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Noroviruses are a leading viral cause of acute gastroenteri-
tis among humans. During the 2014–15 epidemic season, 
norovirus GII.17 was detected in rhesus monkeys in China. 
Genetic, structural, and challenge studies revealed virus mu-
tations and verified the infections. Thus, cross-species trans-
mission may occur, and monkeys may be a virus reservoir. 

Noroviruses are a leading viral cause of epidemic and 
sporadic acute gastroenteritis in humans of all ages, 

causing substantial illness and death. Each year, norovi-
ruses cause ≈21 million infections in the United States and 
≈200,000 deaths worldwide. Among the 6 known norovirus 
genogroups (GI–VI), all GI, most GII, and a few GIV nor-
oviruses infect humans (human noroviruses). Each geno-
group includes up to 22 genotypes based on the sequences 
of major capsid protein 1 (VP1). Although GII.4 norovirus-
es were predominant globally for 2 decades, the previously 
rare GII.17 genotype emerged during the 2014–15 epidem-
ic season in China and other Southeast Asian countries/
regions, causing major epidemics of acute gastroenteritis 
(1,2). Infection of domestic pigs, cattle, dogs, and rhesus 
macaques with human norovirus has been reported (3–7). 
We report the detection and characterization of norovirus 
GII.17 that extensively and naturally infected farm-raised 
rhesus monkeys in southwestern China.

The Study
In January 2015, a total of 50 fecal samples were randomly 
collected from the general monkey population at a farm 
with ≈2,000 monkeys in Kunming City, Yunnan Province, 
China, in accordance with the guidelines for humane treat-
ment of animals and approved by the Institutional Animal 
Care and Use Committee of the Institute of Medical Biolo-
gy at the Chinese Academy of Medical Science. Viral RNA 
was extracted from 10% fecal suspensions in physiologic 

saline by use of a QIAGEN Mini RNA kit (Hilden, Germa-
ny). We randomly selected 28 RNA samples for calicivirus 
detection with a 1-step reverse transcription PCR that used 
the primer pair P289 and P290 (8), designed to amplify a 
genome fragment encoding the calicivirus RNA-dependent 
RNA polymerase. One of the samples showed the expect-
ed 310-bp calicivirus RNA-dependent RNA polymerase 
gene fragment, which was confirmed by DNA sequencing. 
Nucleotide BLAST (http://blast.ncbi.nlm.nih.gov/Blast.
cgi) analysis indicated that this gene fragment was from a 
GII.17 norovirus, which we named Mk/KM1509/Yunnan/
CHN/2015 (monkey GII.17 norovirus).

Next, we amplified and sequenced the full ≈7.5-kb ge-
nome of this norovirus. Sequence analysis showed that the 
monkey GII.17 norovirus genome sequence shared 99% nt 
identity with the human GII.17 norovirus recently detected 
in China (2). Phylogenetic analysis among representative 
full-length VP1-encoding genes revealed 3 clusters of 
GII.17 noroviruses (A, B, C) (Figure 1) (9). The monkey 
GII.17 norovirus grouped with cluster C of the recently de-
tected GII.17 human noroviruses in China. To estimate the 
infection rate of monkey GII.17 norovirus in the monkey 
population, we designed a new pair of specific primers (199 
and 200) based on our newly isolated genome sequence to 
reanalyze the 50 extracted RNA samples. PCR amplifica-
tion and DNA sequencing of the PCR products indicated 
identical GII.17 noroviruses in 16 (32%) samples. 

We then performed a challenge experiment to assess 
infection and replication of this GII.17 norovirus in mon-
keys. We randomly selected 2 monkeys for which fecal 
samples were negative for norovirus and intragastrically 
administered (by nasogastric tube) a GII.17-positive fecal 
sample (consisting of 1 mL filtered 20% fecal suspension 
containing 8.3 × 105 norovirus genome copies). Despite 
the absence of typical signs (watery diarrhea and fever), 
both challenged animals shed norovirus RNA in their fe-
ces for at least 16 days; by postinoculation day 3, shed-
ding peaks were 2.573 × 105 genome copies/gram feces 
for 1 monkey and 1.33 × 105 for the other (Figure 2, pan-
els A, B). These great increases of the shed genome cop-
ies indicated successful infection and replication of the 
GII.17 norovirus in monkeys.

We also measured possible seroconversion in the chal-
lenged animals by using recombinant VP1 protein of the 
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monkey GII.17 norovirus developed after the challenge 
was performed. ELISA with monkey norovirus VP1 as the 
capture antigen showed that both monkeys had high noro-
virus IgG titers (1:320) before the challenge. As a result, 
norovirus-specific antibody titer increases for both chal-
lenged animals were only 2-fold (Figure 2, panels C, D). 
The observed high preexisting norovirus antibody titers 
in both monkeys selected for challenge may have result-
ed from previous infection with the GII.17 norovirus, al-
though their fecal samples were norovirus negative by the 
time of selection for challenge. The observed low antibody 
responses and the lack of typical clinical signs after norovi-
rus infection via virus challenge may result from relatively 
high preexisting GII.17 antibody titers. Further study to 
define the role of preexisting norovirus antibodies in noro-
virus infection of rhesus monkeys is needed.

Histo-blood group antigens (HBGAs) are norovirus 
host factors in which hosts with matched HBGA types ex-
hibit increased susceptibility to norovirus infection (10). 
To improve understanding of the HBGA binding profile 
of this monkey GII.17 norovirus, the recombinant VP1 
proteins of the new monkey strain and a recent human 
GII.17 norovirus were expressed in Escherichia coli (on-
line Technical Appendix Figure, https://wwwnc.cdc.gov/
EID/article/23/2/16-1077-Techapp1.pdf, panel A), as pre-
viously described (11). HBGA binding assays, performed 
by using defined human saliva samples with known HBGA 
types, revealed that the VP1 protein of the monkey GII.17 

norovirus bound to human saliva samples with significantly 
lower binding signals (optical densities) than the human 
GII.17 norovirus (online Technical Appendix Figure, pan-
els B and C). Accordingly, sequence comparisons of the P 
domain (the HBGA binding domain) between the human 
and monkey noroviruses and structural analysis based on 
the known GII.17 P dimer crystal structure (12) revealed 
2 residue mutations, D377G and N342S, near the HBGA 
binding site of the monkey GII.17 norovirus (online Tech-
nical Appendix Figure, panel D). The D377G mutation 
of the monkey GII.17 norovirus replaces the negatively 
charged aspartic acid with a small, neutral glycine; the 
N342S mutation replaces the larger, strongly polar aspara-
gine with a tiny, weakly polar serine. These 2 mutations 
may be the reason why binding of the monkey GII.17 noro-
virus to HBGAs is weaker than that of the GII.17 human 
norovirus. We also noted that the monkey GII.17 VP1 pro-
tein bound saliva samples with significantly higher binding 
signals to saliva samples of type B, which also happens to 
be the major blood type of rhesus monkeys (13).

Conclusions
Although limited success during monkey challenge stud-
ies using human noroviruses has been reported (14,15), our 
study showed that GII.17 noroviruses were able to infect 
a monkey population, indicating extensive human norovi-
rus infection of farm-raised rhesus monkeys under natural 
conditions. Our findings suggest that it may be possible to 

Figure 1. Phylogenetic analysis 
based on the viral capsid protein 
1 genes of the monkey GII.17 
norovirus and other reference 
human GII.17 noroviruses. The 
analysis involved 20 full-length 
viral capsid protein 1–encoding 
genes (gene identification 
shown), including 17 previously 
reported GII.17 human norovirus 
representatives. Black square 
indicates noroviruses reported 
in (9); black triangle indicates 
human GII.17 variants circulating 
in China as reported in (2); black 
circle indicates the monkey 
GII.17 norovirus from this 
study. Comparison viruses are 
1 from GII.13 genotype and 
1 from GII.21 genotype. The 
evolutionary history was inferred 
by using the neighbor-joining 
method. The optimal tree with the branch length sum of 0.91354301 is shown. The percentage of replicate trees in which the associated 
taxa clustered together in the bootstrap test (1,000 replicates) are shown above the branches. The tree is drawn to scale; branch 
lengths are in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances 
were computed by using the Tajima-Nei method and represent the number of base substitutions per site. The analysis involved 20 
nt sequences. All positions containing gaps and missing data were eliminated. The final dataset contained a total of 1,265 positions. 
Evolutionary analyses were conducted in MEGA6 (http://www.megasoftware.net).
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establish a useful animal model of norovirus infection to 
evaluate human norovirus vaccines and antiviral drugs and 
to study human norovirus pathogenesis, although further 
testing needs to be done to confirm such possibility. Our 
findings also raise new concerns about possible viral reser-
voirs and cross-species transmission of noroviruses.

Considering the fact that a new GII.17 variant emerged 
as the predominant norovirus and caused major epidemics 
in China during the same period (1,2), the detected monkey 
GII.17 norovirus probably originated from a human GII.17 
norovirus. However, the mutations near the HBGA binding 
site might imply an initial adaptation of the monkey GII.17 
norovirus to the new host. To provide a better understand-
ing of its infection, pathogenesis, host specificity, epide-
miology, and cross-species transmission, further character-
ization of this monkey GII.17 norovirus is warranted. This 
information may also be valuable for the future establish-
ment of a monkey model of norovirus infection for vaccine 
and antiviral evaluation and for addressing the concerns of 
unknown viral reservoirs and potential zoonotic infection 
of noroviruses.
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