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ABSTRACT
Objective Predictive models that generate individualized
estimates for medically relevant outcomes are playing
increasing roles in clinical care and translational
research. However, current methods for calibrating these
estimates lose valuable information. Our goal is to
develop a new calibration method to conserve as much
information as possible, and would compare favorably to
existing methods in terms of important performance
measures: discrimination and calibration.
Material and methods We propose an adaptive
technique that utilizes individualized confidence intervals
(CIs) to calibrate predictions. We evaluate this new
method, adaptive calibration of predictions (ACP), in
artificial and real-world medical classification problems,
in terms of areas under the ROC curves, the Hosmer-
Lemeshow goodness-of-fit test, mean squared error, and
computational complexity.
Results ACP compared favorably to other calibration
methods such as binning, Platt scaling, and isotonic
regression. In several experiments, binning, isotonic
regression, and Platt scaling failed to improve the
calibration of a logistic regression model, whereas ACP
consistently improved the calibration while maintaining
the same discrimination or even improving it in some
experiments. In addition, the ACP algorithm is not
computationally expensive.
Limitations The calculation of CIs for individual
predictions may be cumbersome for certain predictive
models. ACP is not completely parameter-free: the
length of the CI employed may affect its results.
Conclusions ACP can generate estimates that may be
more suitable for individualized predictions than
estimates that are calibrated using existing methods.
Further studies are necessary to explore the limitations
of ACP.

INTRODUCTION
Predictive models are increasingly being used in
clinical practice (eg, risk calculators based on the
Framingham Study produce estimates for the
probability of a particular individual developing
cardiovascular disease in the next 10 years, while
others based on a variety of different studies
produce estimates for the development of breast
cancer,1 or mortality during hospitalization in an
ICU2). In predictive models based on binary
outcomes, the outputs constitute probability esti-
mates that the event of interest will occur (eg,
a particular patient has an 8% chance of having
myocardial infarction given her risk factors). In
this context, we measure the calibration of the
individualized prediction by checking how close
this prediction is to the true underlying probability

of the event for that particular patient. Given that
each patient is unique, it is not possible to deter-
mine what this true underlying probability is, and
therefore certain proxies have to be used, such as
the probability of the event in a group of similar
individuals. If the prediction is close to the
proportion of events in this group, then the indi-
vidualized estimate is considered well calibrated.
Calibration is important for these types of person-
alized medicine tools, since estimates (ie, predic-
tions) are often used to determine a patient’s
individual risk.3e5 A high risk can guide important
clinical decisions, such as initialization of anti-lipid
pharmacotherapy for an individual at high risk for
cardiovascular disease,6 7 or referral for chemo-
prevention trials for a woman with high chances of
developing breast cancer.8 Outside the USA, some
authors have proposed the use ICU mortality
calculators for critical decisions such as discontin-
uation of certain types of therapy.9 As molecular
markers from genomics and proteomics start to be
incorporated into predictive models and become
directly available to consumers,10e12 understanding
the shortcomings of individualized predictions and
developing new methods to calibrate individual
predictions becomes paramount. Calibration is even
more crucial to ensure accurate probability esti-
mations in personalized medicine, which includes
individualized estimates for risk assessment,
diagnosis, therapeutic intervention success, and
prognosis.13

Oftentimes, adequate calibration is coupled with
adequate discrimination in a predictive model;
however, a highly discriminative classifier (eg,
a classifier with a large area under the receiver
operating characteristic (ROC) curve, or AUC14) is
not necessarily well calibrated.15 For example,
a model that predicts all positive outcomes (ie,
those with outcome labels ‘1’) to occur with
probability 0.99 and all negative outcomes to occur
with probability 0.98 has perfect discrimination,
but will have poor calibration because negative
predictions are probably too high, and therefore,
miscalibrated. Several machine learning approaches,
for example, naive Bayes and decision tree, have
been shown by other authors to have poor cali-
bration in a variety of datasets.16 17 Even logistic
regression (LR) models, which are widely used in
medicine, are not always well calibrated. Conse-
quently, several methods have been proposed to
improve the calibration of popular statistical and
machine learning models.17e19

Zadrozny and Elkan applied binning to smooth
predictions.17 The method calibrates probability
estimates produced by a given predictive model
using histograms. Specifically, we first sort the
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predicted values of a model and divide them into 10 equal size
groups, which are called bins. Any point whose original estimate
falls within the upper and lower bounds of a single bin then
receives a probability estimate (ie, prediction) that equals the
fraction of positive cases in the bin, no matter whether it was
close to the lowest or highest estimate in the bin. A major
shortcoming of this approach is thus that at most 10 different
estimates are produced for all cases, and the discrimination in
each bin is no longer preserved. Alternatively, Platt suggested
a parametric approach that transforms classifier ’s outputs into
posterior probabilities18 by fitting these outputs to a sigmoid
function (ie, the estimates produced by a predictive model are
transformed by the logistic function). The parameters of the
sigmoid function are estimated using maximum likelihood
estimation. However, the method is not likely to produce
adequate probability estimates if the predictive model estimates
are distributed in a biased fashion (eg, at the extremes, or all near
the separating plane). To address the shortcomings of binning
and Platt scaling, Zadrozny and Elkan19 proposed another cali-
bration approach that utilizes isotonic regression (IR). Their
method involves finding a weighted least square fit fywig

n
i¼1 with

the following objective function: minfywig+
n
i¼1ðy

w
i � yiÞk subject

to y
w
i # y

w
iþ1 and byi # byiþ1;ci. Here fbyigni¼1 are pre-calibration

probability estimates that are used to order the class labels
fyigni¼1. When the tunable parameter k equals 2, an efficient pair-
adjacent violators algorithm can be used to solve the problem in
O(n),20 but efficient solutions for other values of k do not exist.
Furthermore, as other authors have pointed out, the results of
the IR are not continuous and tend to overfit the training data.21

Note that both IR and Platt scaling use monotonic trans-
formations of a model’s predictions, preserve their rankings, and
consequently preserve their AUCs.

To tackle the limitations of existing methods, we investigated
an alternative generalized approach that uses individualized CIs
to improve calibration without increasing model complexity.
Because the CI can be calculated based on the local density of
training cases in the neighborhood of a test case, our approach is
applicable to any probabilistic predictive model. In this article,
we limit our discussion to the widely used LR model, whose
parameter estimations are straightforward. The calibration
procedure for other learning models can be designed in a similar
manner.

Specifically, we process each prediction by first finding
a subset of training cases (labeled) whose predictions fall into
the CI of the test case prediction that is being processed. We
then substitute the test case prediction by the fraction of posi-
tive cases in this subset. We use a small subset of cases when the
predictive model is confident about the prediction, and we use
a large subset of cases when the predictive model is less confi-
dent about the prediction. Our method, adaptive calibration of
predictions (ACP), therefore uses a non-monotonic trans-
formation to calibrate predictive models. Figure 1 illustrates the
adjusted estimations of probabilities using four different cali-
bration approaches and the predictions of an LR model on
a linearly separable dataset.

METHODS
A brief review of LR is provided in the online supplementary
appendix. LR produces a probability estimate of a binary
outcome for each case, as well as a CI for this estimate. For
example, it can produce a risk estimate of 18% for development
of cardiovascular disease for a patient with certain blood pres-
sure and cholesterol measurements, smoking status, age, and

gender. The 95% CI for this prediction is, for example, (10% to
26%). In our method, we first collect all cases whose predictions
fall within the aforementioned CI, then take the average of their
class labels to calibrate this particular prediction, obtaining
a calibrated estimate of 12% for this individual.

Adaptive calibration for LR
Cases that are close to each other should have approximately the
same estimated probabilities in a calibrated model.22 Intuitively,
if we want to estimate f(X*) for a novel case, X*, we can select
a neighborhood of X* and calibrate the raw probabilistic esti-
mate of P(Y*¼ 1|X*) using cases taken from this neighborhood.
A simple estimator is therefore:

f ðX�Þ ¼ 1
jNðX�Þj +

XieNðX�Þ
Yi (1)

where Xi corresponds to the i-th neighboring case of X* and Yi

corresponds to its class label (ie, binary outcome). Here NðX�Þ
denotes the neighborhood of X*. Depending on the construction
criteria for this neighborhood, equation (1) could represent, for
example, a nearest neighbor estimator if we select a fixed
number of n cases, or a Parzen window estimator if we choose
a fixed bandwidth, for example, e¼max(|X*�Xi|) s.t.
cXi˛NðX�Þ. Given a n or e, the estimator induced by equation
(1) corresponds to the fraction of positive cases. However, it is
non-trivial to select a single n or e for the entire test population.
In the first place, the computational complexity would be high
because these estimators need to find the neighborhood for every
test case X* at run-time, as in the method proposed by Osl
et al.13 Furthermore, there might not be a single n or e that works
well for all test cases.
We propose ACP to overcome these difficulties. For a general-

ized linear model f ’(X)¼g(WTX), including LR, where W stands
for weight parameters and g($) is a link function, we can infer
the variances S of W¼<u0,.,uK> in addition to the means (ie,
the coefficients). These variances are used to produce the CIs for
individual predictions. Specifically, the standard deviations on
each dimension of the parameter vector are multiplied by their
corresponding attribute values for a subject (ie, test case), and
then transformed through the inverse logit function (or
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Figure 1 Illustration of calibration functions of four different
approaches, including binning, Platt scaling (PS), isotonic regression
(IR), and our proposed method, adaptive calibration of predictions (ACP).
LR, logistic regression.
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alternatively converted through the delta method23) to obtain
the desired CI for the prediction for that particular case. We then
calibrate the probability estimates of a predictive model as
follows

PacpðY�¼1jX�Þ¼ 1��CI9ðX�Þ�� +
fi:PðYi¼1jXiÞeCI9ðX�Þg

Yi (2)

where |CI’(X*)| is the 95% CI for a prediction P(Y*¼1|X*), and
|CI’(X*)| denotes the total number of points whose predicted
values are included in this interval. This above formula is
directly applicable for situations in which the predicted proba-
bilities of the training data range from zero to one. In this case,
we can use a 95% CI to obtain the |CI’(X*)|.

However, using a fixed CI, |CI’(X*)| can be problematic if
estimated probabilities of the training data cover a much
narrower range, that is, [a, b] such that a>0 and b<1. The
problems are: (1) the 95% CI of the test case could easily fall out
of the range r¼[a, b] where no training cases exist; and (2) the
95% CI could be too wide, covering the entire spectrum of
estimated probabilities of training cases and therefore making all
calibrated predictions have the same value (ie, adjusted esti-
mates of probabilities for test cases simply equal to the fraction
of positive cases among all the training data).

To address these problems, we need to adjust |CI’(X*)|. We
can express the LR model as

ZðPðY ¼ 1jXÞÞ ¼ ln
�

PðY ¼ 1jXÞ
1� PðY ¼ 1jXÞ

�
¼ w0 þ +

K

k¼1
wkxk (3)

where P(Y ¼ 1|X) is the estimated probability for a given X.
Here Z($) denotes the logit function. Let x0¼1, then

ZðPðY ¼ 1jXÞÞ ¼ +
K

k¼0
wkxk (4)

The LR model provides estimated parameters W and their co-
variances S. We can thus compute the co-variance matrix

var

 
+
K

k¼0
wkxk

!
¼
�
S

1
2

�
9X2
�
S

1
2

�
(5)

and the 95% CI for a given observation is

ZðPðY ¼ 1jXÞÞ61:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
S

1
2

�
9X2
�
S

1
2

�r
. As mentioned earlier,

this CI could be too wide for ACP when the range of estimated
probabilities r ¼ |b�a| is smaller than one. Therefore, we rescale

the CI to be CI ¼ ZðPðY ¼ 1jXÞÞ61:96 � r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
S

1
2

�
9X2
�
S

1
2

�r
. As

PðY� ¼ 1jX�Þ ¼ eZðPðY�¼1jX�ÞÞ

1þ eZðPðY�¼1jX�ÞÞ, we can convert the CI of

ZðPðY� ¼ 1jX�ÞÞ into the probability using the inverse logit
function.24 The adjusted CI for P(Y* ¼ 1|X*) is,

Figure 2 illustrates two situations in applying the ACP
procedure.
In summary, we used four steps to convert a pre-calibration

probability estimation P(Y* ¼ 1|X*) into a locally adjusted
Pacp(Y* ¼ 1|X*) through adaptive calibration, as indicated in
algorithm 1.
Figure 3 shows an example of applying ACP. The green lines

in the first column of figures represent the convex hull (or set)
of cases whose estimated probabilities fall into the CI of the
test case X* (indicated by a black star). Note that r equals
|0.43�0.11| ¼ 0.32 in all three cases, as it depends on
predictions for the training data.

Figure 2 Illustration of the adaptive calibration of predictions (ACP)
procedure. In situation 1, pre-calibration probabilities of training data
range from zero to one, and equation (2) can be applied directly. In
situation 2, pre-calibration probabilities of training data cover a much
narrower interval (a, b). In this situation, utilizing the original CI would be
problematic, as most observations might be within this range. To avoid
that, we rescale the CI of the test case by considering the range
factor r ¼ |b�a|.

CI9ðX�Þ ¼

 
e
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The probability of each test case was adjusted using training
cases with similar probabilities. As a result, the ACP model was
capable of handling non-linearly separable cases for which the
original LR model failed. Therefore, although it used LR as
a guide to order these cases by their probability estimates, and to
generate a neighborhood using the LR CI around the test case, it
was capable of calibrating predictions in regions where class
labels of cases in these neighborhoods were very heterogeneous.
Hence, in this particular case, it was able to ‘fix’ the predictions
of an LR model. We certainly would not recommend LR usage in

non-linearly separable problems (ie, without including interac-
tion terms), and hence this example was used just to illustrate
how ACP works, and how it can dramatically change predictions
in certain cases, but not to advocate for its use to remediate a model
that does not fit the data in the first place. Figure 4 illustrates the
separation boundaries of the LR and ACP methods in a simple
two-dimensional space, respectively.
Assuming the sizes of the training and test data are n and m,

ACP needs O(n log n) to sort estimated probabilities, and uses
a hash function to find the neighbors for each calibration at
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Figure 3 Examples of applying the adaptive calibration of predictions (ACP) method to test cases. We sampled 800 cases from four Gaussian
distributions (600 negative and 200 positive cases) to create the training data. In the first column, each figure illustrates a test case and its convex hull
(ie, the set that was used to calibrate the prediction). In the second column, we show the sorted probabilities and CIs for training cases, as well as the
estimated probability and the CI for the test case. Finally, in the last column, we show adjusted probability estimates of all training cases and the test
case after application of ACP. For comparison, we kept the order of cases on the x-axis of the figure in column three consistent with the orders in
column two.
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a cost of O(1). For methods in comparison, binning requires
O(n log n) to construct K bins, and an additional O(1) for each
calibration. Platt scaling requires O(nT) to build a one-dimen-
sional LR model using Newton’s method,25 where T is the
number of iterations required for convergence. The calibration
for each subject costs O(1) for Platt scaling. Finally, IR requires
O(n) to build the step functions20 and an additional O(1) for
each calibration. Table 1 summarizes the time complexity of
these calibration methods.

RESULTS
We evaluated the performance of different calibration methods
using both synthetic and real medical data. For comparison, we
used three indices, the AUC,14 the decile-based
HosmereLemeshow goodness-of-fit test (HL test),26 27 and root
mean squared error (MSE). These first two are measurements of
discrimination (AUC) and goodness-of-fit for the LR (HL test),
respectively and the latter (MSE) is related to analysis of resid-
uals. See Lasko et al28 and Zou et al29 for a review of AUC, and
Hosmer and Lemeshow24 for the HL test.

To visualize estimated probabilities before and after applying
calibration methods, we used a reliability diagram, which is
produced using the following steps. First, we sort pre-calibrated

predictions in ascending order. Next, these predictions along
with their respective class labels are grouped into 10 bins. Like
subgroups in the HL test, we have two choices for constructing
these bins: (1) equal number of elements in the bins, sorted by
probability estimates, that is, Pn=10R elements per cell; or (2)
fixed, equal length intervals of probability estimates, that is,
0<p<¼0.1, 0.1<p<¼0.2, etc. In this article, the first option was
used to be consistent with the decile-based HL test. Finally, we
plot average predictions versus average class labels (ie, propor-
tion of positive cases) within each bin. The closer the plotted
points are to the diagonal line, the better the calibration. We
compared ACP with LR without calibration (LR), LR with
binning (binning), LR with Platt scaling (PS), and LR with IR
(IR) using both artificial and medically relevant data.

Figure 4 Visual comparison of
adaptive calibration of predictions
(ACP) and logistic regression (LR)
models using a simulated 2D dataset. In
the first row, blue crosses correspond
to negative cases and red diamonds
correspond to positive cases. The black
lines indicate the decision boundaries of
LR and ACP models at their cut-offs. In
the second row, the surface plots
illustrate the distribution of estimated
probabilities for both models.
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Table 1 Time complexity of calibration methods for training
a calibration model with n cases and using it to predict all of m test
cases

Binning Platt scaling Isotonic regression ACP

Time
complexity

O(n log n+m) O(nT+m) O(n+m) O(n log n+m)

Note that n and m stand for the size of training and test data, and T is the number of
iterations required for convergence.
ACP, adaptive calibration of predictions.

Table 2 Performance measures over 1000 runs

AUC (mean±SD) MSE (mean±SD) HL test (pass rate)

(a) Dataset A: almost linearly separable data

LR 0.98360.004 0.04860.006 91.1%

Binning 0.98060.004 0.05260.005 98.6%

PS 0.98360.004 0.05160.007 43.3%

IR 0.98560.004 0.04560.006 98.8%

ACP 0.98560.004 0.04560.006 99.9%

(b) Dataset B: not linearly separable data

LR 0.50260.002 0.22263e-5 0%

Binning 0.95460.006 0.07460.005 779%

PS 0.50260.002 0.22262ee5 0%

IR 0.71860.005 0.18060.002 0%

ACP 0.96760.005 0.06560.006 997%

ACP, adaptive calibration of predictions; AUC, area under the ROC (receiver operating
characteristic) curve; HL, HosmereLemeshow; IR, isotonic regression; LR, logistic
regression; MSE, mean squared error; PS, Platt scaling.
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Synthetic data
As an illustration, we sampled one-dimensional data so that the
probabilistic outputs of different approaches (LR, binning, PS,
IR, and ACP) could be visualized. Our first simulated dataset is
almost linearly separable, and sampled from two Gaussian
distributions with unit variance but different means,
X0˛Nð0; 1Þ, X1˛Nð3; 1Þ, and X ¼ X1WX0, where X1 and X0

correspond to data with class label ‘1’ and ‘0’. The second
dataset is not linearly separable, and was generated from
X0˛Nð�3; 1ÞWNð3; 1Þ, X1˛Nð0; 1Þ. Table 2 shows the results of
applying different approaches on 1000 runs of simulated data.
All approaches had comparable (ie, no significant difference)
AUC and MSE for the almost linearly separable data, but
ACP demonstrated better calibration, which ‘passed’ the HL test

Figure 5 Visualization of probabilities
generated by logistic regression (LR)
and four different calibration methods
using synthetic datasets. ACP, adaptive
calibration of predictions; AUC, area
under the ROC (receiver operating
characteristic) curve; HL,
HosmereLemeshow goodness-of-fit
test; IR, isotonic regression; PS, Platt
scaling.
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in 999 out of the 1000 runs (ie, the p value was greater
than 0.05).

Regarding the second dataset that is not linearly separable,
ACP stood out in all three indices, and had a statistically signifi-
cant higher AUC than LR (p<1e�15), binning (p<1e�15), PS
(p<1e�15), and IR (p<1e�15) using a right-tailed paired t test.
ACP also had a lower MSE compared to LR (p<1e�10), binning
(p<1e�10), PS (p<1e�10), and IR (p<1e�10) using a left-tailed
paired t test. Finally, ACP showed a higher rate of ‘passing’ the HL
test than LR (p<1e�10), binning (p<1e�10), PS (p<1e�10), and
IR (p<1e�10). All methods except ACP and binning performed
poorly on dataset B. The reason is that their monotonic
constraints limit their transformation power. Therefore, if pre-
calibrated predictions have lowAUCs, their ‘calibrated’ outcomes
using PS and IR remain poorly discriminative. In other words,
these outcomes still make many mistakes in ranking, which
implicitly lead to large MSE and poor calibration (table 2).

Figure 5A (1e5) illustrates results from a single simulation of
the almost linearly separable data with all five approaches. These
methods showed similar discrimination ability, and all of them
accepted the null hypothesis that the model was calibrated using
the HL test at significance level 0.05. Similarly, figure 5B (1e5)
shows the results from a single simulated run on data that are
not linearly separable. LR and PS had AUCs around 0.5, which
are close to the performance of a random classifier. Both
approaches also failed to pass the HL test. IR demonstrated

better AUC at 0.718, but its estimations of probabilities were
not calibrated. In contrast, ACP showed superior performance in
both discrimination and calibration (AUC¼0.976, HL test
p¼0.975), which slightly outperformed the second best
approach, binning (AUC¼0.962, HL test p¼0.849).

Experiments with clinical data
We also conducted experiments using clinical data. As opposed
to the synthetic data, the gold standard individualized proba-
bility is unknown here, but results that use the same evaluation
measures as in the synthetic data suggest that our approach may
have advantages over binning, Platt scaling, and IR.

Hospital discharge data
This experiment was conducted on a de-identified dataset used
for predicting potential follow-up errors related to microbiology
cultures ordered while patients were hospitalized, for which
a predictive model was previously published.30 These errors
include, among others, continued prescription of antibiotics that
do not cover the microorganisms identified in cultures. Identi-
fying the cases most likely to have inappropriate follow-up can
help providers be on alert for these potential errors.
The data represented a retrospective analysis of microbiology

cultures performed at a teaching hospital in 2007. The potential
predictors consist of eight categorical variables and two
numerical variables, which are shown in table 3. The outcome
was a binary variable indicating a potential follow-up error.
Figure 6 illustrates the distribution of each feature variable

(predictor) and the target variable. From a total of 8668 hospital
discharge cases, 385 were considered to be potential errors in
a review of charts executed by trained professionals. The dataset
is highly imbalanced: non-errors dominate the observations.
In the modeling process, we represented each categorical

feature by a set of binary variables. For example, the categorical
feature Specimen corresponds to three Boolean variables (indi-
cating urine, sputum, or CSF, with the baseline being blood). The
fully expanded feature space had 22 dimensions. Similarly to our
synthetic experiment, we applied different calibration models
and compared their performance. We randomly split the data
into training (66%) and test sets (34%) for evaluation. Figure 7
shows that AUCs for all five methods were comparable at
around 0.742. Regarding calibration, the HL test results showed
that binning (p¼0.019), PS (p¼0.005), and IR (p<0.001) did not
generate well-calibrated outputs, while ACP and LR generated
calibrated probabilities (ie, LR: p¼0.096, and ACP: p¼0.615).
We repeated the random split process 100 times and applied all

calibration approaches. Their results are listed in table 4. All five
methods had comparable AUCs around 0.71. ACPshowed slightly
lower MSE than other approaches, but this was not statistically

Table 3 Summary of features and the target variable for the hospital
discharge error data: eight features (potential predictors) are categorical
and two are numerical

Name Details

Potential predictors

Specimen 0¼blood, 1¼urine, 2¼sputum, 3¼CSF

Specific days Number of days between admission date and specimen
collection date

Collected week 0¼specimen collected on weekday, 1¼specimen collected
on weekend

Final week 0¼final result on weekday, 1¼final result on weekend

Visit type 1¼admission, 0¼non-admission

Service 0¼<blank> (patient not admitted), 1¼oncology, 2¼general
medicine, 3¼medical subspecialties, 4¼surgery and surgical
sub-specialties, 5¼other

Age Age in years

Gender 0¼male, 1¼female

Race 0¼white, 1¼black, 2¼Asian, 3¼Hispanic, 4¼other,
5¼unknown/declined

Insurance 0¼Medicare, 1¼Medicaid, 2¼commercial, 3¼other

Outcome variable

Potential error 0¼not a potential follow-up error, 1¼a potential follow-up
error
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Figure 6 Histograms of feature and target variable values for the hospital discharge data. Blue bars indicate potential follow-up errors and red bars
represent normal cases. There are eight categorical variables and two numerical variables.
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significant (ie, LR: p¼0.56; binning: p¼0.46; PS: p¼0.056; and IR:
p¼0.45). Regarding calibration, ACP did not reject the null
hypothesis that estimated probabilities are calibrated 65 out of
the 100 times usingHL tests, followed by PS (48), LR (46), binning
(4), and IR (0). The p values of the HL test given by the ACP
method are significantly higher than the p values of PS (p¼0.01),
binning (p<0.01), PS (p¼0.04), and IR (p<0.01).

The binning approach had very poor calibration performance
on this data. A major reason is that the binning approach merges
thousands of pre-calibrated prediction values into only 10 values.
Although its calibration on the training data is perfect,
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Figure 7 Various calibration methods are applied to the hospital discharge data. In the first sub-figure, the black dots indicate the averaged
probabilities of an LR model, plotted against their corresponding fraction of positive cases in 10 equal-element cells. In the rest of the sub-figures, the
graphs show reliability diagrams after application of different calibration methods. ACP, adaptive calibration of predictions; AUC, area under the ROC
(receiver operating characteristic) curve; HL, HosmereLemeshow; IR, isotonic regression; LR, logistic regression; PS, Platt scaling.

Table 4 Performance of ACP and other calibration methods over 100
random splits

AUC
(mean±SD)

HL test
(pass rate)

MSE
(mean±SD)

Time
(seconds)

LR 0.7160.019 46% 0.04160.0026 5.7560.318

Binning 0.7060.020 4% 0.04160.0025 1.2460.066

PS 0.7160.019 48% 0.04260.0027 2.9760.318

IR 0.7160.018 0% 0.04160.0025 1.3360.069

ACP 0.7160.019 65% 0.04060.0025 2.2860.121

ACP, adaptive calibration of predictions; AUC, area under the ROC (receiver operating
characteristic) curve; HL, HosmereLemeshow; IR, isotonic regression; LR, logistic
regression; MSE, mean squared error; PS, Platt scaling.
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performance on the test data could be very poor due to over-
fitting. In extreme cases, some bins would host only negative
test examples but no positive examples at all, which causes
a large deviation.

Myocardial infarction data
The myocardial infarction (MI) datasets contain information
from patients with and without MI, who were seen at two

emergency departments in the UK.31 These data were originally
collected to determine which and how many data items were
required to construct a decision support algorithm for early
diagnosis of acute MI, using clinical and electrocardiograph data
available at presentation. Variables such as nausea, chest pain
characteristics, EKG and physical exam findings, demographics,
and past history of MI were used to predict current MI.
Although outdated, these data are representative of the types
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Figure 8 Comparison of various calibration approaches using dataset A. The ACP and binning methods passed the HL test while other approaches
did not generate calibrated outputs. ACP, adaptive calibration of predictions; AUC, area under the ROC (receiver operating characteristic) curve; HL,
HosmereLemeshow; IR, isotonic regression; LR, logistic regression; PS, Platt scaling.
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of problems being addressed by predictive models and are used
here for illustration purposes. We used a random split to
divide dataset A (ie, patients observed in emergency departments
in Edinburgh) into a training (60%) and a test (40%) set.
Similarly, dataset B (ie, patients observed in emergency depart-
ments in Sheffield) was divided into a training (60%) and a test
(40%) set.

Figures 8 and 9 illustrate the use of various calibration
methods on the test data, which were randomly split from the
datasets A and B. In both experiments, PS and IR failed to pass
the HL test at the significance level of 0.05. On the other hand,
binning passed the HL test, but its AUCs were lower than the
other methods. For both cases, ACP showed superior calibration
without decreasing AUCs.
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Figure 9 Comparison of various calibration methods using dataset B. PS and IR failed to pass the HL test, and their outputs visually deviated further
away from the perfect calibration line (gray) compared to the ACP method. The ACP method generated calibrated predictions and had the largest AUC
among all approaches. ACP, adaptive calibration of predictions; AUC, area under the ROC (receiver operating characteristic) curve; HL,
HosmereLemeshow; IR, isotonic regression; LR, logistic regression; PS, Platt scaling.

272 J Am Med Inform Assoc 2012;19:263e274. doi:10.1136/amiajnl-2011-000291

Research and applications



We repeated the random split process 100 times and applied
all four calibration approaches on both datasets. The results are
listed in table 5. For dataset A, ACP showed the largest AUCs,
which were significantly higher than the AUCs of binning
(p<3.6e�17) and IR (p<2.2e�11) using a right-tailed paired t
test. ACP also had lower MSEs compared to LR (p¼0.004),
binning (p<1e�5), PS (p<1e�5), and IR (p¼1e�5) using a left-
tailed paired t test. ACP also had the highest rate of passing the
HL test compared to the other methods, and its p values were
significantly higher than LR (p<1e�5), binning (p<1e�5), PS
(p<1e�5), and IR (p<1e�5). For dataset B, the AUCs of ACP
were higher than the AUCs of binning (p<1.5e�13) and IR
(p<1.5e�9) and comparable to LS (p¼0.56) and PS (p¼0.56).
ACP also showed significantly lower MSE compared to LR
(p¼0.007), binning (p¼0.0003), PS (p<1e�3), and IR (p<1e�3).
Regarding calibration, ACP demonstrated a higher rate of
passing the HL tests compared to other methods, and its
p values were significantly higher than those of LR (p<1e�3),
binning (p¼0.0005), PS (p<1e�3), and IR (p<1e�5).

DISCUSSION
Calibration is a less studied but important aspect of a predictive
model, particularly when estimates are used for personalized
medicine. If uncalibrated predictions are used as surrogates of
risk estimations, the medical decisions for individual patients
could be incorrect. While previous efforts to calibrate probabi-
listic estimates provide global solutions, we proposed a novel
approach that uses tailored information to calibrate adaptively
and locally. Without increasing computational complexity, our
approach demonstrated good performance in experiments using
synthetic and clinical data. Furthermore, our framework can be
extended to any probabilistic models that generate CIs associ-
ated with each prediction.

The ACP procedure is simple and straightforward. However, it
is not always easy to determine the CIs of predictions for
predictive models. For example, there is not a closed form
solution for the CIs of SVM predictions, which is not a method
originally designed to produce probabilistic estimates. Although
it is always possible to estimate the CIs by bootstrapping,32 the
calculation becomes computationally more expensive.

LIMITATION
ACP is not parameter-free. It needs a threshold parameter for
truncating the CIs, which is set to be 95% in our experiments as
mentioned earlier in the Methods section. A larger value for this
threshold parameter would allow ACP to have more local points
included in the computation, and vice versa. We can systemat-
ically stretch or compress the ‘neighborhood of interest’ for
our calibration model according to the threshold. Even though
the model is not completely parameter free, it provides more

flexibility in adjusting estimated probabilities when compared to
calibration methods like binning, Platt scaling, and IR. More
research in investigating the optimal threshold value for the CIs
is certainly warranted. Furthermore, the examples presented
here are relatively small and do not represent the full spectrum
of predictive models that are increasingly being used in clinical
practice and biomedical research. The connection to personal-
ized medicine is, like personalized medicine itself, still tentative.
However, the field is not likely to evolve unless calibration issues
are resolved. While we believe that ACP provides a contribution
in that direction, clearly much more research and extensive
studies are needed.
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