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ABSTRACT 

Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitu-

tions on the protein’s stability and folding or aggregation kinetics. These properties can, in turn, be 

modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 

(HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning 

the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. 

Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible 

explanation for this observation is that the consequent upregulation of proteostasis factors could bio-

physically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the im-

pacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncopro-

tein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 acti-

vation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the 

small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that 

activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This ef-

fect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino 

acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that 

chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially support-

ing the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with 

providing the first experimental and quantitative insights into how HSF1 influences oncoprotein muta-

tional spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of 

mutations that drive chemotherapeutic resistance and metastasis.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.01.621414doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621414
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

INTRODUCTION 

Cancers typically arise by multi-step acquisition of genetic alterations that dysregulate cell 

growth and survival programs, leading to malignant phenotypes that promote and sustain prototypical 

hallmarks of cancer1-3. In addition to mutated genes, cancer cells also co-opt non-mutated genes within 

stress pathways to aid cell growth, in a process known as non-oncogene addiction4, 5. Particularly note-

worthy in this regard, pathways associated with regulation of proteostasis are upregulated in cancer, 

likely owing to challenges arising from dysregulated protein synthesis, nutrient starvation, subunit im-

balance within protein complexes resulting from aneuploidy, and, perhaps, expression of oncoproteins 

with destabilizing amino acid substitutions6-12.  

Among the most frequently upregulated proteostasis stress pathways in cancer is the heat 

shock response (HSR), which is controlled by the master transcription factor HSF113, 14 — a transcrip-

tion factor that can also modulate additional cell remodeling programs in tumors15-17. Constitutive over-

expression of heat shock proteins regulated by HSF1 is widely observed in malignant cells6, 14, 18, as are 

overexpression and constitutive activity of HSF1 itself14-16, 19, 20. Notably, HSF1 supports the emergence 

of tumors in mice following exposure to mutagens, and high levels of HSF1 expression are associated 

with increased mortality rates in breast cancer19, 21, 22. Additionally, HSF1 and the HSF1-regulated chap-

erone heat shock protein 90 (HSP90) facilitate the emergence of resistance to chemotherapeutic 

agents, although molecular-level mechanisms of this effect are currently unclear23-25. In sum, much at-

tention has been drawn not just to HSP9026-29 but also to HSF1 as a potential chemotherapeutic target, 

motivating the development of potent small molecules that target HSR components either specifically 

through inhibition of individual chaperones or broadly through targeting HSF1 itself30-33. 

Successful emergence of gain-of-function mutations in all proteins34, including gain-of-function 

in oncoproteins that play critical roles in tumor progression and disease maintenance, is constrained by 

the biophysical properties of the evolving protein, particularly as most functionally important amino acid 

substitutions are non-conservative and therefore often biophysically deleterious35. One intriguing hy-

pothesis is that the proteostasis environment itself defines the accessibility of novel mutations by regu-

lating the folding and degradation of the resulting protein variants. A growing body of literature has fo-

cused on the impact of proteostasis network components, and in particular chaperones such as HSP90 

and HSP70, on protein evolution as organisms and viruses adapt34, 36-44. Among other advances, such 

studies have shown that proteostasis network remodeling mediated by stress-responsive transcription 

factors can have major impacts on the mutational space accessible to viral pathogens that parasitize 

host chaperones40-43, and that these effects are often mediated directly by the influence of proteostasis 

network composition on client protein folding and stability34, 38, 42, 45. 
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Building on these studies, one compelling possibility regarding the roles of HSF1 in cancer is 

that HSF1 overexpression may support malignancy by creating a permissive protein folding environ-

ment that directly facilitates the emergence of proliferation-promoting oncogenic mutations. Such a role 

for HSF1 in defining accessible oncogenic mutations has never been experimentally explored.  

The tumor suppressor p53 is a key transcription factor and regulator of the response to DNA-

damage and other oncogenic stimuli. When activated, p53 induces cell-cycle arrest, senescence or 

apoptosis46. p53 is the most frequently mutated gene in cancer47. Indeed, mutations in p53 occur in 

>50% of tumors48, 49. The majority of these mutations are missense mutations within p53’s DNA-binding 

domain48. While some p53 missense mutations confer a loss-of-function effect typical of tumor suppres-

sors, mutations in p53 can also function via a dominant-negative effect in which the mutated p53 allele 

encodes a protein variant that inhibits the function of residual wild-type p53 through either heterotetram-

erization via a C-terminal oligomerization domain or by inducing co-aggregation and consequent loss-

of-function50-52. Dominant-negative p53 variants can be further classified as either DNA-contact muta-

tions that impact DNA association but cause minimal structural perturbations, or conformational muta-

tions that initiate global or local unfolding of the DNA-binding domain53-56.  

p53 interacts extensively with the HSF1-regulated chaperones HSP90 and HSP70, which in turn 

regulate the stability and activity of p5357-60. Notably, while wild-type p53 interacts transiently with cyto-

solic chaperones, particularly during folding and maturation, several mutant alleles of p53 display more 

stable interactions with HSP70 and HSP90, contributing to increased mutant p53 levels61-65. Consider-

ing p53’s premier role in diverse cancers, the large number of destabilizing p53 mutations that lead to 

pro-oncogenic dominant-negative behavior, and the extensive interactions between p53 and HSF1-reg-

ulated chaperones, p53 represents a compelling model system to explore impacts of HSF1 activation 

on oncogenic evolution. 

In this study, we applied deep mutational scanning (DMS) of p53 in concert with chemical ge-

netic regulation of HSF1 to examine the impacts of proteostasis modulation on the fitness of dominant-

negative p53 variants that can drive cancer. We observed that constitutive activation of HSF1 broadly 

increases the fitness of diverse dominant-negative p53 mutations, including several mutations within 

hot-spot sites frequently associated with cancer. The impact of HSF1 activation on p53’s mutational 

spectrum was most evident in the context of non-conservative substitutions of hydrophobic amino acids 

from non-polar to polar and charged amino acids within buried regions of p53’s DNA-binding domain. 

These substitutions are also most likely to be biophysically destabilizing and folding-disruptive, con-

sistent with the notion that activation of HSF1 increases the fitness of mutations that perturb p53 stabil-

ity or folding. Altogether, these results indicate that HSF1 can directly potentiate oncogenic evolution by 
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opening access to otherwise biophysically problematic amino acid sequences. Further, they suggest 

that both HSF1 inhibition specifically and proteostasis network inhibition more broadly as a potent ther-

apeutic strategy to prevent acquisition of resistance mutations during chemotherapy.   
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RESULTS 

TP53 mutational library integrated with chemical genetic regulation of the HSR 
To assess the impacts of HSF1 on the mutational landscape of dominant-negative p53, we first 

needed to establish a system in which HSF1 activity could be robustly regulated in an appropriate cell 

line. We chose to use A549 cells as an epithelial tumor model, as they are derived from a human alveo-

lar basal cell adenocarcinoma66. Importantly, A549 cells exclusively express wild-type p53, critically en-

abling our experimental workflow67. Pharmacologic activation of HSF1 is traditionally achieved via treat-

ment with Hsp90 or Hsp70 inhibitors or toxins like arsenite68. Such approaches are not useful here, as 

they activate HSF1 indirectly by causing massive cellular protein misfolding, and ultimately drive apop-

tosis via proteostatic overload. To overcome this issue, we employed regulated expression of a consti-

tutively active HSF1 variant, termed cHSF1. Specifically, we constructed a stable, single-colony A549 

cell line in which cHSF1 expression was placed under the control of a doxycycline (dox)-responsive 

promoter69-72. In these cells, which we termed A549cHSF1 cells, treatment with dox activates expression 

of cHSF1, which then proceeds to upregulate HSR-controlled gene expression independent of protein 

misfolding stress. 

To test the activation of HSF1, we treated A549cHSF1 cells with dox or vehicle for 24 h and then 

evaluated the transcript levels of established HSF1 target genes using qPCR. In our optimized cell line, 

we observed modest upregulation of HSP40 and HSP70 transcripts during HSF1 activation as com-

pared to vehicle treatment, indicating that our cHSF1 construct was functionally modulating the HSR as 

intended (Figures 1A and 1B). Critically, we selected cells in which HSF1 induction upregulated HSR 

genes to levels that are still well within the physiologically accessible regime, a feature that is known to 

be critical to avoid off-target induction of genes not normally targeted by HSF171, 73. For example, treat-

ment with STA-909074, an HSP90 inhibitor and robust activator of endogenous HSF1 had considerably 

stronger effects than did dox treatment (Figures 1A and 1B). Moreover, a resazurin metabolic activity 

assay75 indicated that cell growth and viability were not substantially altered by dox-mediated HSF1 in-

duction (Figure S1A). 

We transduced these A549cHSF1 cells with a high-quality, lentiviral-based p53 mutational library 

in which all possible single amino acid substitutions across the p53 gene are present50, 76. We per-

formed the transduction at a very low multiplicity of infection to ensure that a single mutant p53 variant 

was expressed in each cell, alongside endogenous wild-type p53 (Figure 1C). To evaluate the diversity 

of the resulting A549cHSF1 p53 variant library, which we termed A549cHSF1(p53-Lib) cells, we harvested 

genomic DNA from the A549cHSF1(p53-Lib) cells, and then amplified the library-encoded TP53 gene us-
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ing PCR before deep-sequencing. Out of 7467 potential missense mutations generated from 19 possi-

ble amino acid substitutions at 393 sites, 7465 (99.9%) of the possible substitutions were observed with 

a read depth >10 counts per amino acid substitution (Figure S1B and Table S1). 

HSF1 activation modulates the p53 mutational landscape during nutlin-3 selection 
We next sought to apply DMS to test whether HSF1 activity alters tolerance for p53 mutations 

that promote escape from nutlin-3 selection. Our approach was to perform selections in the HSF1-en-

hanced or the basal proteostasis environment in the presence of the p53-activating agent nutlin-376. 

Nutlin-3 inhibits the interaction between p53 and mouse double minute 2 homolog (MDM2), an E3 ubiq-

uitin ligase and a negative regulator of p5377. In unstressed cells, MDM2 binds to p53 to induce ubiquiti-

nation and degradation. Binding of nutlin-3 to MDM2 releases p53 from the MDM2 complex, allowing 

p53 to accumulate and induce a transcriptional program that drives apoptosis and cell cycle arrest. 

Cells that express an introduced dominant-negative p53 variant alongside endogenous wild-type p53 

are strongly positively selected in the presence of nutlin-3, because dominant-negative p53 attenuates 

the wild-type p53-mediated activation of cell cycle arrest and thereby allows cells to continue to prolifer-

ate, even in the presence of nutlin-3 (Figure 2A). 

We treated A549cHSF1(p53-Lib) cells with nutlin-3 (or vehicle) in the context of either a basal or a 

HSF1-activated proteostasis environment, allowing the selection to proceed under these conditions 

over a 12-day period76. After selection, we followed a published protocol to deep-sequence the library-

encoded TP53 amplicons76. We next calculated the resulting changes in p53 variant frequency as the 

log2 fold-change in normalized read counts of amino acid substitutions between our various selection 

versus control conditions. The resulting mutational and site-level log2 fold-change values are available 

in Tables S2 and S3. 

We expected that nutlin-3 would be the dominant force affecting the fitness of p53 variants, as 

cells that fail to express a dominant-negative p53 variant cannot survive nutlin-3 selection. Consistent 

with this expectation, we observed a very strong and positive enrichment of missense mutations within 

the DNA-binding domain of p53, located from residues 100–300, upon nutlin-3 selection in both the ba-

sal (Figure S2A) and the HSF1-activated (Figure S2B) proteostasis environments relative to the corre-

sponding vehicle-treated (no nutlin-3) controls. Importantly, the sites enriched during this nutlin-3 selec-

tion in both the basal and HSF1-activated environments overlapped with previous selections for domi-

nant-negative p53 using saturation mutagenesis in both the A549 and AML cell lines50, 76. Moreover, the 

fitness of p53 variants identified as somatic mutations within the IARC (International Agency for Re-

search on Cancer, R20)78 database was higher as compared to TP53 mutations absent from the data-
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base, confirming that nutlin-3 was selecting for the expected, cancer-associated TP53 mutations (Fig-
ures S2C and S2D). We also observed an exceptionally high degree of correlation for the cumulative 

site log2 fold-change values between biological replicates of nutlin-3 treatment (Figure S3), further indi-

cating the very large magnitude of the selection pressure endowed by nutlin-3 treatment.  

Next, to isolate the impact of HSF1 activation on dominant-negative p53 mutational tolerance, 

we evaluated whether and how HSF1 activation affected p53 variant fitness specifically during nutlin-3 

selection. We observed a striking increase in p53 variant fitness across much of the TP53 gene during 

HSF1 activation (Figure 2B). The correlation between individual replicates, shown in Figure S4A, was 

positive and highly significant, indicating the results were reproducible. That said, while reasonable for 

a DMS experiment41-43, 79-81, the correlation was not as strong as the correlation observed for nutlin-3 

treatment versus control, an observation that is consistent with the absolute nature of nutlin-3 selection 

that leads to a very large effect size for that treatment. 

The observation that chronic HSF1 activation, which is commonly observed across diverse can-

cers13-17, 19, 20, broadly increased p53 mutational tolerance (Figure 2B) motivated us to analyze the un-

derlying effect in greater depth. We first subdivided variants by domain and examined the distribution of 

the net site log2 fold-change for mutations that encoded amino acid substitutions within each domain. In 

all functional domains examined, we observed a significant and often substantial increase in net site 

fitness (Figure 2C). One potential explanation for such a global increase in variant fitness could be 

non-specific increases in cell viability and proliferation during nutlin-3 treatment as a result of HSF1 ac-

tivation¾increases not associated with direct effects on p53 variant fitness. If such were the case, we 

would expect to see an increase for silent mutations as well as missense mutations. To address this 

possibility, we compared the fitness of missense mutations to silent mutations within each p53 domain 

(Figure 2D). Across all domains, we observed an HSF1-dependent increase in mutational fitness for 

missense mutations only. HSF1 had no meaningful impact on silent mutations. Also noteworthy, HSF1 

had minimal effects on p53 variant enrichment in the absence of nutlin-3 treatment to provide a driving 

force for p53 selection (Figure S4B). These observations strongly support the interpretation that HSF1 

activation is specifically enhancing the fitness of non-synonymous TP53 mutations, and that this phe-

nomenon is driven by direct effects of HSF1 activation on the resulting p53 variants rather than general 

effects on cell fitness. 

We next examined the impacts of HSF1 activation during nutlin-3 treatment on variant fitness 

within the p53 DNA-binding domain (Figures 3A, 3B, and S5), as the majority of known oncogenic 

TP53 mutations are localized to this region78. Moreover, the DNA-binding domain is the most robustly 

characterized region of p53, with ample high-resolution structural information available to enable more 
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detailed analyses. The p53 DNA-binding domain is composed of a core β-sandwich scaffold supporting 

a DNA-binding surface comprising two loops (Loop 2 and Loop 3) stabilized by Zn2+ coordination, as 

well as a loop-sheet-helix motif that contains Loop 182. The most dramatic consequences of HSF1 acti-

vation in this region occurred in sites 238–249 within Loop 3, as well as at sites V173 and H179 within 

Loop 2 (Figure S5). Interestingly, several cancer hot spots are localized in this region, including sites 

G245, R248, and R249, all of which displayed a net increase in fitness upon HSF1 activation (Figure 
3B). These observations indicate that HSF1 can directly support the acquisition of hot-spot mutations in 

p53 that lead to malignant transformation. 

Zn2+ coordination is critical for p53’s ability to bind DNA, and loss of Zn2+ binding is associated 

with destabilization and aggregation of p5353, 83, 84. We therefore next examined the fitness of amino 

acid substitutions within the Zn2+ coordination sites (C176 and H179 of Loop 2 and C238 and C242 of 

Loop 3; Figure 3B). As with other cancer-associated mutations, we observed that the net site fitness 

for all four coordinating residues was increased following HSF1 activation.   

Relatively fewer p53 sites displayed an overall net negative fitness upon HSF1 activation during 

nutlin-3 treatment. Interestingly, several of the few sites with net negative fitness (V172, R174, and 

T211; Figure 3B) are localized at the surface of a pocket, which interacts with the N-terminal tail of the 

DNA-binding domain. Interaction of the N-terminal tail of the DNA-binding domain with residues in this 

pocket has been shown to both increase p53 thermodynamic stability as well as decrease aggregation 

propensity85-87. A possible explanation for the decrease in fitness at these specific sites is that variants 

within this region increase the propensity for mutant p53 to co-aggregate with wild-type p53, with result-

ant dominant-negative consequences favorable in nutlin-3 selection. Such destabilization and aggrega-

tion may be attenuated in the supportive proteostasis environment created by HSF1 activation, leading 

to their relative decrease in fitness in combinatorial selection. 

HSF1 activation supports the accumulation of biophysically non-conservative amino acid sub-
stitutions within buried sites 

Prototypical oncogenic p53 amino acid substitutions can be classed into either DNA-contact var-

iants with minimal impact on thermodynamic stability or structural mutations that significantly perturb 

the stability of the DNA-binding domain53. Mutations within this second class are frequently localized to 

either the Zn2+-binding site, discussed above, or within the β-sandwich motif at the hydrophobic core of 

the DNA-binding domain. Thus, we next asked whether there was a correlation between relative sol-

vent accessibility (RSA; Table S4) and net site fitness within the p53 DNA binding domain during nutlin-

3-mediated p53 selection. Indeed, when we examined the RSA of sites during nutlin-3 selection versus 

vehicle treatment in either the basal or in the HSF1-activated proteostasis environment, we observed a 
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negative correlation between net site fitness and RSA (Figures S6A–D). This observation is consistent 

with the hypothesis that amino acid substitutions in buried regions of the p53 DNA-binding domain are 

more likely to induce a dominant-negative effect than substitutions within surface-exposed residues.  

We next asked whether enhancing the proteostasis network via HSF1 activation during nutlin-3 

selection preferentially impacted the fitness of p53 amino acid substitutions within buried regions of the 

p53 DNA-binding domain. Variants classified as buried (RSA < 0.2) did display marginally higher net 

fitness as compared to sites that were exposed (RSA > 0.2) (Figure 4A). Motivated by this intriguing 

result, we clustered variants into (a) conservative amino acid substitutions, (b) non-conservative substi-

tutions from a nonpolar to a charged amino acid, and (c) non-conservative substitutions from a charged 

to a nonpolar amino acid and separated them based on whether they occurred in buried versus ex-

posed p53 sites. Then, we analyzed whether HSF1 activation impacted non-conservative substitutions 

more strongly than conservative substitutions. There was no significant effect of HSF1 activation on 

conservative or either class of non-conservative p53 substitutions in exposed regions. Strikingly, how-

ever, non-conservative substitutions replacing a non-polar amino acid with a charged or polar amino 

acid within buried p53 sites displayed substantially and significantly higher fitness upon HSF1 activation 

relative to either conservative substitutions or non-conservative substitutions from polar to non-polar 

amino acids in buried regions (Figure 4B). These results strongly support the notion that HSF1 activa-

tion is allowing p53 to more robustly access otherwise biophysically disfavored regions of its mutational 

landscape. 

HSF1 activation specifically enhances the fitness of destabilizing mutations in buried regions of 
the p53 DNA-binding domain 

Since we observed a preferential impact on variant fitness for non-conservative substitutions 

within buried p53 residues (Figure 4B), and given that non-conservative substitutions within buried re-

gions of a protein would be expected to frequently reduce protein stability, we next sought to assess 

whether HSF1 selectively enhanced the fitness of p53 variants with reduced thermodynamic stability. 

We first examined the impact of HSF1-activated versus basal proteostasis environments during nutlin-3 

selection on 42 missense mutations in the p53 DNA-binding domain for which thermodynamic stability 

has been experimentally determined53, 88-90. We grouped the variants into those that were neutral or sta-

bilizing (ΔΔG < 0.5 kcal/mol) or those that were destabilizing (ΔΔG > 0.5 kcal/mol). We observed a sug-

gestive, but not statistically significant, increase in fitness for mutations that were thermodynamically 

destabilizing as compared to neutral or stabilizing mutations (Figure 5A).  

As only a very limited number of p53 DNA-binding domain variants have experimentally deter-

mined thermodynamic stability measurements, we next sought to use Rosetta to estimate the change in 
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thermodynamic stability for all possible amino acid substitutions within the DNA-binding domain91. To 

assess the accuracy of the calculated ΔΔG values, we first compared the computed to the experimen-

tally determined ΔΔG values for the aforementioned 42 amino acid substitutions. We observed strong 

correlation between the two approaches (Figure S7A). With the computational approach validated, we 

next examined whether p53 variants enriched during nutlin-3 selection were associated with a decrease 

in estimated stability (Table S5). We observed that amino acid substitutions with a greater estimated 

ΔΔG were associated with higher fitness during nutlin-3 selection in both the basal and HSF1-activated 

proteostasis environments, independently of whether mutations were located within buried or exposed 

sites (Figures S7B and C).  

We next assessed whether HSF1 activation preferentially impacted thermodynamically destabi-

lizing amino acid substitutions in the p53 DNA-binding domain. First, we binned variants into those 

where HSF1 activation either increased or decreased fitness during nutlin-3 selection to evaluate 

whether there was a difference in estimated thermodynamic stability between the two groups. Strik-

ingly, in buried p53 regions we observed that substitutions whose fitness was enhanced by HSF1 acti-

vation were more likely to display a higher estimated ΔΔG than variants that displayed decreased fit-

ness (Figure 5B). In contrast, no significant difference in the effect of HSF1 activation on destabilized 

versus stabilized variants was observed for exposed sites in p53 (Figure 5B). Consistent with this ob-

servation, there was an overall positive and significant correlation between variant fitness during HSF1 

activation and estimated ΔΔG for buried sites, whereas exposed p53 sites displayed a slight negative 

correlation (Figures 5C and D).  

Since we had previously observed that HSF1 particularly enhanced the fitness of non-conserva-

tive nonpolar-to-polar and charged substitutions in those same regions (Figure 4B), we next asked 

whether we observed a similar effect using this thermodynamic stability approach. Indeed, we observed 

that substitutions from non-polar to polar charged amino acids in buried regions had by far the greatest 

impact on estimated stability in buried regions (Figure 5E), correlating with the trend we observed 

when examining the variant fitness effects of HSF1 activation (Figure 4B). Taken together, these ob-

servations indicate that non-conservative substitutions in buried regions of the p53 DNA-binding do-

main are destabilizing and are therefore likely impacted by HSF1 activation during nutlin-3 selection 

owing to their impacts on protein structure and stability. In particular, HSF1 activation directly and pref-

erentially increases the fitness of these same non-conservative and destabilizing substitutions.  
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HSF1 transcriptional targets overlap with the p53 interactome 
We next asked why HSF1 activation preferentially increased the fitness of thermodynamically 

destabilizing p53 substitutions in the context of nutlin-3 selection. One likely possibility is that HSF1 ac-

tivation is driving the upregulation of p53 binding partners, particularly those involved in p53 proteosta-

sis. We first assessed exactly how HSF1 activation remodeled the proteostasis network by identifying 

differentially impacted transcriptional pathways. We treated A549cHSF1 cells with dox for 24 h and quan-

tified differentially transcribed genes using RNA-seq. 159 transcripts were significantly differentially ex-

pressed with >1.5 fold-change upon HSF1 activation as compared to the vehicle-treated control, high-

lighting that HSF1 activation was not massively perturbing the global transcriptome (Table S6). As ex-

pected, known components of the HSR, including HSP90 and HSP70, were highly enriched among the 

upregulated transcripts (Figure 6). Further, gene set enrichment analysis using the MSigDB c5 collec-

tion92 confirmed that genes related to the HSR were highly enriched following activation of HSF1 (Table 
S7). Notably, known p53-induced genes were not substantially impacted by HSF1 activation. 

We next asked to what extent HSF1-upregulated transcripts might directly alter p53 proteosta-

sis. To address this issue, we identified the subset of HSF1-induced transcripts that are known to inter-

act with p53. Of the 159 transcripts that were significantly upregulated by HSF1 activation, 22 (13.8%) 

encode proteins classified by the APID (Agile Protein Interaction DataAnalyzer) database as interacting 

with p53 (Figure 6 and Table S8)93. Included within these p53-interacting proteins, 17 are either chap-

erones or co-chaperones, including the well-validated and HSF1-regulated p53 chaperones HSP90 and 

HSP70. These observations are consistent with the notion that the mechanism by which HSF1 in-

creased the fitness of nutlin-3-selected p53 variants is via modulating the folding or aggregation of mu-

tant p53 through direct interaction with HSF1-modulated chaperones that engage p53.  
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DISCUSSION 

Our findings provide the first evidence that HSF1 increases the fitness of p53 dominant-negative 

variants that can drive cancer, and specifically enhances access to mutations that can escape the 

chemotherapeutic agent nutlin-3. Moreover, our analyses of the structured DNA-binding domain show 

that the p53 mutational fitness-enhancing impact of HSF1 activation is strongly biased towards support-

ing the emergence of thermodynamically destabilizing substitutions located within buried protein re-

gions. In particular, HSF1 upregulation improves the fitness of non-conservative substitutions in which 

buried non-polar amino acids are replaced by polar or charged amino acids. These findings are con-

sistent with the notion that HSF1 activation enhances the cellular stability of these otherwise unstable 

p53 variants. Finally, RNA-seq analysis shows that HSF1-activated genes are enriched in p53-interact-

ing chaperones, consistent with the notion that HSF1 directly impacts the fitness of p53 variants 

through modulation of folding, aggregation, degradation, or stability of mutant p53 via these HSF1-regu-

lated chaperones. 

Amino acid substitutions within p53 that induce mild structural defects within the DNA-binding 

domain are likely to function through tetramerization with wild-type p53, in which case the presence of 

one or more non-functional p53 subunits reduces the ability of the overall complex to bind to DNA and 

induce transcription51, 94, 95. Therefore, for p53 to retain a dominant-negative function, it is likely that the 

impact of HSF1 is not to induce a wild-type conformation for mutant p53, but rather to facilitate the cel-

lular stability of a non-native or even potentially aggregation-inducing conformation. Within tumors, mu-

tant p53 is often found to have elevated expression and increased stability in comparison to wild-type 

p5353-55, 96, 97. p53 stabilization has been attributed in part to an increase in half-life following the associ-

ation of mutant p53 with the cytosolic chaperones HSP90 and HSP7057, 63-65, 98, 99. Given that HSF1 acti-

vation upregulates numerous p53-interacting chaperones, including HSP90 and HSP70 themselves, 

our data are consistent with a mechanism in which increased expression of HSF1-regulated chaper-

ones enhances the fitness of dominant-negative p53 variants by prolonging their half-life in the cell. Al-

ternatively, interaction with HSP70 is known to increase the aggregation of, for example, the dominant-

negative R175H p53 variant, suggesting that HSF1 activation may also, in some cases, enhance the 

formation of mutant and wild-type p53 co-aggregates62, 100. 

It is noteworthy that HSF1 itself may be modulated by p53. Previous work suggests that wild-

type versus some p53 variants have opposing influences on HSF1 signaling. Residual wild-type p53 in 

heterozygous mutant p53 tumor systems is capable of partial suppression of HSF1 activity, thereby ne-

cessitating loss of p53 heterozygosity in order to fully stabilize mutant p53 expression101. From the 

other direction, some p53 variants may themselves increase HSF1 activity through stimulating MAPK 
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signaling pathways102. Our data are consistent with the notion that HSF1 over-activation may overcome 

wild-type p53 suppression to restore the dominant-negative function of mutant p53, potentially amplify-

ing the feed-forward circuit of HSF1 activation and continued oncogenic p53 stabilization. In this regard, 

it would be interesting to perform a mutational scanning experiment using HSF1 variants expressed 

from the endogenous locus, which is made possible using PRIME editing103. 

The work presented here is, to our knowledge, the first evidence indicating that HSF1 can di-

rectly shape the mutational space accessible for malignant transformation. These results have several 

interesting implications. While the literature has clearly highlighted HSF1 activation as an oncogenic 

helper8, 104, 105, it is yet unclear whether the commonly observed increase in HSF1 expression and activ-

ity occurs prior to the onset of tumorigenesis, or whether constitutive HSF1 activation is a consequence 

of proteome instability arising from accumulated mutations and genomic damage. Our results suggest 

that activation of HSF1 may facilitate early tumorigenic events by increasing the fitness of oncogenic 

driver mutations. Secondly, resistance to chemo-therapeutic agents is frequently driven by mutations 

within the targeted proteins. While both HSF1 upregulation as well as downstream chaperones have 

been identified as facilitators of chemo-resistance, the mechanism has primarily been associated with 

alterations in metabolic or autophagy pathways23, 24, 106-109. Our results indicate that HSF1 activity may 

also greatly facilitate chemo-resistance by tuning the accessibility of resistance mutations. Given the 

recent therapeutic interest in inhibitors of both HSF1 itself and HSF1-regulated chaperones such as 

HSP90 and HSP7030-32, 70, these results suggest that such inhibitors may be particularly effective in 

combination therapy to prolong effective outcomes by reducing the emergence of resistant tumor popu-

lations. The capacity of HSF1 or other types of proteostasis network upregulation to tune the stability, 

folding, and/or aggregation of oncoproteins could have tremendous implications for cancer immunother-

apy. Variants with enhanced stability may not be able to be degraded, and thus unable to be efficiently 

presented to the immune system by MHC-1 proteins. Thus, in accordance with our findings and pub-

lished work in this field, we reason that downregulation of proteostasis networks may enable a more 

robust immune response to tumor presenting antigens110. Further, we emphasize that the impacts of 

proteostasis network modulation on oncoprotein mutational spectra are likely to extend far beyond just 

p53. In sum, these findings should catalyze further essential work to more fully understand how HSF1 

shapes the mutational spectra of additional oncoproteins and chemotherapy targets, and the potential 

of HSF1 itself as a chemotherapeutic target. 
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Materials and Methods 

Cell culture. A549 cells were a kind gift from the Prof. William Hahn Lab at Harvard Medical School. 

Cells were grown in DMEM medium (Corning), supplemented with 10% heat-inactivated fetal bovine 

serum (FBS, Cellgro) and 1% penicillin/streptomycin/glutamine (Cellgro) at 37 °C with 5% CO2(g).  

Plasmids. To create stable A549cHSF1 cell lines, cHSF170 was cloned into the pINDUCER20 lentiviral 

vector (AddGene #44012) using Gateway cloning. pINDUCER20 expresses both a gene of interest un-

der a tetracycline responsive TRE2 promoter as well as a tetracycline activator (rtTA3) under a consti-

tutive promoter, enabling inducible regulation of a gene of interest following a single lentiviral transduc-

tion. The TP53 library was expressed in a modified lentiviral pMT_BRD025 vector (AddGene 

#113569)76. 

Lentivirus production. LentiX cells (Takara Bio), cultured as described above, were co-transfected 

with the structural plasmids necessary for virus production (psPAX2 and pMDM2.G from AddGene) 

along with the lentiviral vectors for either pINDUCER20.cHSF1 or the TP53 mutational library. Cells 

were transfected using TransIT-Lenti (Mirus) for 24 h, after which the media was removed and replaced 

with fresh media. Media containing viral particles was collected at 48 h and cell debris was removed by 

centrifugation at 500 × g for 10 min. Viral supernatant was then aliquoted and stored at –80 °C until 

use. To measure the titer of the TP53 library lentivirus, A549 cells were infected with serially diluted vi-

rus in 96-well plates. The infected cells were then selected in puromycin (Gibco) for 48 h and surviving 

cells were quantified using resazurin (Sigma).  

Resazurin lentiviral titer assay. A549cHSF1 cells were seeded in 96-well plates (Corning) at a density 

of 3 × 105 cells/well in DMEM medium. The following day media was removed and replaced with viral 

media containing polybrene at a final concentration of 8 μ/mL. After a 96-h incubation, media was re-

moved and replaced with 100 μL of DMEM containing 0.01 mg/mL resazurin sodium salt (Sigma). After 

2 h of incubation, resorufin fluorescence (excitation 530 nm; emission 590 nm) was quantified using a 

Take-3 plate reader (BioTeK). Experiments were conducted in biological triplicate. Viral titer in trans-

ducing units per mL (TU/mL) was calculated as: [(number of cells plated) x (fraction of surviving cells)] / 

(volume of virus). The average of the calculated TU/mL over the linear range of the assay was used for 

subsequent calculation of appropriate multiplicity of infection. 

Stable cell line engineering. For the construction of A549cHSF1 cells, A549 cells were transduced with 

lentivirus co-encoding a G418-resistance gene and rtTA3 alongside cHSF1 in the presence of 2 μg/mL 

polybrene (Sigma-Aldrich). Heterostable cell lines were then selected using 1 mg/mL G418 (Enzo Life 

Sciences). Clonal populations were screened based on functional testing of the cHSF1 construct using 
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real-time polymerase chain reaction (RT-PCR; described below) with or without 1 μg/mL dox (Alfa Ae-

sar).  

Resazurin viability assay. A549cHSF1 cells were seeded in 96-well plates (Corning) at a density of 3 × 

105 cells/well in DMEM medium and then treated with 0.1% DMSO, 1 μg/mL dox, 2.5 μM nutlin-3 (Cay-

man Chemical Company), or 1 μg/mL dox and 2.5 μM nutlin-3. 48 h post-treatment, media was re-

moved and replaced with 100 μL of DMEM containing 0.01 mg/mL resazurin sodium salt (Sigma). After 

2 h of incubation, resorufin fluorescence (excitation 530 nm; emission 590 nm) was quantified using a 

Take-3 plate reader (BioTeK). Experiments were conducted in biological triplicate. 

RT-PCR. A549cHSF1 cells were treated with 1 μg/mL dox for 24 h for assessment of cHSF1 construct 

function, while a 6 h treatment with 500 nM STA-9090 (MedChem Express) was used as a positive con-

trol for HSR activation. RNA was extracted using the EZNA Total RNA Kit I (Omega). qRT-PCR reac-

tions were performed on cDNA prepared from 1000 ng of total cellular RNA using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems). The Fast Start Universal SYBR Green Master 

Mix (Roche) and appropriate primers purchased Sigma were used for amplifications (6 min at 95 °C 

then 45 cycles of 10 s at 95 °C, 30 s at 60 °C) in a Light Cycler 480 II Real-Time PCR machine. The 

primers used for DNAJB1 were 5′-TGTGTGGCTGCACAGTGAAC-3′ (forward) and 5′-AC-

GTTTCTCGGGTGTTTTGG-3′ (reverse), primers for HSPA1A were 5′-GGAGGCGGAGAAGTACA-3′ 

(forward) and 5′- GCTGATGATGGGGTTACA-3′ (reverse), primers for HSP90AA1 were 5′-GA-

TAAACCCTGACCATTCC -3′ (forward) and 5′-AAGACAGGAGCGCAGTTTCATAAA-3′ (reverse) and 

primers for RPLP2 were 5′-CCATTCAGCTCACTGATAACCTTG-3′ (forward) and 5′-CGTCGCCTCC-

TACCTGCT-3′ (reverse). Transcripts were normalized to the housekeeping genes RPLP2. All measure-

ments were performed in technical triplicate. Data were analyzed using the LightCycler® 480 Software, 

Version 1.5 (Roche) and data are reported as the mean ±95% confidence intervals. 

RNA-Seq. A549cHSF1 cells were seeded at 7.5 x 104 cells/well in a 12-well plate in DMEM media. Cells 

were then treated with either 0.01 % DMSO or 1 μg/mL dox for 24 h. Cellular RNA was harvested using 

the RNeasy Plus Mini Kit with QIAshredder homogenization columns (Qiagen). RNA samples were 

quantified using an Advanced Analytical Fragment Analyzer. The initial steps were performed on a 

Tecan EVO150.10 ng of total RNA was used for library preparation. 3’DGE-custom primers 3V6NEXT-

bmc#1-24 were added to a final concentration of 1 μM. (5'-/5Biosg/ACACTCTTTCCCTACACGAC-

GCTCTTCCGATCT [BC6]N10T30VN-3' where 5Biosg = 5’ biotin, [BC6] = 6bp barcode specific to each 

sample/well, N10 = Unique Molecular Identifiers, Integrated DNA technologies) were used to generate 

two subpools of 24 samples each111, 112. After addition of the oligonucleotides, Maxima H Minus RT was 

added per the manufacturer’s recommendations with the template-switching oligo 5V6NEXT (10 μM, 
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[5V6NEXT : 5’-iCiGiCACACTCTTTCCCTACACGACGCrGrGrG-3’ where iC: iso-dC, iG: iso-dG, rG: 

RNA G ]), followed by incubation at 42 °C for 90 min and inactivation at 80 °C for 10 min. Following the 

template switching reaction, cDNA from 24 wells containing unique well identifiers were pooled together 

and cleaned using RNA Ampure beads at 1.0×. cDNA was eluted with 17 μL of water followed by di-

gestion with Exonuclease I at 37 °C for 30 min, and inactivation at 80 °C for 20 min. Second strand syn-

thesis and PCR amplification was done by adding the Advantage 2 Polymerase Mix (Clontech) and the 

SINGV6 primer (10 pM, Integrated DNA Technologies 5’-/5Biosg/ACACTCTTTCCCTACACGACGC-3’) 

directly to half of the exonuclease reaction volume. Eight cycles of PCR were performed, followed by 

clean-up using regular SPRI beads at 0.6×, and elution with 20 μL of Resuspension Buffer (Illumina). 

Successful amplification of cDNA was confirmed using the Fragment Analyzer. Illumina libraries were 

then produced using Nextera FLEX tagmentation substituting P5NEXTPT5-bmc primer (25 μM, Inte-

grated DNA Technologies, (5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC-

GCTCTTCCG*A*T*C*T*-3’ where * = phosphorothioate bonds) in place of the normal N500 primer.  Fi-

nal libraries were cleaned using SPRI beads at 0.7× and quantified using the Fragment Analyzer and 

qPCR before being loaded for paired-end sequencing using the Illumina NextSeq500 in paired-end 

mode (26/50 nt reads). 

Analyses were performed using previously described tools and methods113. Reads were aligned 

against hg19 (Feb., 2009) using bwa mem v. 0.7.12-r1039 [RRID:SCR_010910] with flags –t 16 –f, and 

mapping rates, fraction of multiply-mapping reads, number of unique 20-mers at the 5´ end of the 

reads, insert size distributions, and fraction of ribosomal RNAs were calculated using bedtools v. 2.25.0 

[RRID:SCR_006646]114. In addition, each resulting bam file was randomly down-sampled to a million 

reads, which were aligned against hg19, and read density across genomic features were estimated for 

RNA-Seq-specific quality control metrics. For mapping and quantitation, reads were scored against 

GRCh38/ENSEMBL 101 annotation using Salmon v.1.3 with flags quant -p 8 -l ISR –validate-

Mappings115. The resulting quant.sf files were imported into the R statistical environment using the txim-

port library (tximport function, option “salmon”), and gene-level counts and transcript per-milllion (TPM) 

estimates were calculated for protein-coding genes. Samples were clustered based on genes with aver-

age log2 TPM >0.1 across all samples (n=6320 genes) based on complete linkage clustering of the Co-

sine correlation among samples. Samples with similarity score <0.94, which were clear outliers from the 

rest, were excluded from further analysis (n=5). 

Differential expression was also analyzed in the R statistical environment (R v.3.5.1) using Bio-

conductor’s DESeq2 package on the protein-coding genes only [RRID:SCR_000154]116.  Dataset pa-

rameters were estimated using the estimateSizeFactors(), and estimateDispersions() functions; read 
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counts across conditions were modeled based on a negative binomial distribution, and a Wald test was 

used to test for differential expression (nbinomWaldtest(), all packaged into the DESeq() function), us-

ing the treatment type as a contrast. Shrunken log2 fold-changes were calculated using the lfcShrink 

function, based on a normal shrinkage estimator116. Fold-changes and p-values were reported for each 

protein-coding gene. Upregulation was defined as a change in expression level >1.5-fold relative to the 

basal environment with a non-adjusted p-value < 10−5. Gene ontology analyses were performed using 

the online DAVID server, according to tools and methods presented by Huang and co-workers113.  

Gene set enrichment analysis (GSEA). Differential expression results from DESeq2 were retrieved, 

and the “stat” column was used to pre-rank genes for GSEA analysis. These “stat” values reflect the 

Wald’s test performed on read counts as modeled by DESeq2 using the negative binomial distribution. 

Genes that were not expressed were excluded from the analysis. GSEA (linux desktop version, v4.1)117, 

118 was run in the pre-ranked mode against MSigDB 7.4 C5 (Gene Ontology) set, and ENSEMBL IDs 

were collapsed to gene symbols using the Human_ENSEMBL_Gene_ID_MSigDB.v7.4.chip (resulting 

in 12706 unique genes for par and 12141 for sg4, respectively). In addition, a weighted scoring 

scheme, meandiv normalization, and cutoffs on MSigDB signatures sizes (between 5 and 2000 genes, 

resulting in 8496 gene sets retained) were applied and 5000 permutations were run for p-value estima-

tion. 

Generating A549cHSF1(p53-Lib) cells. A549cHSF1 cells were infected with titered p53 library lentivirus at 

a multiplicity of infection of 0.25 (4 × 107 cells mixed with 1 × 107 lentiviral particles) in the presence of 8 

μg/mL polybrene. Following transduction, cells were selected with 2 μg/mL puromycin (Gibco).  

Deep mutational scanning. A549cHSF1(p53-Lib) cells were seeded in 15 cm tissue culture plates at a 

density of 3 × 106 cells/plate. In order to maintain library diversity throughout selection, three plates 

were used per treatment for a total of 9 × 106 cells. Cells were treated with 0.01% DMSO, 1 μg/mL dox, 

0.01% DMSO and 2.5 μM nutlin-3, or 1 μg/mL dox and 2.5 μM nutlin-3. Cells were trypsinized, counted, 

and re-seeded in three plates each at 3 × 106 cells/plate every 3 d. Following 12 d of treatment, cell pel-

lets were harvested by centrifugation at 1,000 rpm for 5 min. Aliquots of 9 × 106 cells were snap-frozen 

in liquid N2(g) in Eppendorf tubes and stored at –80 °C for subsequent DNA extraction. The deep muta-

tional scanning experiment was repeated independently for a total of three biological replicates from the 

same p53-Lib cell line. 

To prepare samples for Illumina sequencing, genomic DNA was purified from aliquots of frozen 

cells using the QIAamp Blood Midi Kit (Qiagen) and final DNA concentration was determined using a 

Qubit (Fischer). PCR amplicons of p53 were prepared using 2.0 μg of genomic DNA over 25 cycles and 
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with Herculase II as the DNA polymerase (Agilent). The primers used were 5' ATTCTCCTTGGAATTT-

GCCCTT 3' and 5' CATAGCGTAAAAGGAGCAACA 3'. Twelve PCR reactions were performed per 

sample, and the reactions were pooled and cleaned up using a PCR clean-up kit (Omega). The p53 

amplicons were further gel-purified using a Pippin prep system (Sage Science) prior to library prepara-

tion via Nextera Flex. The resulting libraries were quantified using the Fragment Analyzer before they 

were pooled and sequenced on an Illumina NovaSeq with 2 × 150 bp paired-end reads.  

Deep mutational scanning data analysis. The software ORFCall v1.0 [https://github.com/broadinsti-

tute/ORFCall/releases/tag/v1.0 ] was used with flags -p -Q 30 to align the deep-sequencing reads 

against the TP53 wild-type sequence and count the number of times each codon mutation was ob-

served in each selection condition. The mutational fold-change for each variant was calculated by nor-

malizing raw read counts to the total read count at each position. Mutational fitness in each condition 

was determined by averaging the log2 fold-change in selection versus mock conditions from three bio-

logical replicates. RSA was calculated using the software DSSP on chain A of the p53 DNA-binding do-

main crystal structure (PDBID 2OCJ)119, 120. DSSP calculates the solvent-accessible surface area of the 

monomer (ASA) and the RSA is calculated by dividing the ASA by the total theoretical solvent accessi-

bility area121. Sites were classified as buried if the RSA was <0.2 and exposed if the RSA was >0.2.   

Rosetta analysis. The calculations for ΔΔG of protein stability upon substitution were performed using 

the cartesian_ddg application in Rosetta version 3.1391. The crystal structure of the DNA-binding do-

main of p53 (PDB ID: 2OCJ, chain A) was used as the initial structure for the ΔΔG calculations120. The 

initial p53 structure was relaxed using the Rosetta FastRelax application to generate a total of 20 re-

laxed decoys. The Rosetta FastRelax application performed five cycles of side-chain repacking and en-

ergy minimization with the Rosetta energy function ref2015_cart91, 122-124. The lowest energy structure of 

the 20 decoys was used as the wild-type structure for the cartesian_ddg calculation. In the carte-

sian_ddg calculation, the target residue was substituted with each of the 20 natural amino acids, and 

any neighboring residues within a 9-Å radius were repacked and energy-minimized using the 

ref2015_cart energy function. This calculation process was performed five times to generate five en-

ergy scores for the mutant and for the wild-type. The average wild-type scores were subtracted from 

the average mutant scores to calculate the ΔΔG values. The ΔΔG values were then scaled by a factor 

of 0.34; this scale factor was previously calculated by fitting Rosetta-predicted ΔΔG values to experi-

mental ΔΔG values in units of kcal/mol, and is used here to better relate predicted ΔΔG values to ex-

perimental values91. 
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Statistical analyses. All experiments were performed in biological triplicate. All statistical analyses cal-

culations were done in Jupyter Notebook. Site and mutational log2 fold-change (Figure 2) were calcu-

lated using a Wilcoxon signed-rank test. Statistical significance in mutational log2 fold-change in mis-

sense mutations and buried versus exposed sites (Figures S2C, S2D, S6B, S6D, and 4B) were calcu-

lated using a Welch’s t-test for independent samples with Bonferroni correction, and significance from 

null was determined using a Wilcoxon signed-rank test. All correlations were determined by calculating 

Pearson correlation coefficients using a two-tailed test. The statistical significance between solvent 

RSA classes or mutation types within a solvent accessibility class (Figures 4C and 4D) was evaluated 

using ANOVA, while comparisons between select conditions were calculated using Welch’s t-test for 

independent samples with Bonferroni correction. Statistical significance between stabilizing and desta-

bilizing mutations based on experimental measurements (Figure 5A) as well as for significance be-

tween buried and exposed regions (Figure 5B) was calculated using a Welch’s t-test for independent 

variables. ANOVA was also used to calculate statistical significance between RSA class and amino 

acid changes and ∆∆G (Figures 5E and 5F).   
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Figure 1: Validation of dox-mediated HSF1 regulation and construction of the A549cHSF1(p53-Lib) 
cell line. 
qPCR results showing transcript-level consequences of dox-mediated HSF1 activation for the HSF1 tar-
get genes (A) HSP40 and (B) HSP70 in A549cHSF1 cells. Treatment with the HSP90 inhibitor STA-9090 
was used as a positive control for HSR activation, and to ensure pathways were activated within the 
regime accessible to endogenous HSF1 transcriptional activity. (C) Creation of A549cHSF1(p53-Lib) cells: 
A549 cells expressing endogenous wild-type p53 were transduced at a low multiplicity of infection with a 
lentiviral population encoding all possible single amino acid substitutions within TP53. 
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Figure 2: HSF1 activation enhances mutational fitness of dominant-negative p53 variants. 
(A) Selection of dominant-negative variants using nutlin-3. Treatment with nutlin-3 prevents MDM2-me-
diated degradation of both wild-type and mutant p53. Co-expression of dominant-negative p53 variants 
prevents induction of cell cycle arrest by endogenous wild-type p53, thereby allowing cell proliferation. 
(B) Heat map of the p53 mutational frequency log2 fold-change averaged over three biological replicates 
for each amino acid substitution for nutlin-3-mediated dominant-negative p53 selection in an HSF1-acti-
vated environment as compared to nutlin-3-mediated dominant-negative p53 selection in a basal prote-
ostasis environment. The sum of the mutational log2 fold-change at each site is shown below. (C) Total 
site log2 fold-change for amino acid substitutions in the selection conditions in (B) subdivided across each 
p53 domain. (D) Log2 fold-change for each individual DNA-level mutation in the TP53 gene subdivided 
for each domain, presented here for the selection conditions in (B) and separating missense (red) from 
synonymous mutations (grey). Significance was calculated using a Wilcoxon signed-rank test, with *, ***, 
and **** representing adjusted two-tailed p-values of <0.05, <0.001, and <0.0001, respectively, and ns 
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indicating non-significant. AD1, activation domain 1; AD2, activation domain 2; PRD, proline-rich domain; 
DBD, DNA-binding domain; TD, tetramerization domain; RD, regulatory domain.   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.01.621414doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621414
http://creativecommons.org/licenses/by-nc/4.0/


31 
 

 
Figure 3: HSF1 activation in the context of nutlin-3-mediated selection alters mutational fitness 
within the p53 DNA-binding domain. 
(A) Structure of the p53 DNA-binding domain (PDB 2OCJ). Residues are colored according to the net 
site log2 fold-change. (B) Consequences of HSF1 activation at selected, individually labeled hotspot sites 
associated with cancer. Color indicates net positive (red) or negative (blue) site log2 fold-change.  
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Figure 4: HSF1 activation specifically increases tolerance for charged mutations in buried regions 
of p53. 
(A) Average net site log2 fold-change across the p53 DNA-binding domain for sites classified as buried 
(relative solvent accessibility or RSA < 0.2) versus exposed (RSA > 0.2). (B) Mutational log2 fold-change 
in variant fitness for conservative amino acid substitutions, non-conservative non-polar to polar substitu-
tions, and non-conservative polar to non-polar substitutions at buried versus accessible sites in p53. 
Statistical significance between solvent accessibility classes or mutation types within a solvent accessi-
bility class was evaluated using ANOVA, while comparisons between select conditions were calculated 
using Welch's t-test for independent samples with Bonferroni correction. *, ***, and **** represent adjusted 
two-tailed p-values of <0.05, <0.001, and <0.0001, respectively. 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.01.621414doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621414
http://creativecommons.org/licenses/by-nc/4.0/


33 
 

 
Figure 5: HSF1 activation most strongly enhances the fitness of destabilizing p53 amino acid 
substitutions within the DNA-binding domain. 
(A) Average mutational log2 fold-change for nutlin-3 selection in HSF1-activated versus basal proteosta-
sis environments for variants classified as stabilizing or wild-type-like (ΔΔG < 0.5 kcal/mol) versus desta-
bilizing (ΔΔG > 0.5 kcal/mol), based on experimental thermodynamic stability measurements. (B) Theo-
retical ΔΔG calculated using Rosetta analysis (REU = Rosetta energy units) for p53 DNA-binding domain 
substitutions in buried, partially exposed or exposed sites. Variants are binned into those that displayed 
either a positive or a negative average log2 fold-change in HSF1-activated versus basal proteostasis 
environments during nutlin-3 selection. Correlation plots comparing average mutational log2 fold-change 
for nutlin-3 selection in HSF1-activated versus basal proteostasis environments for buried (C) and ex-
posed (D) sites as compared to Rosetta ΔΔG calculated values. Pearson correlation coefficients r as well 
as the corresponding p-values are included. (E) ∆∆G calculations suggest that amino acids in buried 
regions are less tolerant to non-conservative (nonpolar to polar/charged) substitutions than sites in ex-
posed regions. These are the same types of substitutions whose fitness was most substantially enhanced 
by HSF1 activation (Figure 4B). Statistical significance was evaluated using Welch's t-test for independ-
ent samples with Bonferroni correction, with *, **, ***, and **** representing adjusted two-tailed p-values 
of <0.05 and <0.0001, respectively.   
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Figure 6: HSF1-activated genes and known p53-interacting proteins overlap. 
Volcano plot for RNA-Seq analysis of changes in gene transcription following HSF1 activation in 
A549cHSF1 cells as compared to vehicle treatment. Proteins within the Agile Protein Interaction 
DataAnalyzer (APID) that have been identified as interactors with p53 are labeled and shown in red.   
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