac-
rophages, resulting in increased monocyte migration. Countering 
MIP-1 with a MIP-1 antibody decreased this migratory effect 
(72). However, these findings have been challenged by others 
where RAW 264.7 cells failed to produce increased amounts 
of MIP-1α when challenged with wear particles. Moreover, 
a neutralizing antibody to MIP-1α failed to inhibit the migra-
tion of THP-1 macrophages in culture challenged with implant 
debris particles (78). A lack of response was also found for MSCs 
during MIP-1/wear debris induction. Huang et  al. found that 
using a neutralizing antibody to CCR1 (one of the receptors for 
MIP-1α) failed to affect the migration of MSCs challenged with 
implant debris particles in vitro. However, the actions of CCR1 
involve many ligands (e.g., MIP-1α, MCP-3, and RANTES), and 
others have found that neutralizing the actions of CCR1 in the 
presence of particles challenge does indeed lead to a decrease of 
MSC migration and differentiation into osteoblasts (22). Thus, 
currently, there is insufficient evidence to indicating a central role 
for MIP-1α in pathology of implant debris-induced inflammation 
and osteolysis.

CCL17 and CCL22
CCL17/TARC, CCL20/MIP-3alpha, and CCL22/MDC both 
interact with the chemokine receptor CCR4 and are important 
chemokines for adaptive immune responses (85). They are 
known to be mainly produced by cell lineages closely related 
to osteoclasts such as dendritic cells and are examples of 
chemokines that are produced in secondary lymphoid organs 
and in peripheral tissues (86). CCL22 and CCL17 are produced 
by macrophages, dendritic cells, and endothelial cells and act as 
adaptive immune chemokines affecting TH2 population, and are 
associated with allergy and dermal hypersensitivity to haptens 
when produced by keratinocytes and langerhans cells (39). These 
CCL17 and CCL22 chemokines have also been shown induced 
by the exposure of metal implant debris (e.g., titanium particles) 
on bone cells (osteoclasts and osteoblasts) (87). In addition, the 
receptors for these chemokines CCR4 were shown increased in 
macrophage-like osteoclasts precursor cells (87). Moreover, the 
expression of CCR4 was upregulated when osteoclast precursors 
were stimulated with titanium particles (87).

Central chemokines to implant debris-induced inflammation 
and bone loss and their effects are summarized in Figure 3. Given 
the complexity of multiple receptors and chemokines involved, 
further study is required to understand the central mediators 
involved in the in the migration of MSCs sites of peri-implant 
inflammation.

CONCLUSiON

Implant debris-induced chemokine expression and the inter-
play between resulting chemokine and cytokine expression 
are incompletely characterized and currently limited to a basic 

FiGURe 3 | Orthopedic implant debris act on a number of different cells around implants inducing the release of chemokines. Different types of 
immune cells are recruited by different chemokines. However, there is crossover between the receptors associated with different ligand/chemokines. This schematic 
highlights the complexity associated with understanding, which key chemokines are best targeted for mitigating implant debris-induced inflammation (88–95).
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