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Current clinical phenomenological diagnosis in psychiatry 
neither captures biologically homologous disease entities 
nor allows for individualized treatment prescriptions based 
on neurobiology. In this report, we studied two large sam-
ples of cases with schizophrenia, schizoaffective, and bi-
polar I disorder with psychosis, presentations with clinical 
features of hallucinations, delusions, thought disorder, af-
fective, or negative symptoms. A  biomarker approach to 
subtyping psychosis cases (called psychosis Biotypes) cap-
tured neurobiological homology that was missed by conven-
tional clinical diagnoses. Two samples (called “B-SNIP1” 
with 711 psychosis and 274 healthy persons, and the “rep-
lication sample” with 717 psychosis and 198 healthy per-
sons) showed that 44 individual biomarkers, drawn from 
general cognition (BACS), motor inhibitory (stop signal), 
saccadic system (pro- and anti-saccades), and auditory 
EEG/ERP (paired-stimuli and oddball) tasks of psychosis-
relevant brain functions were replicable (r’s from .96–.99) 
and temporally stable (r’s from .76–.95). Using numer-
ical taxonomy (k-means clustering) with nine groups of 
integrated biomarker characteristics (called bio-factors) 
yielded three Biotypes that were virtually identical between 
the two samples and showed highly similar case assign-
ments to subgroups based on cross-validations (88.5%–
89%). Biotypes-1 and -2 shared poor cognition. Biotype-1 
was further characterized by low neural response magni-
tudes, while Biotype-2 was further characterized by over-
active neural responses and poor sensory motor inhibition. 
Biotype-3 was nearly normal on all bio-factors. Construct 

validation of Biotype EEG/ERP neurophysiology using 
measures of intrinsic neural activity and auditory steady 
state stimulation highlighted the robustness of these out-
comes. Psychosis Biotypes may yield meaningful neurobio-
logical targets for treatments and etiological investigations.
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Conventional systems for psychosis diagnosis1–3 are pri-
marily experiential; they do not incorporate biomarkers 
for differentiating individual cases by subtype. Hyman4 
stated “…a laboratory-based system will be required 
[for] additional substantial improvements” in psychi-
atric diagnoses. The Bipolar-Schizophrenia Network 
for Intermediate Phenotypes (B-SNIP1) consortium 
sought to identify biomarker features distinguishing the 
three leading psychosis diagnoses, schizophrenia (SZ), 
schizoaffective disorder (SAD), and bipolar I  disorder 
with psychosis (BDP). Two key elements were required: 
(1) large samples across multiple diagnoses were needed 
to capture heterogeneity within and between diagnoses 
and support the required computations. Small samples 
could fail to demarcate neurobiologies and/or to ade-
quately capture hard-to-classify, nonprototypical cases; 
(2) a broad range of biomarkers5 encompassing the 
neuro-cognitive6–10 and physiological11–13 correlates of 
these heterogeneous syndromes.
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Based on experience within the Psychiatric Genetics 
Consortium, Sullivan et  al14 (p.  25) stated the range of 
genetic findings using conventional clinical diagnoses 
“strongly suggest that our diagnostic categories do not 
define pathophysiological entities.” Identification of 
promising neurobiological entities within idiopathic psy-
chosis could support such etiological investigations and 
advance treatment developments. Previous investigators 
have proposed neurobiologically distinct subgroups of 
psychoses using biomarkers.15–17 B-SNIP1 also developed 
a neurobiological transdiagnostic model using numer-
ical taxonomy of biomarker data yielding three “psy-
chosis Biotypes”.18 B-SNIP’s strengths included large 
transdiagnostic samples estimating the relative propor-
tions of psychosis cases from different classes, a more 
diverse biomarker panel than previously available, use 
of first-degree relatives, measures not used in numerical 
taxonomy for concurrent and construct validation,19 and 
unique parsing of biomarker variance in psychosis only.

Ioannidis20 questioned the replicability of many sci-
entific findings, notably in psychology and psychiatry.21 
Replication supports confidence in outcomes,4,22,23 so 
replicating the B-SNIP1 psychosis Biotypes was crucial 
given their implications for psychosis subtyping, devel-
opment of laboratory-assisted diagnosis in psychiatry, 
and future treatment developments via patient stratifica-
tion. We present such a replication and cross-validation, 
plus construct validation of critical biomarker features, 
in a new sample of similarly large size. The remarkable 
similarities between B-SNIP-1 and replication samples 
illustrate the promise of biomarker-defined psychosis 
Biotypes for capturing actionable neurobiological knowl-
edge for treatment targeting.24

Methods

The National Institute of Mental Health (NIMH), 
through the National Data Archive (NDA), is responsible 
for storage of and managing access to all data used in this 
manuscript. Instructions for requesting access are pro-
vided at the beginning of the Supplementary Methods. 
Data collection strategies were the same for B-SNIP125–29 
and replication samples.30–33 Data analyses for our initial 
Biotypes paper18 were updated for electroencephalog-
raphy (EEG) and event-related potentials (ERPs), with 
data for B-SNIP1 and replication projects quantified 
using the same procedures. This meant re-quantifying all 
B-SNIP1 subjects using updated procedures. Differences 
from B-SNIP1 quantification procedures and outcomes 
are underlined in the main text and Supplementary 
Methods.

Subjects

Subject recruitment, interviews, and laboratory data col-
lection were completed at B-SNIP consortium sites (full 

details on recruitment and clinical and demographic 
characteristics for B-SNIP1 are available in Tamminga 
et al34; those same procedures were followed for the repli-
cation sample). The Institutional Review Board at every 
participating institution approved the projects; all subjects 
provided informed consent prior to participation after 
they obtained a complete study description. Clinically 
stable participants were administered the Structured 
Clinical Interview for Diagnostic and Statistical Manual 
of Mental Disorders IV (DSM-IV-TR35). Persons meeting 
a diagnosis for SZ, SAD, or BDP were rated on the 
Birchwood Social Functioning,36 Global Assessment of 
Functioning, Montgomery-Asberg Depression Rating,37 
Positive and Negative Syndrome,38 and Young Mania 
Rating39 scales. Healthy persons were free of lifetime psy-
chosis syndromes, recurrent mood syndromes, and a his-
tory of psychosis or bipolar disorders in their first-degree 
relatives.40 All participants were rated on the Hollingshead 
Two-Factor Socioeconomic Rating Scale. B-SNIP1 had 
711 psychosis and 274 healthy participants18; the replica-
tion sample had 717 psychosis cases and 198 healthy per-
sons. See Supplementary tables 1–2 for demographics and 
clinical characteristics, Supplementary tables 3 for clinical 
characteristics group comparisons, and Supplementary 
tables 4 and 5 for medication comparisons. As shown in 
those tables, the two samples were remarkably similar on 
demographic characteristics.

Biomarker Panel for Biotypes

Biomarkers were selected given known deviations in psy-
chosis at the time of  B-SNIP1 initiation,41 and included 
laboratory tests indexing neurocognitive, perceptual, 
and physiological systems of  relevance to psychosis. The 
included measures are traditional “endophenotypes” 42: 
(1) Brief  Assessment of  Cognition in Schizophrenia 
(BACS43,44), assesses global neuropsychological func-
tioning (psychosis cases have impaired cognition25,30); (2) 
prosaccades measure speed of  visual orienting (psychosis 
cases show variably slowed or speeded responses45,46); (3) 
anti-saccades assess inhibitory control under percep-
tual conflict because the visual stimulus and required 
response location are incompatible47 (psychosis cases 
have increased error rates18,26,31); (4) the stop-signal test 
(SST48) measures adequacy of  adapting speeded motor 
responses to a visual stimulus under conditions requiring 
more or less inhibitory control (psychosis cases have 
poor adaptive response times and increased errors18,27,30); 
and auditory brain responses (electroencephalography 
(EEG) and event-related brain potentials (ERP)) to 
(5) repetitive stimuli (paired-stimuli paradigm49,50) and 
(vi) targets randomly interspersed with nontarget (or 
standard) stimuli (oddball paradigm51,52). The EEG/
ERP paradigms assess the brain physiology of  prepara-
tion for, and recovery from, sensory activations, neural 
responses to stimulus salience and relevance, context 
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updating in working memory, and nonspecific (or in-
trinsic) brain activity, all of  which are deviant in psycho
sis.11,18,28,29,32,33 These paradigms have substantial evidence 
of  utility,25–33,43–45,50–64 and their intermediate level of  neu-
robiological targeting allow for links both downward 
(more molecular) and upward (more clinical/observa-
tional) in the causal chain, an approach supporting dis-
covery of  genotype-clinical phenotype associations for 
etiologically complex diseases.65,66

For each paradigm, individual manuscripts from 
B-SNIP125–29 and replication samples30–33 detail the data 
collection and quantification methodologies. The same 
procedures for data collection and updated quantifica-
tions were used for B-SNIP1 and the replication sample 
(as briefly described below and further detailed in 
Supplementary Methods).
BACS. The BACS has six subtests covering four cog-
nitive domains (Verbal Memory, Processing Speed, 
Reasoning and Problem Solving, Working Memory).
Pro- and Antisaccade Tasks. For prosaccades, three fixa-
tion conditions (gap, synchronous, and overlap) were ad-
ministered (32 trials per condition). Participants fixated a 
central cross and moved their eyes quickly and accurately 
to a peripheral cue once it appeared. For antisaccades, 
an “overlap” condition was used because it is most sensi-
tive to psychosis.67 Participants fixated a central cross and 
when the peripheral cue appeared they were to move their 
eyes quickly and accurately to the mirror image location 
of the cue (opposite direction, same distance from cen-
tral fixation; 80 total trials). Each saccade was scored for 
(1) direction (to evaluate correct or error response) and 
(2) onset latency (time from cue illumination to saccade 
initiation).
SST.  Subjects sat before a computer monitor displaying 
a white central fixation cross. A green circle (Go cue) ap-
peared to the left or right. On 40% of trials, a red Stop 
Signal was presented at central fixation.27,30 Participants 
were instructed to respond quickly and accurately unless 
they encountered the Stop Signal. On failed Stop trials, 
a red “X” appeared over the Stop Signal to provide per-
formance feedback; these trials were counted as errors. 
A  baseline task of 50 consecutive Go-only trials was 
administered to assess baseline reaction time. Strategic 
slowing (difference between response latencies on base-
line Go trials and Go trials during Stop Signal perfor-
mance) and proportion of Stop Signal errors were used 
in Biotype construction.18

Auditory Paired Stimuli Task. Subjects passively lis-
tened through headphones to broadband auditory click 
pairs with 500 msec interclick interval (B-SNIP1: 150 
pairs, replication sample: 120 pairs) occurring every 9.5 s 
on average (9–10 s inter-pair interval).
Auditory Oddball Task.  Subjects listened through head-
phones to 567 standard (1000 Hz) and 100 target (1500 
Hz) tones presented in pseudorandom order (1300  ms 

intertrial interval) and pressed a button when a target was 
detected (to maintain vigilance).
EEG Recording and Data Reduction.  EEG was re-
corded from 64 Ag/AgCl sensors with nose reference and 
forehead ground. Data from good trials were averaged to 
create 64-sensor event-related potentials (ERPs). In order 
to maximize use of available spatial, temporal, and oscil-
latory information in the evoked response, a frequency-
wise PCA of evoked power28,29 was conducted across all 
subjects to empirically define frequency bands for anal-
ysis, resulting in low, beta, and gamma ranges. A  spa-
tial PCA28,29,68,69 was also conducted on the broadband 
grand-averaged ERP waveforms (used for conventional 
ERP analyses) and then on each frequency band PCA 
outcome. PCA weights were multiplied by the 64-sensor 
data for each ERP and power waveform and summed 
across sensors, yielding “virtual sensors” that were used 
for data analysis. This resulted in four sets of waveforms 
that were analyzed instead of 64 separate sensors, effi-
ciently summarizing the spatial distributions, minimizing 
the number of statistical comparisons, and maximizing 
the signal/noise ratio of the ERP data.68 Modifications 
from B-SNIP1 (see Supplementary Methods) simplified 
and improved frequency domain scoring and ensured 
standardized data quality control between projects.32,33 
Time bins selected for Biotypes analyses were based on 
the same significant group effects from B-SNIP118 that 
were indistinguishable in the replication sample32,33 (see 
below). Figure 1 (voltage) and Supplementary figure  1 
(frequency) show time courses and spatial topographies 
for each waveform (ERP-voltage, low, beta, and gamma).

Data Integration for Bio-Factor Creation

We evaluated whether individual biomarker variables 
assessed shared and replicable aspects of  brain func-
tioning (e.g., whether pro- and anti-saccade response 
latencies both index the same speed of  visual orienting 
construct, whether the N100 ERP during the paired-
stimuli task assesses a highly similar neural response as 
the N100 ERP during the oddball task). Reducing vari-
able redundancy via methods like PCA enhances group 
comparisons, reduces the number of  such comparisons, 
and increases the accuracy of  numerical taxonomy 
methods like k-means clustering.70 PCA reduces data 
dimensionality (maximizing signal/noise) by replacing 
a group of  variables with linear combinations of  those 
variables, thus creating statistically efficient domains for 
subsequent analyses. PCA was conducted within par-
adigm sets (BACS—see Supplementary Methods, sac-
cades, SST, EEG/ERP). The outcomes of  these data 
integrations and their consistency between B-SNIP1 
and replication samples are shown in the Results sec-
tion. These integrated biomarker composites were called 
“bio-factors.”

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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59

Psychosis Biotypes

Longitudinal Stability Analysis

Data were collected using identical procedures at three 
time points spaced six months apart (baseline, 6-month, 
and 12-month). Ninety-four replication sample partici-
pants (72 psychosis and 22 healthy) had data at the three 
time points. Intraclass correlations (ICCs71) were used on 
bio-factor data across the three time points to determine 
longitudinal stability.

Construct Validation Measures

These measures were not used in Biotype construction. 
They were included here to evaluate specific hypotheses 
that arose from the Biotypes outcomes to probe specific 
critical features differentiating subgroups.
Intrinsic EEG Activity (IEA). Data came from the 9–10 s 
interpair interval of the paired-stimuli task.72 Epochs 
consisted of EEG from 500  ms after the second click 
of each trial to 500 ms before the first click of the next 
trial. No stimuli were presented during this period and 
there was no task other than waiting for the next stimuli 
pair, so these data capture nonspecific (intrinsic) brain ac-
tivity. EEG data were pre-processed following methods 
described above and in Thomas et al.72 Data were trans-
formed into the frequency domain, with frequency bands 
empirically determined using PCA,72 resulting in four pri-
mary bands (97% variance explained): delta/theta, alpha, 
beta, and gamma (Supplementary figure 2).
Auditory Steady State Response. Participants from 
Parker et al73 who overlapped with the replication sample 
were used in auditory steady state analyses (n = 437). In 
steady state paradigms, stimuli are modulated at a known 
frequency for an extended period (40-hz for 1500 ms here; 
40-hz is optimal for probing auditory cortex74). There is a 

known input (40-hz stimulation) and an expected output 
(40-hz oscillations in the EEG). Subjects listened through 
headphones to 50 trials of stimuli amplitude modulated 
at 40 Hz for 1500 ms.

ERPs to the steady state stimuli were calculated for 
each sensor and subject. There were specific hypotheses 
about magnitudes of ERP responses so data integra-
tion with PCA was not necessary. Following the exact 
methods of Parker et al,73 sensors with peak auditory re-
sponse (“F1,” “Fz,” “F2,” “FC3,” “FC1,” “FCz,” “FC2,” 
“FC4,” “C1,” “Cz,” “C2”) were averaged to define the 
ERPs. Steady state stimulation allows for quantification 
of two separate responses: (1) the onset response, like any 
other ERP, occurs to the initial stimuli onset. The time-
period from 90 to 110 ms defined the N100, and from 180 
to 220 ms defined the P200—average voltage in these time 
ranges was used to quantify strength of neural responses; 
and (2) oscillatory EEG activity to continual 40-Hz stim-
ulation allows for quantification of neural activity in re-
lation to sustained stimulation. Single-trial voltage data 
for each subject were converted to the time-frequency do-
main following previously published methods.73,75 Neural 
power at 40 Hz was averaged over the steady state period.

Data Analyses

Group effects were tested using analysis of variance in 
SPSS, and post-hoc comparisons using Tukey’s method 
(HSD or Tukey–Kramer where appropriate). For statistical 
significance in omnibus tests, the Holm–Bonferroni proce-
dure76 was used to maintain the family-wise alpha at .05.

Numerical taxonomy to construct psychosis 
Biotypes was obtained using k-means clustering in 
SPSS (see Supplementary Methods). Only psychosis 
cases were used at this stage because bio-factors 

Fig. 1. Cognition and saccade variables by project. Standardized scores (x-axis) for individual variables (y-axis) from the BACS, SST, 
and anti (Anti)- and pro (Pro)-saccade tasks, comparing healthy persons (shades of purple) and psychosis cases (shades of gray). Darker 
symbols and lines show means and standard deviations for B-SNIP1, and lighter symbols and lines show means and standard deviations for 
the replication sample. The correlation of mean performances between B-SNIP1 and the replication sample across all measures was .98.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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were created using variables that differentiated psy-
chosis and healthy persons, so the problem was now 
meaningfully parsing bio-factor variance within psy-
chosis. The number of  clusters given the data were 
determined using the gap statistic77 and two-step 
pre-clustering procedure78,79 in SPSS, as in our pre-
vious Biotypes paper.18 For both the B-SNIP1 and 
replication samples, gap statistic and Two-Step out-
comes are shown in Supplementary figure  3 and 
Supplementary table 6, respectively. In all cases, the 
most parsimonious solution was three clusters given 
the bio-factor data.

Canonical discriminant analyses in SPSS were used to 
efficiently capture group differences (DSM diagnoses or 
Biotypes; see Supplementary Methods). Group member-
ship was the classification variable, and the biomarker 
data were the predictors. This analysis eased visualiza-
tion of group differentiations, allowed a simple metric for 
comparing groups on multiple measures simultaneously, 
and allowed calculation of optimal effect size separations 
between subgroups.

Results

Replication of Individual Biomarkers and Bio-factor 
Structures

The first step identified variables that differentiated psy-
chosis and healthy participants; there were 44 such vari-
ables: 6 BACS, 5 saccade, 2 SST, and 31 EEG/ER (figures 1 
and 2, and Supplementary figure 1). The same patterns 
were observed with or without adjustments for demo-
graphic variables. The biomarker patterns between the 
two projects were consistent. The ICCs demonstrated re-
markable similarity between the pattern of means for the 
BACS, saccade, and SST variables (figure 2: ICC = 0.98) 
and the EEG/ERP variables (figure 1 and Supplementary 
figure 1: ICCs = 0.92 to 0.99).

We also investigated associations with medication 
usage among the psychosis cases. Of the 44 biomarkers 
by 18 medications regressions (792 total), only one (0.1%) 
showed 3%–4%, five (0.6%) showed 2%–3%, and 27 
(3.4%) showed 1%–2% of uniquely shared variance (see 
Supplementary table 7 for complete listing of medication 

Fig. 2. Event related potential waveforms by stimulus type and project. Standardized and grand averaged voltage (y-axis) by time (msec; 
x-axis) for ERP waveforms (“virtual sensors”). Time 0 on the x-axis indicates the time of initial stimulus delivery. For each plot, waveforms 
are shown for the healthy (shades of purple) and psychosis cases (shades of gray), with the solid lines indicating B-SNIP1 and the dotted 
lines indicating replication sample. Confidence interval clouds (99%tile) are shown for each line. Red bars above the x-axis show time ranges 
of significant differences between healthy and psychosis groups. Head inserts show the surface topography of the individual virtual sensors. 
Boxed r-values are correlations between the B-SNIP1 and replication sample waveforms. (A). Paired-stimuli paradigm—dotted lines indicate 
the time of S1 (first stimulus) and S2 (second stimulus); oddball task waveforms—(B) standard stimuli; (C) parietal cortex response (P3b) to 
target stimuli; (D) frontal cortex response (P3a) to target stimuli.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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associations). All other associations (95.9%) accounted 
for less than 1% of uniquely shared variance.

PCA analyses consistently identified nine compo-
nents, for both B-SNIP1 and replication samples, that 
accounted for the variance of the 44 biomarker vari-
ables (one BACS, two saccade, 1 SST, and 5 EEG/ERP; 
see Supplementary figure  4 for scree plots). We called 
these integrated linear components “bio-factors.” The 
value of such bio-factors for numerical taxonomy is sup-
ported to the extent they can be successfully replicated. 
Supplementary figure 5 shows the pattern matrices for all 
nine bio-factors, along with their similarities between the 
B-SNIP1 and replication samples. The ICCs between the 
two projects, across bio-factors, show remarkable simi-
larities (ICCs from 0.89 to 1.0), indicating robustness of 
this data reduction step. These bio-factors were used in 
the following analyses.

Temporal Stability of Bio-Factors

In addition to showing the similarity of group differences 
and bio-factor patterns between B-SNIP1 and replication 

samples, the temporal stability of bio-factors, in the ab-
sence of any effort to intervene on them, is important for 
demonstrating enduring biological features of psychosis 
for which specific and effective treatments could be de-
veloped.80 Repeated testing identifies more trait- versus 
state-like biomarkers. High ICCs indicate stability in 
spite of other changes (e.g., in symptoms or medications). 
The nine bio-factors all showed high temporal stabilities 
(ICCs: BACS  =  0.95, antisaccade  =  0.86, SST  =  0.83, 
latency = 0.76; N100 = 0.92, P300 = 0.89; P200 = 0.87; 
paired-stimuli S2 = 0.78; ongoing high frequency = 0.87; 
see on-line Methods). Thus, bio-factors are capturing 
stable neurobiological features, in the absence of treat-
ments targeting those specific neurobiological deviations.

DSM Diagnoses are Similar on Bio-factors Between 
B-SNIP1 and Replication Samples

Biomarkers are not included in DSM criteria, but such 
information could possibly aid differential psychosis 
diagnosis.81 To evaluate this possibility, we compared 
SZ, SAD, and BDP on the nine bio-factors (figure 3A). 

Fig. 3. Bio-factor patterns by DSM psychosis diagnosis and psychosis biotypes between B-SNIP1 and replication samples. Bio-factor 
means by standardized scores (y-axis) are displayed by group and project, with color-coding and symbol differentiations. Solid lines 
indicate B-SNIP1 and dotted lines indicate replication sample. Boxed r-values are the correlations between the B-SNIP1 and replication 
samples. Lines link conceptually related variables (cognition variables on the left and ERP variables on the right). The legend shows the 
number of observations by group. Purple lines and symbols show the healthy data, with their y-axis values adjusted so the average value 
of B-SNIP1 and the replication sample is zero; the healthy values are the same in plots (A) and (B). The psychosis groups are displayed 
as a function of their difference from the healthy means. In relation to the healthy subjects, values below zero indicate deficient values 
and those above zero indicate exuberant values. (A) DSM diagnoses; (B) psychosis biotypes; (C) the proportion of cases within each 
DSM diagnosis that had each biotype.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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First, bio-factor patterns between B-SNIP1 and rep-
lication samples for DSM diagnoses were highly sim-
ilar (ICC = 0.97). Second, there were group effects on 
DSM analyses for all bio-factors but saccade latency 
and ongoing EEG high-frequency activity (Holm–
Bonferroni adjusted P-values—significant effect 
F’s  =  15.2 to 154.8, P’s < .001; nonsignificant effect 
F’s = 0.8 to 2.7, P’s > .047; figure 4A). Only the BACS 
significantly differentiated all four groups [SZ < SAD 
< BDP < healthy], capturing a severity continuum. The 
following bio-factors showed a similar severity con-
tinuum as the BACS: N100/P300 ERPs [(SZ  =  SAD) 
< BDP < healthy], antisaccade [SZ < (SAD  =  BDP) 
< healthy], and paired-stimuli S2 ERP [SZ < SAD 
< (BDP  =  healthy)]. The only bio-factor to indicate 

modestly greater deviation for BDP was the P200 ERP 
[BDP < (SZ = SAD) < healthy] (figure 4A; BDP effect 
size from SZ/SAD = 0.18). The SST is a psychosis bi-
omarker within DSM diagnoses [(SZ = SAD = BDP) 
< healthy], with modest effect size (0.50 of  psychosis 
from healthy).

BACS was the only individual bio-factor that differ-
entiated all three DSM psychosis subgroups. It may be 
possible to improve group separations by using all bio-
factors simultaneously. Canonical discriminant analysis 
using the bio-factors to optimize DSM group separations 
yielded one significant function (Wilks’ lambda = 0.88, 
Χ2 = 101.7, P < .001). The most substantial contributions 
to this function were BACS (structure matrix r  =  .70; 
lower is worse BACS), paired stimuli S2 ERP (r =  .55; 

Fig. 4. Effect size separations from healthy by DSM psychosis diagnoses and psychosis Biotypes subgroups. B-SNIP1 and replication 
samples were combined for these analyses given their high degree of similarity. Glass effect sizes (y-axis) by bio-factor (x-axis) are shown 
from the healthy for DSM diagnoses (A) and psychosis biotypes (C). In both plots, the healthy sample means fall at the zero line on 
the y-axis. The outcome of canonical discriminant analyses, using all bio-factors to create functions that optimally separate groups 
are shown in (B) and (D). (B) There was one significant function that differentiated the DSM diagnosis psychosis groups. Plots show 
proportion of cases within each group (y-axis) as a function of their standardized discriminant function scores (x-axis). (D) There were 
two discriminant functions that differentiated the psychosis Biotype groups. The first function on the x-axis captured “Neural Response 
Magnitude,” and the second function on the y-axis captured “Neural Disinhibition.” Frequency polygons show the proportion of cases 
by group at the bottom (Neural Response Magnitude) and right (Neural Disinhibition) of the central plot that shows the centroids and 
standard deviation ellipses by group.
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lower is smaller amplitude), antisaccade (r = −.47; higher 
is more errors), and P300 ERP (r = .46; lower is smaller 
amplitude). Cases were ordered on a severity continuum 
with SZ < SAD < BDP (within psychosis comparison, 
F(2,1425)  =  78.3, P < .001; figure  4B), and all three 
groups were less than healthy (all groups comparison, 
F(3,1896) = 152.7, P < .001; SZ < SAD < BDP < healthy). 
This function modestly increased the separation between 
the extreme psychosis groups (SZ to BDP—from 0.74 to 
0.89 standard deviation units).

Psychosis Biotypes are Neurobiologically Distinct, and 
Outcomes are Indistinguishable Between B-SNIP1 and 
Replication Samples

Bio-factor analyses were only modestly effective for 
differentiating conventional psychosis diagnoses, con-
sistent with the conclusion of Sullivan et  al.14 A  pos-
sible alternative for psychosis was to examine a 
biomarker-based classification18 to assist identification of 
neurobiologically specific subgroups.4 This approach re-
lied on bio-factor variance within psychosis independent 
of clinical features.
Psychosis Biotypes formation and replication of bio-factor 
patterns. The k-means solutions were obtained sep-
arately for B-SNIP1 and the replication samples, and 
the algorithm achieved cluster stability within 22 iter-
ations for the former and 16 iterations for the latter. The 
k-means outcomes resulted in numbers of observations 
per cluster (Biotypes) as described in Supplementary 
table 1 and figure 3B.

All bio-factors showed between-Biotype differenti-
ations (Holm-Bonferroni adjusted significance, F’s = 28.1 
to 306.5, P’s < .001; figure 4C), as might have been ex-
pected because numerical taxonomy used these meas-
ures to create maximally homogeneous and distinct 
subgroups. Of note, however, the bio-factor patterns 
between B-SNIP1 and replication samples for psychosis 
Biotypes were highly similar (ICC = 0.95), indicating the 
differentiating patterns are robust. In addition, bio-factor 
patterns within each Biotype were the same regardless of 
DSM diagnosis (see Supplementary figure  9). Biotypes 
and conventional diagnoses are also not redundant be-
cause although Biotype-1 was mostly SZ (40.7%) and 
SAD (42.3%), Biotype-2 was mostly SZ (36.9%) and less 
BDP (21.8%), and Biotype-3 was largely BDP (48.6%), 
all DSM diagnoses were represented in all Biotypes 
(figure 3C shows all percentages).

Specific patterns of  bio-factor deviations charac-
terized psychosis Biotypes (figure  4C). Biotype-1 and 
Biotype-2 show marked deficit on general cognitive ability 
as measured by BACS [(BT1 = BT2) < BT3]. Biotype-1’s 
defining feature is deficient neural activation revealed by 
substantially low N100 [BT1 < BT2 < BT3] and P300 
[BT1 < (BT3 = BT2)] ERP magnitudes indicating dif-
ficulty detecting stimulus salience, modestly low P200 

ERP magnitude [BT1  < BT3  < BT2] indicating com-
promised ability to properly invest in salient stimuli,82–84 
low ongoing EEG neural activity [BT1 < BT3 < BT2], 
low amplitude responses to repeated auditory stimuli as 
indexed by the PS S2 ERP [BT1  < BT2  < BT3], and 
slowed response latencies to saccade stimuli [BT1  < 
(BT3 = BT2)]. Biotype-2’s defining features, however, are 
greater deviation on cognitive tasks that require inhib-
itory control in sensorimotor performance as indexed 
by antisaccade [BT2  < BT1  < BT3] and SST [BT2  < 
BT1 < BT3], and excessive ongoing EEG neural activity 
not clearly locked to stimulus registration and the re-
lated accentuation of  P200 ERP.72 While Biotype-3 has 
modest deviations on general cognition and P200 ERP, 
and modestly larger responses to repeated auditory 
stimuli (PS S2 ERP), they are similar to healthy subjects 
on bio-factors.

Canonical discriminant analysis using the bio-
factors to optimize psychosis Biotype group separations 
yielded two significant functions (Function 1: Wilks’ 
lambda = 0.22, Χ2 = 1201.3, P < .001; Function 2: Wilks’ 
lambda  =  0.48, Χ2 =5 59.7, P < .001). The first func-
tion had the most substantial contributions from P300 
ERP (structure matrix r =  .59; lower is smaller ampli-
tude), N100 ERP (r = .52; lower is smaller amplitude), 
ongoing neural activity (r =  .40; lower is less activity), 
BACS (r = .38; lower is worse BACS) and paired-stimuli 
S2 ERP (r = .34; lower is smaller amplitude) bio-factors. 
This function captured the deficient neural activa-
tion of  Biotype-1 ([BT1 < BT2 < (BT3 = healthy)]; see 
figure 4D). The second function had the most substan-
tial contributions from ongoing neural activity (r = .52; 
higher is more activity), antisaccade performance 
(r = .52; higher is more errors), P200 ERP (r = .45; higher 
is larger amplitude) and SST performance (r  =  −.41; 
lower is worse performance). This function captured the 
neural overactivity and concomitant inhibitory failures 
typifying Biotype-2 ([(BT3  =  healthy  =  BT1) < BT2]; 
see figure 4D). These two functions increased the effect 
size separation between psychosis groups in Cartesian 
space (BT1 to BT2  =  2.07; BT1 to BT3  =  2.43; BT2 
to BT3  =  2.64; BT3 and healthy did not significantly 
differ).
Cross-Validation of Psychosis Biotype classifications. In 
addition to independently replicating the bio-factor pat-
terns for B-SNIP1 and replication samples (figure  4C), 
we cross-validated group membership assignments in 
two ways (see Supplementary table 8). First, we applied 
the B-SNIP1 k-means solution to the replication sample 
data and compared the classification similarity to the 
independently obtained replication sample group mem-
berships (89.0% similarity). Second, we applied the repli-
cation sample k-means solution to the B-SNIP1 data and 
compared the classification similarity to the independ-
ently obtain B-SNIP1 sample group memberships (88.5% 
similarity).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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Construct Validating Physiological Indicators of 
Psychosis Biotypes

The above information demonstrates (1) relevant bio-
markers are replicable, (2) data integration for forming 
bio-factors is robust, (3) bio-factors are temporally stable, 
(4) bio-factor patterns by group are replicable, and (5) 
psychosis Biotypes from numerical taxonomy are robust. 
In addition to demonstrating such internal consistency, 
it is important to show that psychosis Biotypes capture 
discriminations on pertinent measures not involved in 
Biotype formulation.

The most important neurophysiological features of 
psychosis Biotypes were low neural response to salient 
stimuli (characteristic of Biotype-1 and directly indexed 
by the N100 and P300 ERPs) and neural overactivity 
(characteristic of Biotype-2 and estimated by P200 ERP 
and ongoing neural activity72). Neurophysiological the-
ories of psychoses have leaned on nonspecific (or intrinsic) 
activity as an important translational biomarker,11,12,85 
but intrinsic activity fails to consistently differen-
tiate conventional clinical psychosis diagnoses.18,72,86,87 
Intrinsic activity was only estimated because we did not, 
a priori, include a measure of this construct in biomarker 
quantification.

We probed the prominence of intrinsic EEG activity 
(IEA) for differentiating Biotypes in two ways. First, we 
used IEA from EEG recording during which participants 
had no stimulus processing requirements.72 All empiri-
cally derived frequency bands (Supplementary figure 2) 
significantly differentiated Biotypes (F’s from 31.5 to 81.4, 
all P’s < .001), but did not differentiate DSM diagnoses 
(F’s from 0.9 to 1.6, all P’s > .195). An additional PCA 
using these four frequency bands was used to create an 
IEA bio-factor (figure 5A). The pattern of group differ-
entiation on the IEA bio-factor [BT1 < healthy < BT3 < 
BT2], indicated that Biotype-1 had low and Biotype-2 
had high IEA, fortifying the outcome of numerical tax-
onomy shown in figures 3B and 4C.

The auditory steady state73 response provided our 
second validating measure. ERPs at the beginning of 
steady-state stimulation (figure 5B) replicated the N100 
(low amplitude in Biotype-1; F(3,435)  =  8.6, P < .001; 
[(BT3 = healthy) < (healthy = BT2) < BT1]) and P200 
(higher amplitude in Biotype-2; F(3,435)  =  10.2, P < 
.001; [(BT1  =  BT3) < (BT3  =  healthy) < BT2]) effects. 
Coincident with the P200, “divots” in the ERP show ini-
tiation of the oscillating 40-hz response. The steady-state 
response at 40-Hz is shown in figure 5C. The strength of 
this response replicated the effects seen for both ongoing 
neural activity (figures 3B and 4C) and IEA (figure 5A), 
with Biotype-2 showing high and Biotype-1 showing low 
activity in response to prolonged stimulation of auditory 
cortex (F(3,435) = 8.2, P < .001; [BT1 < (healthy = BT3) 
< BT2]). Multiple other external validators published in 
other papers, from MRI to social functioning, showed the 

possible advantages of psychosis Biotypes for capturing 
neurobiologically distinctive psychosis subgroups.18,24,86–89

Discussion

Andreasen90 encouraged identification of the psychosis 
biotype via comprehensive laboratory evaluation to fa-
cilitate the quest for pathophysiology and etiology. The 
clinical phenomenotype untethered from neurobiology 
may be ill equipped to support this mission.4,91–94 Using 
two large datasets, we demonstrate repeatability of bio-
markers and bio-factors. We show high correspondence 
between the two samples on bio-factor patterns for DSM 
diagnoses, which showed modest neurobiological dis-
tinction. Alternatively, B-SNIP psychosis Biotypes were 
neurobiologically distinctive with remarkably similar fea-
tures across samples. This is a promising demonstration, 
replication, cross-validation, and construct validation 
within psychosis that supports the possibility of transi-
tioning psychosis subtyping to a laboratory discipline.

This outcome confirms that neurobiologically but-
tressed psychosis subtypes are derivable and robust. 
Their identification required two variations from typ-
ical psychosis research. First, biomarker testing covered 
a range of brain deviations5 to capture heterogeneity in 
psychosis at an intermediate level of neurobiological 
targeting.42 Using multiple tests that indexed the same 
deviation also enhanced signal/noise and maximized the 
ability to capture meaningful psychosis-relevant variance 
in a stable, repeatable fashion. Second, we recruited large 
and diverse samples across the bipolar-schizophrenia 
spectrum to support the requisite computations and cap-
ture variability in neurobiology across idiopathic psych-
oses. These were not epidemiological samples, but cases 
came from academic and community mental health cen-
ters, small towns with large universities, large cities, inner 
cities, rural regions, affluent and less affluent areas. These 
cases ranged from four standard deviations below to two 
standard deviations above the healthy mean on multiple 
biomarkers. The breadth and severity of clinical fea-
tures also highlights the diversity of these samples (see 
Supplementary table 2).

Neurobiological stratification could facilitate the 
search for specific etiology and improved treatment 
targeting.81 Developing precision therapeutics based on 
clinical features alone is difficult because multiple causes 
can yield the same clinical features.95 Elsewhere in medi-
cine, biomarker data re-shuffle cases with similar clinical 
presentations into distinct pathologies with distinct treat-
ments; idiopathic psychosis may be similar. Of interest in 
this regard, we have shown that clinical features distin-
guishing B-SNIP psychosis Biotypes are different from 
those distinguishing DSM psychosis diagnoses.24,96

Psychosis Biotypes and conventional diagnoses, 
therefore, are neither neurobiologically nor clinically 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab090#supplementary-data
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redundant. Adding neurobiological information to treat-
ment targeting efforts provides an opportunity to match 
interventions to pathophysiology. In this regard, B-SNIP 
biomarkers and Biotypes may advantage clinical care. It 

is unlikely Biotype-1 and Biotype-2 cases will benefit from 
the same treatments given their different physiologies; 
and treatments appropriate for those Biotypes would 
most likely be less effective for Biotype-3. We explore 

Fig. 5. Validation of biotype neurophysiological features. (A) Top-down topographies on the left show strength of neural response for 
the intrinsic EEG activity (IEA) bio-factor. The scale of neural power from FFT is to the right of the topographies, with deeper red 
indicating stronger neural response and deeper blue indicating weaker neural response. The bar chart shows the means and standard 
errors for the IEA bio-factor by group. Parts (B) and (C) show different aspects of neural response from 40-Hz auditory steady-state 
stimulation. (B) The auditory ERP from 50 ms before to 350 ms after stimulation onset. The location and effects for the N100 (BT1 
deficient) and P200 (BT2 accentuated) are shown. The “divots” in the P200 ERP response are the beginning of the neural oscillations to 
the 40-Hz stimuli. (C) Following the ERP, auditory cortical neurons oscillate at 40hz throughout stimulation. The time-frequency plot 
to the right of the ERP shows single trial power by group centered on 40-Hz. The single trial power scale is shown to the right, with 
brighter yellow indicating stronger response and deeper blue indicating weaker response. The associated bar chart shows the means and 
standard errors by group for strength of the 40-Hz response.
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such possibilities in a recent paper on the promise of 
neurobiologically informed treatments for psychosis.24

Biomarker-targeted treatments are uncommon in all 
of  psychiatry – the field awaits robust characterization 
of  biomarkers that index therapeutic changes in rele-
vant cerebral systems. Psychiatry lacks known meas-
ures like white blood cell count for leukemia. It is worth 
considering, however, whether discovery of  disease and 
treatment efficacy markers for psychosis can be facili-
tated through case stratification via neurobiology. We 
present one possible approach to this problem using 
specific measures of  psychosis-relevant brain func-
tioning. The utility of  B-SNIP psychosis Biotypes for 
practical application in the clinic will motivate our con-
tinuing work.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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