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Abstract

In this paper two prediction methods are used to predict the non-observed (censored) units

under progressive Type-II censored samples. The lifetimes of the units follow Marshall-

Olkin Pareto distribution. We observe the posterior predictive density of the non-observed

units and construct predictive intervals as well. Furthermore, we provide inference on the

unknown parameters of the Marshall-Olkin model, so we observe point and interval estima-

tion by using maximum likelihood and Bayesian estimation methods. Bayes estimation

methods are obtained under quadratic loss function. EM algorithm is used to obtain numeri-

cal values of the Maximum likelihood method and Gibbs and the Monte Carlo Markov chain

techniques are utilized for Bayesian calculations. A simulation study is performed to evalu-

ate the performance of the estimators with respect to the mean square errors and the

biases. Finally, we find the best prediction method by implementing a real data example

under progressive Type-II censoring schemes.

1. Introduction

Studying new lifetime models has become necessary and essential as many applications appeared

in natural sciences. Over the last four decades, many authors focused their work on generating

new lifetime distributions that may fit the experimental data, for example, medical, engineering,

social sciences, reliability analysis, and others. In literature, those new models possess good prop-

erties and others were superior relative to the original ones. Generalizations of well-known dis-

tributions were applied to describe various phenomenal data. One may refer to [1], later [2] and

others. The new method which was proposed by Marshall and Olkin was about obtaining a new

distribution depending on adding a parameter to the original one. The generated family of dis-

tributions is more flexible and has the original distribution as a particular case.

Many physical and lifetime applications were discussed in literature concerning Marshall-

Olkin distribution (MO) see for example [3–13].

In this paper, we will consider the Marshall Olkin family with Pareto distribution as a base-

line. Marshall-Olkin Pareto (MOP) distribution was studied by [13] under complete sample
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data. The authors used several estimation methods and found that it has good properties and

behaves well as a generalization of the well-known Pareto distribution.

In reliability and lifetime experiments, units under test can be lost or taken out from the

experiment before failure. The loss may not be planned, such as in the accidental failure of

some units under experiment or if a unit drops out. Sometimes, the experiment must stop due

to the unavailability of testing facilities. Most often, the removal of units from an experiment is

pre-planned and is made due to cost and time limitations. The benefit of progressive censoring

lies in its efficient utilization of the available resources, so when some of the surviving units in

the experiment are removed early, they can be used for some other tests. In reliability and life

testing experiments, one of the primary purposes is to draw inference about unknown parame-

ters of interest of an underlying lifetime distribution based on certain censored observation,

see [14]. Mainly in such studies, either the interest is to provide estimates for unknown param-

eters or draw some prediction inference about future observations.

The most frequently used censoring schemes are called progressive Type-I and progressive

Type-II censoring. One can refer to [15] for progressive censoring schemes and their related

issues, see also [16,17]. Recently several authors were interested in studying parameter infer-

ence for different lifetime distributions under progressive Type-II censoring scheme, see, for

example, [18–23] in this respect.

Progressive Type-II censoring scheme can be described as follows: Let X1, X2, . . ., Xn denote

the numerical outcomes of n independent and identically distributed (i.i.d) units from a life-test

experiment. Suppose that R1, R2, . . ., Rm (m< n) are some fixed nonnegative integers such that
Pm

i¼1
Ri ¼ n � m, hence only m units will be observed, the remaining n-m units will be censored

progressively according to the censoring scheme R = (R1, R2, . . ., Rm). The censoring occurs pro-

gressively in m stages, and the failure times of the m observed units are obtained at these stages.

When the first failure (the first stage) X1:m:n occurs, R1 of the n-1 surviving units are randomly

censored from the experiment. When the second failure (the second stage) X2:m:n occurs, R2 of

the n-2-R1 surviving units are randomly censored from the experiment. Finally, at the time of the

mth failure (themth stage) Xm:m:n, all the remaining Rm = n-m- (R1 + R2 + . . .+Rm-1) units are

withdrawn from the experiment. It is obvious that Type-II right censoring and complete sampling

schemes are special cases of progressive Type-II censoring scheme by choosing (R1 = R2 = . . . =

Rm 1 = 0; Rm = n-m) and (R1 = R2 = . . . = Rm-1 = 0, n = m) respectively.

From our literature survey we realized that most of the work on the Marshall-Olkin Pareto

distribution have been based on complete samples, also the idea of predicting censored units

has not received much attention. This motivates us to write this article with two main objec-

tives. The first objective is to provide the statistical inference about the unknown parameters

of the Marshall-Olkin Pareto distribution when the lifetime data are observed under Progres-

sive type-II censoring. The second objective is to provide the statistical inference about the

censored observations. We consider both problems of estimation and prediction under classi-

cal as well as Bayesian approaches. Further, predictive interval estimates are also constructed.

The probability density function (pdf) and the cumulative distribution function (cdf) of

MOP distribution are given respectively as:

f ðx; a; y; bÞ ¼
ayb

yx� ðyþ1Þ

1 � a b

x

� �y
� �2

; a; y; b > 0; x � b: ð1Þ

Fðx; a; y; bÞ ¼ 1 �
a b

x

� �y

1 � a b

x

� �y ; x � b ð2Þ
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Prediction is very important in statistical inference, some prediction problems were dis-

cussed in the literature, see for example [24–30]. The main idea is predicting the future value

of the ordered statistics based on the observed sample. [24] Used Bayes prediction to predict

future values of a progressive censored sample under flexible Weibull distribution. [25] com-

pare two prediction methods to predict the unobserved units from new Pareto model with

progressive Type-II censoring scheme. In [30] the prediction of the remaining time for the

generalized Pareto distribution under a progressive censored sample was considered.

The methodology in this paper is divided into two main objectives: First, find the Maximum

likelihood estimator for the MOP parameters using the EM Algorithm, and use Bayes method to

estimate of MOP parameters. The sample under consideration is a progressive Type-II censored

sampling scheme. For Bayes estimation Gamma priors and quadratic loss function are consid-

ered. We compare the performance of the two methods of estimation numerically by simulation

analysis using the R code. Second, we consider the prediction problem for the future unobserved

data based on the available observation. Therefore, two prediction methods are performed (i) The

best unbiased predictor (BUP) and (ii) The Bayes prediction (BP), also predictive intervals (PIs)

of the future censored data are constructed. Numerical analysis and simulation are used for com-

paring the efficiency of the two prediction methods under consideration, and finally an illustrative

real data of failure time example is presented.

The rest of this paper is organized as follows: In Section 2, the estimation methods includ-

ing the MLE and the Bayesian estimation methods for estimating the three parameters of

MOP distribution are computed using the EM algorithm and MCMC numerical methods.

Also, we discuss the prediction methods for the non-observations from the censored sample

using PUB and BP. In Section 3 the real data set is given for illustrative purposes, and numeri-

cal simulation study and its results are performed and summarized by tables and figures. Dis-

cussions are reported in Section 4, while conclusions are given in Section 5.

2. Materials and methods

2.1. Maximum likelihood inference

A well-known classical method of point estimation is used, which is the maximum likelihood

method (MLE) for estimating the three unknown parameters of MOP distribution under pro-

gressive type-II censoring scheme. Let X = (x1:m:n, x2:m:n,. . ., xm:m:n) with x1:m:n� x2:m:n�. . .

�xm:m:n be the observed progressive Type-II censored sample of size m drawn from a sample

of size n under MOP distribution with the pdf and the cdf given by Eq (1) and Eq (2) respec-

tively. The likelihood function under a progressive Type-II censored sample X is given by:

RLða;b; y;XÞ ¼ A
Ym

i¼1

f ðxi:m:nÞ½1 � Fðxi:m:nÞ�
Ri ð3Þ

where A = n(n-1-R1) (n-2-R1-R2) . . . (n-m+1-R1-. . .- Rm-1). See [15].

Using Eq (1) and Eq (2) we obtain:

Lða; b; y;XÞ ¼ Aanbynym
Ym

i¼1

x� yð1þRiÞ� 1

i:m:n

1 � a b

xi:m:n

� �y
� �2þRi

ð4Þ
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The log-likelihood function of MOP is:

lða; b; y;XÞ ¼ logAþ nlogaþ ynlogbþmlogy �
Xm

i¼1

ðyð1þ RiÞ þ 1Þlogxi:m:n�

Xm

i¼1

2þ Rið Þlog 1 � a
b

xi:m:n

� �y
 !

From the log-likelihood equation we can compute the derivatives with respect to the

parameters, since x�β, then the MLE of the parameter β is x1:m:n, where x1:m:n, is the first pro-

gressive censored statistic. We need to solve the following normal equations after equating

them to zero:

@l
@a
¼
n
a
�
Xm

i¼2

2þ Rið Þ

x1:m:n

xi:m:n

� �y

1 � a
x1:m:n

xi:m:n

� �y
 ! ¼ 0

@l
@y
¼
m
y
þ n log x1:m:n �

Xm

i¼2

1þ Rið Þlog xi:m:n þ
Xm

i¼2

2þ Rið Þ

log
x1:m:n

xi:m:n

� �

1
a

x1:m:n

xi:m:n

� �� y

� 1

0

@

1

A

¼ 0

Since the closed-form solution for the above equations cannot be obtained explicitly, one

needs to employ some numerical method. The most commonly used method in the literature

is Newton-Raphson (N-R). But the main drawback of this method is that it requires the second

derivatives of the log-likelihood function at all iterations, and it may be computationally cum-

bersome due to the complicated form of the likelihood function. Instead, numerical packages

in various programming languages can also be used to solve the above equations. One of such

good algorithms is the Expectation-maximization (EM) algorithm which had been used by

several authors to obtain maximum likelihood estimates. This algorithm is very much useful

compared to N-R method especially when data are not completely observed under some cen-

soring scheme.

The normal approximation of the MLE can be used to construct approximate confidence

intervals on the parameters α, β and θ. From the asymptotic property of the MLE we have
ffiffiffi
n
p
ðb� � �Þ

D
!
N3ð0; I� 1ð�ÞÞ, where ϕ = (α, β, θ) and I(F) is the Fisher information matrix given

by:

IðFÞ ¼ �
1

n

EðlaaÞ EðlabÞ EðlayÞ

EðlbaÞ EðlbbÞ EðlbyÞ

EðlyaÞ EðlybÞ EðlyyÞ

2

6
4

3

7
7
5
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where the second partial derivatives are given as follow:

laa ¼ �
n
a2
þ
Xm

i¼2

ð2þ RiÞ

x1:m:n

xi:m:nÞ
2y

 !

1 � a
x1:m:n

xi:m:n

� �y
 !2

lab ¼ 0

lay ¼ �
Xm

i¼2

ð2þ RiÞ
log

x1:m:n

xi:m:n

� �
x1:m:n

xi:m:n

� �y

1 � a
x1:m:n

xi:m:n

� �y
 !

lbb ¼ �
yn
b

2
þ
Xm

i¼1

ð2þ RiÞ

1 � a
b

xi:m:n

� �y
 !

ayðy � 1Þ

b
2

b

xi:m:n

� �y

þ
ay

b

b

xi:m:n

� �y
 !2

1 � a
b

xi:m:n

� �y
 !2

lby ¼
n
b
þ
Xm

i¼1

ð2þ RiÞ

a

b
1 � a

b

xi:m:n

� �y
 !

b

xi:m:n

� �y

ylog
b

xi:m:n

� �

þ 1

� �

þ
a2y

b

b

xi:m:n

� �2y

log
b

xi:m:n

� �

1 � a
b

xi:m:n

� �y
 !2

lyy ¼ �
m
y

2
þ
Xm

i¼2

ð2þ RiÞ
log

x1:m:n

xi:m:n

� �
x1:m:n

xi:m:n

� �� y

log
x1:m:n

xi:m:n

� �

x1:m:n

xi:m:n

� �� y

� a

 !

The expected values of the second partial derivatives are obtained numerically using R-pro-

gramming. The variances of the MLEs can be found from the asymptotic property of MLE so

that V baMLEð Þ �
EðlbbÞEðlyyÞ� E2ðlbyÞ

DetðIðFÞÞ , V bbMLE

� �
�

EðlaaÞEðlyyÞ� E2ðlayÞ
DetðIðFÞÞ and V byMLE

� �
�

EðlaaÞEðlbbÞ� E2ðlabÞ
DetðIðFÞÞ ,

where Det(I(F)) is the determinant of the information matrix I. The (1−z)100% approximate

confidence intervals for baMLE;
bbMLE, and byMLE are given respectively as:

baMLE � zz
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðbaMLEÞ
q

; bbMLE � zz
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðbbMLEÞ
q

; byMLE � zz
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðbyMLEÞ
q

2.2. EM algorithm

The basic idea of EM algorithm begins with writing the log-likelihood function given the com-

plete sample W. However, we have the observed data X = (x1:m:n, x2:m:n,. . ., xm:m:n), while n−m
units will be removed or censored. Now, suppose that the lifetimes of the censored observa-

tions are Z = (z1, z2,. . .,zn−m), hence the complete sample W is a combination of the observed

data X and censored data Z; that means W = (X, Z). Dealing with the complete log-likelihood

function and differentiate it partially with respect to the parameters α and θ and equate them
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to zero, we get:

@l
@a
¼
n
a
�
Xm

i¼2

2þ Rið Þ

x1:m:n

xi:m:n

� �y

1 � a
x1:m:n

xi:m:n

� �y
 !þ 2

Xn� m

i¼1

x1:m:n

zi

� �y

1 � a
x1:m:n

zi

� �y
 !

@l
@y
¼
n
y
þ nlog x1:m:n �

Xm

i¼2

ð1þ RiÞlog xi:m:n þ
Xm

i¼2

ð2þ RiÞ
log

x1:m:n

xi:m:n

� �

1a
x1:m:n

ðxi:m:nÞ
� y
� 1Þ

 ! !

�
Xn� m

i¼1

log ðziÞ þ 2
Xn� m

i¼1

log
x1:m:n

zi

� �

1a
x1 �mi � n

zi

� �� y

� 1

 !

ð5Þ

When applying the EM algorithm, we should keep in mind that the MLE of β is x1:m:n so it

will be considered as a known parameter in the above normal equations. The EM algorithm

consists of an expected step (E-step) and a maximized step (M-step). The E-step replaces the

expressions of observed and censored lifetimes by their expectations, whereas M-step maxi-

mizes the E-step at each iteration.

2.3. Bayes estimation

In the Bayesian method, all parameters are considered as random variables with a certain dis-

tribution called prior distribution. If prior information is not available which is usually the

case, we need to select one. Since selecting prior distribution has an important role in the esti-

mation of the parameters, our selection for the priors of α, β, and θ are the independent

gamma distributions G(a1; b1); G(a2; b2) and G(a3; b3) respectively. The reason for choosing

this prior density is that Gamma prior has flexible nature as a non-informative prior, especially

when the values of the hyperparameters are assumed to be zero. The suggested gamma distri-

butions have the following densities:

ga a1; b1ð Þ ¼
ba1

1

Gða1Þ
aa1 � 1e� b1a

gb a2; b2ð Þ ¼
ba2

2

Gða2Þ
b
a2 � 1e� b2b

gy a3; b3ð Þ ¼
ba3

3

Gða3Þ
y
a3 � 1e� b3y

ð6Þ

where a1, a2, a3, b1, b2 and b3 are hyperparameters of prior distributions and all are positive

real constants. The joint prior of α, β, and θ is:

gða; b; yÞ / aa1 � 1b
a2 � 1

y
a3 � 1e� b1a� b2b� b3y; a; b; y; a1; a2; a3; b1; b2; b3 > 0

and the joint posterior of α, β, and θ is:

pða; b; yjxÞ ¼
L x
a
; y;b

� �
gða; y;bÞ

R

a

R

y

R

b
L x
a
; y; b

� �
gða; y; bÞdadydb

ð7Þ
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where L(x/α, θ, β) is the likelihood function of MOP distribution under progressive type-II

censored samples as in Eq (4) Substituting L(x/α, θ, β) and g(α, β, θ) for MOP under progres-

sive Type-II censoring scheme, the joint posterior density can be written as:

pða; b; y j xÞ / aa1 � 1b
a2 � 1

y
a3 � 1e� b1a� b2b� b3yy

m
anb

yn
�

Ym

i¼1

x� yð1þRiÞ� 1

i:m:n

1 � a
b

xi:m:n

� �y
 !2þRi

/ Gaða1 þ n; b1ÞGb=yða2 þ yn; b2ÞGyða3 þm; b3ÞQða; b; yÞ

ð8Þ

where Q a; b; yð Þ ¼
Qm

i¼1

x� yð1þRiÞ� 1

i:m:n

1� a
b

xi:m:nð Þ
y

� �2þRi , and G(.,.) represents the probability density of

Gamma distribution.

Therefore, the Bayes estimate of any function of α, β, and θ, say h(α, β, θ), under the qua-

dratic loss function will be the expected value of h(α, β, θ), i.e.

bh a;b; yð Þ ¼ Ea ;b;y=data h a; b; yð Þð Þ. Since it is difficult to compute this expected value analyti-

cally, we opt to use the Markov chain Monte Carlo technique (MCMC), see [31] and [32].

The Gibbs sampling method will be used to generate a sample from the posterior density

function p(α, β, θ|x) and compute Bayes estimates. To generate a sample from the posterior

distribution, it is assumed that the pdf of prior density is as described in Eq (6). The fully con-

ditional posterior densities of α, β, and θ, and the data is given by:

pða j b; y; xÞ / Gaða1 þ n; b1Þ
Ym

i¼1

1

1 � a
b

xi:m:n

� �y
 !2þRi

;

pðb j a; y; xÞ / Gb=yða3 þ yn; b3Þ
Ym

i¼1

1

1 � a
b

xi:m:n

� �y
 !2þRi

pðy j a; b; xÞ / Gyða2 þm; b2ÞQða; b; yÞ:

ð9Þ

Since these full conditional distributions cannot be reduced to well-known distributions,

we cannot generate α, β, and θ from these distributions directly by standard methods, there-

fore we need to generate these distributions using the M-H algorithm, see [33] and [34]. The

idea here is to decrease the rate of rejections as much as possible. The algorithm below depends

on using the M-H algorithm based on choosing the normal distribution as a proposal distribu-

tion which is used to find the Bayes estimators and also to construct the credible intervals for

α, β, and θ. To apply the Gibbs technique, we need the following algorithm:

1. Start with initial values (α0, β0, θ0)

2. Use the M-H algorithm to generate a posterior sample for α, β, and θ from Eq (8).

3. Repeat step 2 M times and obtain (α1, β1, θ1); (α2, β2, θ2), . . ., (αM, βM, θM).
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4. After obtaining the posterior sample, the Bayes estimates of α, β, and θ concerning qua-

dratic loss function are:

baMC ¼ ½Epða j xÞ� �
1

M � M0

XM� M0

i¼1

ai

 !

bbMC ¼ ½Epðb j xÞ� �
1

M � M0

XM� M0

i¼1

bi

 !

byMC ¼ ½Ep j yxÞ� �
1

M � M0

XM� M0

i¼1

yi

 !

ð10Þ

where, M0 is the burn-in-period of Markov Chain.

2.4 Prediction

In many fields of life testing and reliability studies predicting the unobserved or censored

observation from the observed sample data has a great attention, see for example [24–30]. In

this section, we perform two prediction methods, namely the best-unbiased predictor (BUP)

and the Bayes predictor (BP).

2.4.1. Best unbiased predictor. In this section our goal is to predict the lifetimes of the sth

order Ys:rj (s = 1, 2, . . ., rj; j = 1, 2, . . ., m) from the observations under progressive type-II cen-

sored sample, X = (x1:m:n, x2:m:n,. . ., xm:m:n). Now by using the Markovian property of Progres-

sive type-II censored order statistics, Ys:rj=X ¼ x acts similar to the sth order statistic drawn

from a sample of size rj under truncated distribution at xj:m:n with pdf
f ðyÞ

ð1� Fðxj:m:nÞ
; y>xj:m:n, hence

we obtain:

fYs:rj jXðys:rj ; a;b; yÞ ¼ fYs:rj jxj:m:n
ðys:rj ; a;b; yÞ

¼ c�½Fðys:rjÞ � Fðxj:m:nÞ�
s� 1
½1 � Fðys:rjÞ�

rj � s
f ðys:rjÞ

½1 � Fðxj:m:nÞ�
rj ; ys:rj > xj:m:n

ð11Þ

where c� ¼ rj!
ðs� 1Þ!ðrj � sÞ!

. Now substituting the pdf and the cdf of MOP distribution into Eq (11)

and after some simplifications we observe:

fYs:rj jX ys:rj ; a; b; y
� �

¼ c�y
ðx� yj:m:n � y

� y
s:rj
Þ
s� 1y� yðrj � sþ1Þ� 1

s:rj xyrjj:m:n

1 � a b

xj:m:n

� �y
� �s� rj � 1

1 � a b

ys:rj

� �y
 !rjþ1

ð12Þ

The conditional density in Eq (12) can be rewritten using the well-known binomial expan-

sion to become:

fYs:rj jX ys:rj j a;b; y
� �

¼ c�y

Ps� 1

k¼0
ð� 1Þ

k s � 1

k

 !

y� yðkþrj � sþ1Þ� 1

s:rj xyðrj � sþkþ1Þ

j:m:n

1 � a b

xj:m:n

� �y
� �s� rj � 1

1 � a b

ys:rj

� �y
 !rjþ1

ð13Þ
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The best unbiased predictor (BUP) of Ys:rj is the expected value EðYs:rj=Xj:m:nÞ that is:

EðYs:rj j Xj:m:nÞ ¼j
R1
xj:m:n

ys:rj fYo:rj jXðYs:rj ; a;b; yÞdys:rj

¼
c�y
Pk¼0

s� 1
ð� 1Þ

k

s � 1

k

0

@

1

Ax
yðrj � sþkþ1Þ

j:m:n

1 � a
b

xj:m:n

 !y !s� rj � 1

Z 1

xj:m:n

y� yðkþrj � sþ1Þ

s:rj

1 � a
b

ys:rj

 !y !rjþ1
dys:rj

ð14Þ

Using integration techniques and binomial expansion, Eq (14) will reduce to censored data.

In Bayes estimation, we assume:

EðYs:rj j Xj:m:nÞ ¼

c�
X

i;k

u �
1

y
i
� 1

 !

ðxj:m:nÞ
yu
ð1 � DÞ

i� rj

a
u�

1

yb
yu� 1 i � rj
� �

ðDÞ
k� u

; 0 < a < 1

c�
X

i;k

u �
1

y
i
� 1

 !

ðxj:m:nÞ
yu
ð1 � DÞ

k� i� s�
1

yÞ

a
u�

1

yb
yu� 1 k � i � s �

1

y

� �

ðDÞ
k� u

; a > 1

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

where
P

i;k ¼
P1

i¼0

P1

k¼0
ð� 1Þ

kþi
ð
s � 1

k
Þ; D ¼ 1 � a b

xj:m:n

� �y
and u = k+rj−s+1. If it is assumed

that the parameters α, β, and θ are all unknown, then the BUP of Ys:rj will be:

bYs:rj
¼ c�

X

i;k

ðu �
1

by
i
� 1Þðxj:m:nÞ

byu
ð1 � bDÞ

i� rj

ba

u�
1
�

by bb byu� 1ði � rjÞðbDÞ
k� u

; 0 < a < 1

c�
X

i;k

u �
1

by
i
� 1

 !

ðxj:m:nÞ
byu
ð1 � bDÞ

k� i� s� 1by
Þ

ba

u�
1
�

by bb byu� 1 k � i � s � 1by
� �

ðbDÞ
k� u

; a > 1

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

where ba; bb; and by are the MLEs of α, β, and θ respectively and bD ¼ 1 � ba
bb

xj:m:n

� �by

.

2.4.2 Bayesian prediction. The Bayes prediction of the non-observed units from the

future sample depends on the current observed sample which is called an informative sample.

For that purpose, we obtain the estimation of the posterior predictive density of the sth order

Ys:rj . The posterior predictive density of Ys:rj given the observed censored data X is given by:

pðYs:rj j XÞ ¼
Z 1

0

Z 1

0

Z 1

0

fYs:rj jXðys:rj j a; b; yÞpða; b; y j xÞdadbdy; ys:rj > xj:m:n ð15Þ
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where fYs:rj jXðys:rj j a;b; yÞ is the conditional density of Ys:rj given α, β, θ, and the data X, which

is given in Eq (13), where p(α, β, θ|x) is the joint posterior given in Eq (8). Using the squared

error loss function (SEL), the Bayes predictor (BP) of Y ¼ Ys:rj is obtained by:

YBP
s:rj
¼ EpðY j dataÞ

¼ c�
R1
xj:m:n

y
R1

0

R1
0

R1
0

Pk¼0

s� 1
ð� 1Þ

k
s � 1

k

0

@

1

Ay� yu� 1xyuj:m:n

D
s� rj � 1

1 � a
b

y

� �y
 !rjþ1

anþa1 � 1y
a2þmb

ynþa3 � 1e� b1a� b2y� b3b�

Ym

i¼1

x� yð1þRiÞ� 1

j:m:n

D
2þRi

dadbdydy

ð16Þ

The form of the posterior predictive density in Eq (16) is not easy to compute, therefore

evaluating the predictive Bayes estimates Eπ(Y|data) manually is not an easy task, hence we use

numerical techniques such as MCMC samples that was described in Section. 3 to generate

samples from the predictive distributions and find the Bayes predictor.

Based on MCMC samples {(αℓ, βℓ, θℓ): ℓ = 1,2,. . .M} that are obtained by using the Gibbs

sampling and M-H methods, the Bayes predictor bYBP
s:rj

is now given by:

bYBP
S:rj
¼
c�

M

XM

‘¼1

Pk¼0

s� 1
ð� 1Þ

k
s � 1

k

0

@

1

Axy‘uj:m:n

L
k� u a

nþa1 � 1

‘ y
a2þm
‘

b
y‘nþa3 � 1

‘
e� b1a‘ � b2y‘ � b3b‘�

Ym

i¼1

x� y‘ð1þRiÞ� 1

j:m:n

L
2þRi

Z 1

xj:m:n

y� uy‘ 1 � a‘
b‘
y

� �y‘
 !� rj � 1

dy;

ð17Þ

where
P

‘;k;t ¼
PM

‘¼1

Ps� 1

k¼0

P1

t¼0
ð� 1Þ

kþt s � 1

k

 !

a
nþa1 � 1

‘ y
a2þm
‘

b
y‘nþa3 � 1

‘
e� b1a‘ � b2y‘ � b3b‘ and

L ¼ 1 � a‘
b‘

xj:m:n

� �y‘
.

From the above posterior predictive density one can obtain a two-sided predictive interval

for Y ¼ Ys:rj , (s = 1, 2, . . ., rj; j = 1, 2, . . ., m) For that purpose, we need to find the predictive

survival function of Y ¼ Ys:rj at any point y>xj:m:n, which can be defined as:

SYjdataðy j a; b; yÞ ¼
R1
y fYjdataðz j a; b; yÞdz

¼

c�
X1

i¼0

Xs� 1

k¼0

ð� 1Þ
kþi

s � 1

k

0

B
@

1

C
A

u � 1

i

0

B
@

1

C
Aðxj:m:nÞ

yu
1 � 1 � a

b

y

� �y
 !i� rj !

aub
yu
ði � rjÞD

k� u ; 0 < a < 1

c�
X1

i¼0

Xs� 1

k¼0

ð� 1Þ
kþi

e � 1

k

0

B
@

1

C
A

u � 1

i

0

B
@

1

C
Aðxj:m:nÞ

yu
1 � 1 � a

b

y

� �y
 !k� i� s�

1

y

0

B
B
@

1

C
C
A

aub
yu k � i � s �

1

y

� �

D
k� u

; a > 1

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:
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Under the SEL function, the predictive survival function of Y ¼ Ys:rj is given by:

SPYndataðy j a;b; yÞ

¼

R1
0

R1
0

R1
0
c�
X

i;k

u � 1

i

0

@

1

Aðxj:m:nÞ
yu

1 � 1 � a
b

y

� �y
 !i� rj !

aub
yu
ði � rjÞD

k� u pða; y;b j xÞdadbdy; 0 < a < 1

R1
0

R1
0

R1
0
c�
X

i;k

u � 1

i

0

@

1

Aðxj:m:nÞ
yu

1 � 1 � a
b

y

� �y
 !k� i� s�

1

y

0

B
B
@

1

C
C
A

aub
yu k � i � s �

1

y

� �

D
k� u

pða; y; b j xÞdadbdy; a > 1

ð18Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

The predictive survival function in Eq (17) cannot be easily evaluated analytically, hence

numerical approximation technique is preferable in this case. The MCMC samples can be

used to approximately evaluate Eq (17), so let {(αℓ, βℓ, θℓ): ℓ = 1,2,. . .M}, then the simulated

estimator for the predictive survival function is written as:

bSPYndata
ðy j a; b; yÞ ¼

c�

M

X

‘;i;k

u � 1

i

 !

ðxj:m:nÞ
y‘u 1 � 1 � a‘

b‘
y

� �y‘
 !i� rj !

au‘b
y‘u
‘
ði � rjÞL

k� u ; 0 < a < 1

c�

M

X

‘;i;k

u � 1

i

 !

ðxj:m:nÞ
y‘u 1 � 1 � a‘

b‘
y

� �y‘
 !k� i� s�

1

y‘

0

B
B
@

1

C
C
A

au‘b
y‘u
‘

k � i � s �
1

y‘

� �

L
k� u

; a > 1

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

where
P

‘;i;k ¼
PM

‘¼1

P1

i¼0

Ps� 1

k¼0
ð� 1Þ

kþi s � 1

k

 !

.

Now, the (1−ξ)100% predictive interval of Y ¼ Ys:rj can be evaluated by solving the above

non-linear equations with the lower bound (L) and the upper bound (U) using a suitable

numerical technique.

bSPYndata Lð Þ ¼ 1 � x

2
and bSPYndata Uð Þ ¼

x

2

3. Results

3.1 Real data

We consider a progressively censored real data set from [35], it consists of the failure times of

20 mechanical components, see Table 1.

We examine the behavior of the estimators and predictors based on censored sample data

from Table 1 Now, from the given data set we suggest three different progressive Type-II cen-

soring schemes, these censoring schemes are:

1. scheme 1: (0 �(0.9 �n-1), 0.1 � n)
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2. scheme 2: (0.1 � n, 0 � (0.9 � n—1))

3. scheme 3: (1 � (0.1 � n), (0 � 0.8 � n))

Based on these censored samples we estimate the parameters of the MOP distribution using

MLE and Bayesian approaches. Table 2 shows the MLE computed using Newton-Raphson

method and Bayes estimates under SEL obtained using MCMC technique and it also contains

the 95% asymptotic confidence and credible interval estimates.

To check the validity of Marshall-Olkin Pareto (MOP) distribution to fit this data set, we

use the Kolmogorov–Smirnov (K–S) test is applied. Which is the distance between the fitted

and empirical distribution functions. The K–S distance and its respective p-value are com-

puted to be K − S = 0.1304 and p-value = 0.8441, respectively. Therefore, it is quite reasonable

to indicate that the MOP distribution is fitting this data well.

Table 3 reports some true values of Ys:rj which are compared to predictive observations

obtained using censoring scheme 1, 2, and 3, under BUP and BP methods of prediction. It can

be shown clearly that the predicted values of Ys:rj under BP method are closer to the real values

than the BUP method, and this is true for all censoring schemes under consideration. Hence,

we recommend using BP method for predicting the unobserved units in this real data

example.

3.2. Simulation study

In this subsection, first, we use simulation analysis to check the performance of the Bayes esti-

mators compared with the classical estimators obtained via the MLE approach under the pro-

gressive Type-II MOP censored sample. Second, we find the best unbiased predictor and

Bayes prediction for the non-observed data based on observed ones. The squared error loss

function SEL is used for Bayesian estimation. For the comparison needs, we use the mean

square errors (MSEs) for the different estimators based on 10000 replications using R package.

The generator of MOP distribution is Q pð Þ ¼ b 1� ap
1� p

� �1=y

, where p is the uniform distribution

deviates on (0,1). We obtain the point predictors and the 95% prediction intervals for the non-

observed order statistics Ys:rj ; (s = 1, 2, . . ., rj; j = 1, 2, . . ., m).

The MLE and Bayes estimators for the MOP parameters under the three censoring schemes

are given in Tab. 4 and 5, with initial values of the parameters (α, β, θ) as (2,0.5,1.5) and

(2.5,0.5,1.5).

Table 1. Data set of failure times of 20 mechanical components.

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098

0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485

https://doi.org/10.1371/journal.pone.0270750.t001

Table 2. MLE and Bayes point and interval estimate for real data sample.

Scheme MLE 95% Asymptotic CI Bayes 95% Credible CI

n = 20, m = 18 bα bβ bθ bα bβ bθ bα bβ bθ bα bβ bθ

Scheme 1

(0�17,2)

0.3323 0.34159 0.4008 (0.0234,

0.8980)

(0.0491,

0.7323)

(0.0780, 0.7237) 0.3324 0.3401 0.4096 (0.0196, 0.5206) (0.0218, 0.5232) (0.0414, 0.6415)

Scheme 2

(2,0�17)

0.3873 0.4089 0.4601 (0.1023,

0.5755)

(0.2655,

0.6588)

(0.30798,

0.8207)

0.3908 0.4152 0.4617 (0.09215,

0.4783)

(0.1512,

0.5832)

(0.2723,

0.7957)

Scheme 3

(1,1,0�16)

0.5132 0.6239 0.6711 (0.5903,

0.7071)

(0.5379,

0.8723)

(0.5504,

0.9635)

0.6143 0.7359 0.8032 (0.3662,

0.8093)

(0.4832,

0.9570)

(0.5198,

0.9810)

https://doi.org/10.1371/journal.pone.0270750.t002
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The bias and the MSE are used to assess the performance of the two estimation methods. It

can be viewed from Tables 4 and 5 and Figs (1) and (2) that the Bayesian estimation method

performs better than the MLE with respect to Bias and MSE for estimating α, β, and θ, since

the MSE and the bias have smaller values when using the Bayesian estimation method than

their values under the MLE.

The corresponding 95% prediction confidence intervals (PI) for the non-observed order

statistics Ys:rj are reported in Tables (6–8). In Table 6 censoring scheme 1 is used and we can

find the interval lengths which will lead us to the best predicted interval estimation for the

unobserved Ys:rj . Since the BUP has shorter interval length than the BP we conclude that BUP

is preferable to predict Ys:rj . For other censoring schemes we can obtain different results as

shown in Tables 7 and 8, where the best interval estimation is by using BP.

4. Discussion

The MLE based on EM algorithm and Bayes estimates under SEL function using MCMC

method are obtained and displayed in Table 2. Also, the approximate asymptotic confidence

intervals and the credible intervals are computed and tabulated in Table 2. From Table 2, we

notice that the MLE and the Bayes estimates are co-inside and the Bayes credible intervals

have shorter length than the approximate confidence intervals. The analysis of the proposed

data set demonstrates the applicability and the importance of the proposed model.

To check the validity of Marshall-Olkin Pareto (MOP) distribution to fit this data set, we

use the Kolmogorov–Smirnov (K–S) test is applied. The K–S distance and its respective p-

value are computed to be K − S = 0.1304 and p-value = 0.8441, respectively. Therefore, it is

quite reasonable to indicate that the MOP distribution is fitting this data well.

The relative histograms and fit of MOP distribution of data sets are discussed in Fig 3, with

the plot of the max distance between the two empirical CDF curves for MOP distribution.

Moreover, it indicates that MOP distribution can be fitted to the data set.

In addition to histogram plots, approximate marginal posterior density, and MCMC con-

vergence of α, β, and θ are represented for data set in Fig 4.

Suppose the life test ended when the 15th observation is observed, i.e., we observe a Type-II

censored sample with n = 20 and m = 18. Based on the prediction methods presented in Sec-

tion 2, we computed the point predictors, these results are presented in Table 3. It is clearly evi-

dent that the point predictors are very close to the true values for different Schemes. Moreover,

the Predicted value under BP is the better than Predicted value under BUP for different

Schemes.

In simulation algorithm, Monte Carlo experiments were carried out under the following

data generated from MOP distribution, where x is distributed as MOP distribution for differ-

ent parameters O = (α, β, θ) and the initial values of the parameters are as follows:

Table 3. True and predicted observations under censoring scheme 1, 2, and 3.

Scheme True value of Ys:rj
Predicted value of Ys:rj

under

BUP

Predicted value of Ys:rj
under

BP

1 0.160

0.485

0.165

0.492

0.159

0.486

2 0.068

0.076

0.073

0.081

0.071

0.075

3 0.068

0.081

0.075

0.090

0.069

0.082

https://doi.org/10.1371/journal.pone.0270750.t003
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Case 1: α = 2, θ = 1.5, β = 0.5

Case 2: α = 2.5, θ = 1.5, β = 0.5

Case 3: α = 0.5, θ = 0.5, β = 0.5

Table 4. MSEs and biases for MLEs and bayes estimators of α = 2, θ = 1.5, β = 0.5.

MLE Bayes (SEL)

Scheme n Parameters Bias MSE Bias MSE

1 50 α 0.1116 0.0250 0.1107 0.0245

β 0.0163 0.0039 0.0133 0.0022

θ 0.1580 0.0543 0.1269 0.0322

100 α 0.1120 0.0326 0.1277 0.0276

β 0.0176 0.0052 0.0163 0.0031

θ 0.1668 0.0715 0.1367 0.0427

2 50 α 0.0225 0.0013 0.0218 0.0012

β 0.0035 0.0002 0.0007 0.0001

θ 0.0290 0.0023 0.0217 0.0039

100 α 0.0311 0.0018 0.0310 0.0012

β 0.0042 0.0003 0.0035 0.0002

θ 0.0356 0.0027 0.0307 0.0016

3 50 α 0.0224 0.0013 0.0217 0.0012

β 0.0034 0.0002 0.0011 0.0001

θ 0.0298 0.0024 0.0101 0.0018

100 α 0.0112 0.0012 0.0110 0.0011

β 0.0020 0.0001 0.0016 0.0001

θ 0.0163 0.0029 0.0128 0.0016

https://doi.org/10.1371/journal.pone.0270750.t004

Table 5. MSEs and biases for MLEs and bayes estimators of α = 2.5, θ = 1.5, β = 0.5.

MLE Bayes (SEL)

Scheme n Parameters Bias MSE Bias MSE

1 50 α 0.15721 0.04950 0.15172 0.04604

β 0.03752 0.00819 0.07588 0.01152

θ 0.21066 0.10098 0.20710 0.14268

100 α 0.15773 0.02491 0.15381 0.02366

β 0.04296 0.01355 0.03700 0.00137

θ 0.22702 0.06500 0.21497 0.06237

2 50 α 0.03156 0.00249 0.03074 0.00236

β 0.00725 0.00032 0.00712 0.00015

θ 0.03770 0.00381 0.03481 0.00296

100 α 0.01567 0.00246 0.01550 0.00240

β 0.00443 0.00036 0.00353 0.00027

θ 0.01903 0.00388 0.01455 0.00212

3 50 α 0.03153 0.00249 0.03074 0.00236

β 0.00745 0.00033 0.00782 0.00015

θ 0.03804 0.00388 0.02881 0.00296

100 α 0.01563 0.00245 0.01551 0.00241

β 0.00441 0.00037 0.00347 0.00026

θ 0.02095 0.00473 0.01443 0.00208

https://doi.org/10.1371/journal.pone.0270750.t005
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In Tables 4 and 5, we present the MLE for α, β, and θ as well as the Bayes estimates of α, β,

and θ, under the loss functions. Numerical results of Bayes estimate for α, β, and θ, and their

corresponding Bias and MSE values are computed in case 1,2 respectively, for different sample

size (n) under different schemes. We observe that the Bayes estimates perform better than

MLE in terms of Bias and MSE values. For fixed n, when the number of failures increase the

Bias MSE decrease in all cases and for different estimators. Comparing the three censoring

schemes, it is observed that in most of the case 1and 2, Scheme 3 perform better than schemes

1 and 2 in terms of Bias and MSE values.

Fig 1. MSE of MOP parameters with various schemes with n = 50 and α = 2, θ = 1.5, β = 0.5.

https://doi.org/10.1371/journal.pone.0270750.g001

Fig 2. MSE of MOP parameters with various schemes with n = 50 and α = 2.5, θ = 1.5, β = 0.5.

https://doi.org/10.1371/journal.pone.0270750.g002

Table 6. Point and interval prediction of the unobserved order statistics Ys:rj
; 1 � i � m for scheme 1, with α = 0.5, β = 0.5, θ = 0.5.

BUP BP

n(m) Yi:m:n Predicted Yi:m:n 95% CI Predicted Yi:m:n 95% CI

50 (5) Y1:1:50 0.3523 (0.2861, 0.3847) 0.2254 (0.0789, 0.3029)

Y2:1:50 0.3953 (0.2966, 0.4003) 0.2567 (0.1082, 0.6369)

Y3:1:50 0.4009 (0.3259, 0.4446) 0.3697 (0.1938, 0.6827)

Y4:1:50 0.4235 (0.3520, 0.4854) 0.3523 (0.2819, 0.7097)

Y5:1:50 0.4384 (0.3784, 0.5239) 0.4189 (0.3655, 0.7588)

100 (10) Y1:1:100 0.6453 (0.5017, 0.6583) 0.4808 (0.3256, 0.8083)

Y2:1:100 0.6585 (0.5337, 0.6895) 0.4561 (0.3798, 0.8207)

Y3:1:100 0.6717 (0.5601, 0.6937) 0.4688 (0.3959, 0 .8476)

Y4:1:100 0.7209 (0.5853, 0.7656) 0.5532 (0.4093, 0.8607)

Y5:1:100 0.7406 (0.6193, 0.8080) 0.5824 (0.4492, 0.8842)

Y6:1:100 0.7984 (0.6425, 0.8617) 0.6239 (0.4679, 0.9023)

Y7:1:100 0.8249 (0.6895, 0.9026) 0.6711 (0.5504, 0.9235)

Y8:1:100 0.8611 (0.7264, 0.9217) 0.7431 (0.5862, 0.9693)

Y9:1:100 0.9044 (0.7637, 0.9791) 0.8339 (0.6132, 0.9970)

Y10:1:100 0.9859 (0.8253, 1.0965) 0.9332 (0.7298, 1.0190)

https://doi.org/10.1371/journal.pone.0270750.t006
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Graphically, illustrate the MSE values for different estimates in all cases with different

schemes are shown in Figs 1 and 4 respectively. In this Figures, is concerned with the MSE val-

ues for different estimates in all cases under different schemes, it is clear that the scheme 1has

the largest MSE values, followed by scheme 2, finally scheme 3. Moreover, this Figures con-

firms that scheme 3 is the best schemes, especially when n increases.

In Tables 6–8 we have reported the lifetime of higher order units increases as n increases

and the length of predictive interval become wider as well for case 3 under different schemes.

We have reported best unbiased predictor (BUP) and Bayes predictive estimates (BP) for both

set of parameters, and predictive interval for both set of parameters are reported based on

Table 8. Point and interval prediction of the unobserved order statistics Ys:rj
; 1 � i � m for scheme 3, with α = 0.5, β = 0.5, θ = 0.5.

BUP BP

n(m) Yi:m:n Predicted Yi:m:n 95% CI Predicted Yi:m:n 95% CI

50 (5) Y1:1:50 0.5049 (0.2637, 0.5839) 0.4149 (0.2567, 0.4983)

Y2:1:50 0.5372 (0.3591, 0.5711) 0.4890 (0.3733, 0.5191)

Y3:1:50 0.5602 (0.4919, 0.6028) 0.5290 (0.4381, 0.5890)

Y4:1:50 0.6137 (0.5280, 0.6954) 0.6049 (0.4801, 0.6479)

Y5:1:50 0.6352 (0.5705, 0.7041) 0.6281 (0.5276, 0.7001)

100 (10) Y1:1:100 0.7132 (0.5601, 0.7237) 0.7092 (0.5572, 0.7383)

Y2:1:100 0.7489 (0.5853, 0.7656) 0.7398 (0.5715, 0.7609)

Y3:1:100 0.7794 (0.6193, 0.8080) 0.7692 (0.6092, 0.8015)

Y4:1:100 0.8083 (0.6425, 0.8617) 0.8010 (0.6394, 0.83903)

Y5:1:100 0.8361 (0.7295, 0.9026) 0.8201 (0.6895, 0.8563)

Y6:1:100 0.9301 (0.8393, 0.9784) 0.9098 (0.7543, 0.9215)

Y7:1:100 1.0184 (0.8994, 1.1297) 0.9375 (0.8469, 0.9615)

Y8:1:100 1.0679 (0.9582, 1.1614) 0.9673 (0.8968, 0.9934)

Y9:1:100 1.1068 (0.9971, 1.2074) 1.0731 (0.9284, 1.11847)

Y10:1:100 1.1829 (1.0356, 1.2406) 1.1092 (0.9628, 1.1589)

https://doi.org/10.1371/journal.pone.0270750.t008

Table 7. Point and interval prediction of the unobserved order statistics Ys:rj
; 1 � i � m for scheme 2, with α = 0.5, β = 0.5, θ = 0.5.

BUP BP

n(m) Yi:m:n Predicted Yi:m:n 95% CI Predicted Yi:m:n 95% CI

50 (5) Y1:1:50 0.4349 (0.3058, 0.5158) 0.3852 (0.2702, 0.4047)

Y2:1:50 0.5038 (0.4204, 0.5917) 0.4173 (0.2966, 0.4203)

Y3:1:50 0.5581 (0.4577, 0.61932) 0.4309 (0.3279, 0.4576)

Y4:1:50 0.5842 (0.4900, 0.6271) 0.4930 (0.3520, 0.5034)

Y5:1:50 0.6148 (0.5181, 0.6821) 0.5381 (0.3784, 0.5596)

100 (10) Y1:1:100 0.7234 (0.6190, 0.6260) 0.6859 (0.5017, 0.6983)

Y2:1:100 0.7302 (0.5848, 0.7227) 0.7073 (0.5315, 0.7192)

Y3:1:100 0.7686 (0.6282, 0.8058) 0.7295 (0.5692, 0.7301)

Y4:1:100 0.8047 (0.7012, 0.9915) 0.7690 (0.5793, 0.7903)

Y5:1:100 0.8212 (0.7683, 1.0960) 0.8064 (0.6486, 0.8463)

Y6:1:100 0.8587 (0.7286, 1.1938) 0.8390 (0.6943, 0.8901)

Y7:1:100 0.9091 (0.7655, 1.2074) 0.8973 (0.7386, 0.9315)

Y8:1:100 0.9583 (0.7816, 1.2432) 0.9147 (0.8268, 1.0163)

Y9:1:100 0.9970 (0.8525, 1.3628) 0.9736 (0.9192, 1.0986)

Y10:1:100 1.1313 (0.9713, 1.3901) 0.9984 (0.9328, 1.1275)

https://doi.org/10.1371/journal.pone.0270750.t007
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classical approach. Here the lifetime of higher order units become larger and length of predic-

tive interval becomes wider.

In Tables 6–8 we have reported the lifetime of higher order units increases as n increases

and the length of predictive interval become wider as well for case 3 under different schemes.

We have reported best unbiased predictor (BUP) and Bayes predictive estimates (BP) for both

set of parameters, and predictive interval for both set of parameters are reported based on clas-

sical approach. Here the lifetime of higher order units become larger and length of predictive

interval becomes wider.

From Table 6 we present BUP and BP prediction estimates along with pivotal and CI pre-

diction intervals for case 3 based on Scheme 1. Table 7 we present BUP and BP prediction esti-

mates along with pivotal and CI prediction intervals for case 3 based on Scheme 2. While in

Table 8 addresses BUP and BP prediction estimates along with pivotal and CI prediction

Fig 3. Plot of the max K–S distance between two empirical CDF, and histogram of MOP distribution for data set.

https://doi.org/10.1371/journal.pone.0270750.g003

Fig 4. MCMC plots based on Type-II censored sample of MOP distribution for data set.

https://doi.org/10.1371/journal.pone.0270750.g004
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intervals for case 3 based on Scheme 3. Moreover, that the predicted values for the missing ith

order statistics Yi:m:n based observed sample of size m with censoring schemes for all schemes

described above under the loss function for fixed choice of case 3. Based on MCMC samples

(Oi; i = 1,2,. . .M), M = 10,000 the Bayes point prediction for the missing order statistics Yi:m:n

in censoring stage are computed under the loss function. The 95% lower bound L and upper

bound U of prediction interval for the ith order statistics Yi:m:n are also computed.

In general BP estimates are slightly smaller than BUP and Pivotal Interval are slightly larger

than 95% CI prediction interval.

5. Conclusions

In this article, we used two prediction methods to predict the unobserved units under progres-

sive Type-II censored sampling, the lifetimes followed Marshall-Olkin Pareto model. Point

and Interval estimation of the unknown parameters of Marshall-Olkin Pareto distribution are

obtained using classical (MLE) and non-classical (Bayes) estimation. Numerical analysis using

EM algorithm was performed to find the numerical solution of the MLE, and the MCMC

method was used for Bayesian calculations. A simulation study was conducted to assess the

performance of these estimation methods. Based on the simulation results, we showed the

advantage of using Bayesian method over the classical method of estimation. A real data exam-

ple was used to determine the best prediction method; hence we observed the advantage of the

Bayesian prediction method over the BUP method.
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