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Economists have known for centuries that to understand an individual’s
decisions, we must consider not only the objective value of the goal at
stake, but its subjective value as well. However, achieving that goal ultimately
requires expenditure of effort. Surprisingly, despite the ubiquitous role of
effort in decision-making and movement, we currently do not understand
how effort is subjectively valued in daily movements. Part of the difficulty
arises from the lack of an objective measure of effort. Here, we use a physio-
logical approach to address this knowledge gap. We quantified objective effort
costs by measuring metabolic cost via expired gas analysis as participants
performed a reaching task against increasing resistance. We then used neuro-
economic methods to quantify each individual’s subjective valuation of effort.
Rather than the diminishing sensitivity observed in reward valuation, effort
was valued objectively, on average. This is significantly less than the near-
quadratic sensitivity to effort observed previously in force-based motor
tasks. Moreover, there was significant inter-individual variability with many
participants undervaluing or overvaluing effort. These findings demonstrate
that in contrast with monetary decisions in which subjective value exhibits
diminishing marginal returns, effort costs are valued more objectively in
low-effort reaching movements common in daily life.
Significance
Nearly every action requires the expenditure of effort, yet the manner in which
effort influences our decisions remains unclear. In movement decisions, effort
is an inherent cost that when improperly valued may manifest in movement def-
icits such as the movement slowing seen in Parkinson’s disease. Using a reaching
task, we measured an objective representation of effort using metabolic cost, then
had participants choose between reaching against different resistances to quantify
how individuals subjectively value effort. We found that on average, effort is
valued on a level that reflects the objective, metabolic cost. Furthermore, individ-
uals are idiosyncratic in their valuation with an equal number undervaluing and
overvaluing effort. These findings support a representation of effort as metabolic
cost in models of decision-making and motor control.
1. Introduction
Economists have known for centuries that to understand an individual’s
decisions, we must consider not only the objective value of the rewards at
stake, but their subjective value as well [1,2]. A nonlinear relationship is fre-
quently observed between objective rewards and their subjective value,
whereby individuals often value each additional increment of objective
reward with diminishing subjective value (i.e. diminishing sensitivity). Under-
standing such nonlinearities has proven critical to our ability to explain
decision-making across a range of economic environments and domains. How-
ever, every reward ultimately requires an action to obtain it, and that action
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inevitably requires effort. Effort is an inherent cost to many, if
not all decisions, but we have yet to understand its role in
decision-making. This is surprising, given that many neural
disorders involve a form of movement deficiency.

One such example is Parkinson’s disease. In Parkinson’s
disease, the cardinal symptom is bradykinesia, or slowness
of movements. The disease arises from a loss of dopaminergic
neurons in the substantia nigra. While dopamine is primarily
thought to modulate reward signals, there is some evidence
for its role in determining howhard humans and other animals
will work for a given reward [3–6]. This implicates an altered
cost/benefit valuation as one of the possible underlying
mechanisms of movement slowing in Parkinson’s disease [7].

One of themain obstacles to this line of research is the lack of
an objective measure of effort costs. Psychophysical measure-
ments demonstrate that the perception of effort increases
nearly quadratically with increases in effort [8], suggesting
that effort is valued in a similar manner. However, these studies,
as well as previous attempts to understand how effort discounts
reward in decision-making, have used indirect measures of
effort such as isometric force production [9–15], estimated
force production [16,17], number of targets acquired [18] and
button presses [6,19]. So, we do not know if the objective effort
costs were accurately represented by these experimental manip-
ulations of effort. Some also required near maximum levels of
exertion which may have led to additional costs such as pain,
discomfort or fatigue. Others have provided choices coupled
with monetary rewards without accounting for the accompany-
ing nonlinearity in that reward’s subjective value function
[6,9,11–13,18]. We present a paradigm to circumvent these
issues by examining low-effort movements that are representa-
tive of the everyday movements we make, controlling for
reward, and critically, measuring objective effort directly in the
form of metabolic cost.

Our understanding of movement control has a long history
of implicating effort as an underlying determinant of preferred
movement characteristics. In locomotion, effort costs are rep-
resented objectively as metabolic costs. Metabolic costs are
the physiological energetic requirements involved in the
body’s conversion of chemical energy via substrate metab-
olism into chemical or mechanical work. In locomotion,
metabolic costs have helped explain preferred walking
speed, step length, step width and arm swing in healthy
individuals [20–23]. When represented as metabolic cost,
effort-based decision-making in reaching can account for
both the choice of action and the vigour of the ensuing move-
ments [24–27]. Metabolic costs are also used to explain
foraging decisions in a range of animals [28–31]. Both the
breadth and history of this literature provide a strong rationale
to propose metabolic cost as an objective measure of effort.

Effort costs are also a cornerstone of optimal control
models of movement control, which are capable of explaining
observed movement trajectories across a range of conditions
[32–34]. Such models invariably assume that the objective
cost and the subjective valuation of the cost are one and the
same. However, there is strong evidence that the subjective
valuation of movement-related costs such as time and prob-
ability differ from their objective values [2,35]. When
considering the subjective value of these costs, models of
movement control can better predict movement-related
behaviours [36–41].

Here, we will address two main questions regarding how
physical effort costs are considered for effort-based decisions
in healthy adults. First, is there a nonlinear relationship
between the objective physical effort cost, quantified as meta-
bolic cost, and its subjective value? Second, how does effort
discount decisions? Together, these findings will help
advance our understanding of the role of effort in both
decision-making and movement.
2. Results
2.1. Measuring objective effort costs
We quantified an individual’s subjective valuation of effort as
they performed effortful reaching movements. Participants per-
formed out-then-back reaching movements against a resistive
force and made decisions between a sure bet of having to per-
form low-effort reaches (reference option) or risk performing
higher effort reaches (lottery option) (figure 1). Resistance
was modulated according to the resistance (b) of a velocity-
dependent force field. Effort was measured at resistances of
0, 30, 45, 60 and 70 N s m−1. The effects of additional costs
such as time and accuracy were minimized, by strictly control-
ling movement duration and target size across conditions (see
electronic supplementary material). The objective effort cost of
each decision was quantified as the normalized net metabolic
cost in joules (J) of reaching against each resistance for 5 min.
Notably, metabolic cost was measured via expired gas analysis
and thus represents a direct measure of effort cost. As resist-
ance increased, metabolic cost exhibited a significant increase
(figure 2a; β = 98.54, R = 0.70, p< 0.001). Movement duration
and accuracy did not vary with condition (see electronic
supplementary material).

2.2. Effort-based decision-making
To confirm that individuals perceived the differences in
resistances across conditions, they reported their rating of
perceived exertion (RPE) [42] for each resistance. Importantly,
the range of this scale was limited to reflect solely reaching
behaviour and as such, the numbers do not reflect conven-
tional RPE scores. There was a significant increase in RPE
that correlated with an increase in resistance (β = 0.109,
R2 = 0.99, p < 0.001).

To quantify each participant’s subjective valuation of
effort, they were asked to make choices between a reference
option and a lottery option (figure 1b). The reference option
consisted of a 100% probability of performing a low-effort
reaching movement for 5 min. The lottery option consisted of
either a known probability of performing a high-effort reach
or the alternative outcome of sitting quietly for 5 min. Thus,
in the reference option, subjects were assured of making a
low-effort reaching movement, whereas in the lottery, there
was the chance of making a high-effort reach or not to reach
at all and sit quietly, depending on the outcome. In the lottery
option, we varied the value of the reach probability and effort
levels using combinations of one of the five resistances in com-
bination with one of five probabilities (53%, 63%, 72%, 84%,
95%), for a total of 25 lottery combinations, repeated 6 times
for a total of 150 trials. As the level of effort and/or probability
increased in the lottery option, participants were more likely to
choose the reference option, confirming that participants were
considering both effort and probability when making their
decisions (Effort: figure 3a,c, β = 0.00013, Probability: figure 3b,d,
β = 1.19, p’s < 0.001).
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Based on their decisions, we modelled their subjective
valuation of effort using cumulative prospect theory
(CPT) [2]. In this subjective value model, MSV, the expected
utility, E[U], of each option is determined as the subjective
value of each outcome, SV(x), multiplied by its probability
weighting, ω( p(x)):

E[U] ¼ SV(x)v( p(x)): ð2:1Þ
The subjective value SV(x) of each option consists of the effort
cost:

SVðxÞ ¼ �xa: ð2:2Þ

The exponent α represents the nonlinearity between the
objective cost, x, and subjective value of the effort expended,
where α > 1 represents overvaluation of effort. Each
additional increment of effort is valued with increasing
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sensitivity. Accordingly, α > 1 represents undervaluation
of effort, and an α = 1 indicates an objective valuation of
effort. The objective cost, x, is represented by the participants’
average metabolic cost at each resistance level. The prob-
ability weighting function in CPT is modelled with a
single-parameter s-shaped function

v( p(x)) ¼ exp[�(�ln( p(x))g)], ð2:3Þ

where p(x) represents the probability of the outcome and γ is
a free parameter that determines the shape of the function.
When probabilities are explicitly presented, as in this exper-
iment, γ tends to have a value less than one, signifying that
low probabilities are overweighted and high probabilities
are underweighted [2].

The free parameter αwas fitted using maximum-likelihood
estimation. Participants exhibited idiosyncratic distortions in
effort with an equal number either overvaluing or undervalu-
ing effort. Notably, there was no correlation between an
individual’s effort sensitivity and their specific net metabolic
cost of performing the task (r = − 0.0017, p = 0.9946).

While there was variability across participants, the fitted
α’s on average were not significantly different from 1 (mean
[95% CI], α = 1.037 [0.8675 1.2074], p = 0.65; figure 4a). This
suggests that as a group, there was no consistent bias in the
subjective valuation of effort costs required to complete the
reaching task. Twelve of the participants returned for a
second day of behaviour testing (figure 1c) and their
decisions were largely consistent across days (see electronic
supplementary material).

The second free parameter analysed was γ, which is a
measure of how an individual weighted the probability of
the risky decision. Eighteen of the 20 participants exhibited
a γ < 1. The average γ across participants was 0.61 [0.418
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Table 1. Aggregate BIC scores and protected exceedance probabilities (pxp) for the models tested.

model subjective value (MSV) linear (Mlin) squared (M2) hyperbolic (Mhb)

no. parameters 3 2 2 3

aggregate BIC −632 −732 −1311 −1517
pxp 0.9643 0.0351 0.0003 0.0009
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0.801], which was significantly less than 1 (independent t-test,
p < 1 × 10−3; figure 4b). Thus, most subjects overweighted
small probabilities and underweighted large probabilities.
This observation matches well with previous findings in simi-
lar tasks involving risky decisions [2,43,44]. As in effort
valuation, participants’ probability weighting was consistent
across testing days (see electronic supplementary material).

Parameter fits to individual participants were validated by
comparing model-predicted choices to each participant’s
choices. Similar to the behavioural data, as the effort cost of
the lottery increased, the frequency of the model choosing
the lottery decreased (β = 0.00012, p < 0.001; figure 3a,c). Also,
as the probability of having to perform the lottery increased,
the frequency of the model choosing the lottery decreased
(β = 1.133, p < 0.001; figure 3b,d). Model-predicted choices
were indistinguishable from actual choice data (linear mixed
effects model, Effort: p = 0.742, Probability: p = 0.695).

Model performance in fitting participant choices was also
compared to performance when fitting choices made by a
random decision-maker. Comparison of the negative log-
likelihood values confirmed that fits based on the participant
choices were significantly better than fits to choices made
by a random decision-maker (nLLSV = 24.08 [19.07 29.09],
nLLrandom = 102.45 [101.89 103.02]). Individually, fits to each of
the 20participants outperformed fits to a randomdecision-maker.

It is possible that each individual’s metabolic cost could
better explain their decisions, compared to the average par-
ticipant metabolic cost. To test this, we fit a model, Mind,
where participant-specific choices were fitted using that par-
ticipant’s metabolic cost measurements. Otherwise, this
model was identical to MSV, fitting the three parameters for
effort valuation, probability weighting and temperature.
This model, Mind, based on each participant’s individual
metabolic cost did not perform as well as the model using
the participant average metabolic cost (nLLind = 29.11 [22.38
35.84]; nLLSV = 24.08 [19.07 29.09]). However, we do find
that the fitted parameters α and γ did not significantly
differ between models (α: 1.15 [0.90 1.40], p = 0.31; γ: 0.55
[0.39 0.71], p = 0.38) and were also significantly correlated
across models (α: r = 0.47, p = 0.04; γ: r = 0.48, p = 0.03).

2.3. Alternative effort valuation functions
To determine the significance of this distortion, we compared
the full CPT model that considered each participant’s fitted α
and γ parameters to a control model that exhibited no distor-
tion (Mlin, α = 1):

SVðxÞ ¼ �x1: ð2:4Þ

We found that the model considering subjective valuation
and probability weighting performed significantly better
than a model considering solely distortions in probability
(BICsv =−632, BIClin =−732; p < 0.001, Bayes factor; pxpS=
0.9643, pxplin = 0.0351; table 1). On an individual basis, we
found that 13 of the 20 subjects exhibited distortions in that
a full model performed better than a reduced model without
distortions (BICsv > BIClin). Of these 13 participants, eight
overvalued effort and the remaining five undervalued effort.

We also investigated a different form of effort cost. We
fitted a model where effort discounted utility additively,
but effort costs were squared, M2 (α = 2):

SVðxÞ ¼ �x2: ð2:5Þ

In contrast withMsv andMlin, squaring the effort cost rep-
resents an overvaluation of effort that is consistent across
individuals. We found that the model squared effort costs
performed significantly worse than a model considering sub-
jective valuation of effort costs (BIC2 =−1311; p < 0.001, Bayes
factor; pxp2 = 0.0003; table 1). On an individual basis, we
found that 18 of the 20 subjects exhibited distortions in that
a full model performed better than a reduced model without
distortions (BICsv > BIC2).
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2.4. Alternative effort discount functions
It is also possible that our results are sensitive to the structure
of the utility function. While the field of decision-making as a
whole awaits conclusive evidence regarding the form of the
discount function, there is much support for an additive utility
in the literature [5,13,16,32,45–47]. Nonetheless, it has been
proposed that effort, like time, discounts reward hyperboli-
cally [14,48]. Therefore, we also investigated performance of
a utility where reward is discounted hyperbolically by effort:

SVðxÞ ¼ � 1
1þ xa

: ð2:6Þ

However, this hyperbolic model significantly underper-
formed a model in which utility is the sum of reward and
effort costs (BIChb =− 1517; p < 0.001, Bayes factor; pxphb =
0.0009; table 1). The additive utility performed better in 17
out of 20 participants.
face
18:20210387
3. Discussion
Here, we quantified subjective valuation of effort in a moder-
ately effortful movement task. Using a novel approach, we
considered objective effort to be represented by the metabolic
cost required to perform the movement, and explicitly
measured that metabolic cost via expired gas analysis. Our pro-
tocol used a risky decision-making task that allowed us to map
utility directly onto effort in the appropriate units of energy
(joules) without the confound of intermediate conversions
such as money, force, number of movement repetitions and
time. As such, our approach provided us with new and power-
ful insights into how effort is truly represented in movement
tasks, and mitigated the inherent inaccuracies and approxi-
mations in other approaches that are less naturalistic and use
less ecological representations of effort. Therefore, these results
provide a unique window into how physical effort is
considered when choosing between effortful movements.

With increasing effort costs, are additional increments in
objective effort overvalued or undervalued? We found on
average, participants valued effort objectively. While there
was a significant nonlinearity in the relationship between
effort and its subjective value, the shape of this nonlinearity
varied idiosyncratically across subjects, with no consistent
distortion observed. Approximately an equal number of par-
ticipants overvalued and undervalued effort, with the group
average indicating an objective valuation of effort, highlight-
ing extensive inter-individual variation in effort valuation
across individuals. Despite the large variability across indi-
viduals, this function remained fairly robust within an
individual across testing days.

Only recently have scientists begun to probe the effects of
effort costs on decision-making. Previous work delving into
physical effort has tended to focus on howeffort costs discount
reward, producing an overall utility for each prospect [5,13–
16]. Candidate utility functions have been proposed that take
either a hyperbolic or quadratic shape. The use of a hyperbolic
function stems from the idea that effort discounts reward in the
samemanner that time discounts reward. However, there is no
conclusive evidence supporting such a function. Moreover, we
find that a model of utility in which reward is discounted
hyperbolically by time performs significantly worse in
explaining subject choices. The quadratic shape is equivalent
to setting the parameter α = 2 in our analysis. This shape was
derived on the premise that the subjective value of effort
costs increases supralinearly, drawing from findings in the per-
ception literature [49,50]. Our results demonstrate that in the
case of moderately effortful tasks, effort sensitivity does not
consistently increase supralinearly across participants.

There are a few possible explanations for the apparent
discrepancy between our findings and those of recent studies
[13,15]. First, we probed a lower range of effort requirements.
Both Hartmann et al. and Klein-Flugge et al. probe effort
levels up to approximately maximum effort. Our goal was
to identify effort valuation in moderately effortful tasks simi-
lar to those experienced in common daily activities. It is
possible that the nonlinearities previous studies observe in
effort valuation may only begin to emerge only at near-
maximal effort levels as a result of pain, discomfort, injury
risk or force saturation effects.

Another difference between our study and previous ones
on effort-based decision-making is the influence of subjective
valuation of reward. Many studies make the assumption that
the subjective valuation of the reward increases linearly with
an increase in reward magnitude. Levy et al. [51] found that
different rewards including money, food and water are all
valued nonlinearly. To minimize the possible confound of
subjective reward values, our paradigm was designed in a
manner void of explicit rewards. Participants were instructed
to make decisions based solely on effort expenditure. While
monetary compensation was provided to all participants for
completing the experiment, it was distributed equally and
independently of choice behaviour.

Prior investigations have also used less direct measures
of effort modulation rather than directly measure meta-
bolic cost. Common approaches have included grip-force,
number of buttons pressed and sizes of obstacles scaled
[13,15,49,52]. While metabolic cost is likely to increase in all
these cases, the shape of the relationships has not been ident-
ified. As such, any nonlinearities observed may be a result of
a nonlinear mapping between metabolic cost and the proxy
employed. A novel method introduced in our study is that
we measured changes in effort based on the amount of meta-
bolic energy used to perform each task, allowing us to
directly quantify the relationship between the objective and
subjective costs of effort.

Other studies have examined the role of physical effort in
reaching movements, without the confound of monetary
rewards. A recent study by Morel et al. [16] observed a
near-quadratic sensitivity to effort, even for a range of low-
effort values, when effort was quantified as the resistive
force. Another study [17] also reported overvaluation of
effort, when effort was quantified as resistive force. One poss-
ible reason for the discrepancy in our current findings is that
in both these studies, effort was represented as resistive force,
rather than metabolic cost. Here, we show that metabolic cost
actually increases slightly supralinearly with resistive force.
Indeed, we found that while metabolic cost increased with
resistance, the relation between metabolic cost and resistance
was slightly better fitted with a quadratic, than with a simple
linear fit (quadratic: mc = a + b(resistance)2, R2 = 0.97, p =
0.0018; linear: mc = a + b(resistance), R2 = 0.95, p = 0.0038;
figure 2a). Thus, a nonlinear mapping between metabolic
cost and resistive force could help explain the greater effort
sensitivity observed in earlier studies.

Similar to other effort paradigms, we added a probability
cost. Probability was necessary to make lottery combinations
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that were similar in subjective value to the reference option.
To account for known distortions in probability weighting,
we used a single-parameter Prelec function [53]. Little is
understood about how this parameter behaves in losses,
but when comparing our results to a similar function
originally proposed by Tversky & Kahneman [2], we find
qualitatively similar and statistically indistinguishable
results [2,43,44]. This consistency strengthens our conclusion
on effort valuation by considering the effects caused by
distortions in probability weighting.

The theoretical framework of optimal feedback control
has significantly advanced our understanding of movement
control [54]. A key component of such models is the incorpor-
ation of a cost function that includes an effort cost. The effort
cost has historically been represented as the sum of the
squared forces or squared motor commands required to gen-
erate the movement. The quadratic term is largely due to
mathematical convenience, since experimental results in
both humans and other animals performing isometric force
tasks have shown that effort costs, measured as metabolic
cost, align more closely with the integral of absolute force,
not squared force, over time [55]. One possible justification
for the quadratic term is that while effort costs increase line-
arly with force, the subjective value of effort may increase
supralinearly with force. However, our results demonstrate
that on average, effort costs are valued objectively, and
suggest that these cost functions should consider this in
order to more accurately represent objective effort costs.

Recent models of decision-making and movement control
predict that as the effort requirements of a movement of a
given distance increase, the speed with which that movement
is executed should decrease [7,24,34,46]. Indeed, behavioural
findings have confirmed this prediction in reaching tasks
[56]. Work by Mazzoni et al. [7] suggests the slower reaching
speeds observed in Parkinson’s patients is a result of an exag-
gerated cost/benefit ratio. Following up on these observations,
it would be interesting to determine whether differences in
sensitivity to effort costs in a healthy population could explain
inter-individual variability in preferred movement speeds.
3.1. Limitations
During the decision-making aspect of our experiment, a
number of red dots ranging from 1 to 5 were presented on the
side of the screen. Despite heavy practice reaching under each
resistance, it is possible that some participants could have inter-
preted the linearly increasing dots as representing a linear
increase in force. However, the resistive forces represented by
these dots did not increase linearly. The nonlinearity in increas-
ing force allowed us to probe whether individuals were
associating effort based on the resistance itself or rather the
number of dots. To differentiate between these two strategies,
individuals report anRPE aftermakingmovements at each con-
dition. While our results suggest that participants were able to
properly sense the changes in resistance (linear scaling of RPE
with resistance), there is still a possibility that the scaling of
the cues may have influenced the representation of effort.
Using a scaling based on the dots in this experiment would
result in an overvaluation of lower effort and anundervaluation
of higher efforts, a result counter towhat is predicted in a quad-
ratically increasing effort cost.

The costs of accuracy and time play an essential role in
forming the utility of a movement. In the current protocol,
we aimed at controlling both of these costs in several ways.
To control for accuracy, we used a very large target (15 cm
diameter) such that any deviation from the centrewas inconse-
quential to movement success. Results found in the electronic
supplementary material (PerformanceMeasures) reaffirm that
accuracy in terms of speed and crossing-point deviation did
not covarywith increasing effort. Furthermore, the constrained
movement durations were identical across all effort conditions
such that any cost of timewould be independent of the level of
effort tied to the lottery. It is possible that the cost of time associ-
atedwith sitting quietlymaybevalueddifferently from the cost
of time while engaged in activity [57]. An increased cost of sit-
ting quietly may have led participants to choose the reference
more frequently than if this potential cost of waiting was
removed. To address this, we fitted a model that includes the
cost of sitting and found that it did not explain behaviour
better than a model without the sitting cost (see electronic sup-
plementary material, ‘Alternative Models’). Nonetheless,
failure to account for this potential cost would mean that our
function is over-representing effort, a finding that would
further argue against the commonly believed quadratic shape
of the effort discounting function.

Our findings demonstrate that there are idiosyncratic distor-
tions in an individual’s sensitivity to effort costs in a low-effort
task, with some individuals showing increasing sensitivity to
effort and yet others exhibiting diminishing sensitivity. How-
ever, on average, individuals valued effort objectively, in
contrast with previous observations of a quadratic valuation.
Together, these findings provide the first quantification of
effort valuation in reference to an objective physiological
effort cost, and reveal an objective valuation in low-effort
reaching tasks representative of activities of daily life.
4. Material and methods
Twenty participants were enrolled in this experiment (age: 25.35 ±
4.00 years, weight: 72.90 ± 9.21 kg, 7 females). Each participant
gave written informed consent as approved by the University of
Colorado Institutional Review Board and received $10 h−1 for par-
ticipating. All participants completed a training session, metabolic
session, and one choice behaviour session. Twelve repeated a
second choice behaviour session. One participant’s metabolic
data were corrupted and removed from the metabolic analysis.

4.1. Training session
The purpose of this session was to familiarize participants with
reaching against a resistive force as well as to train them to
reach under a constrained time limit. The task consisted of
making 20 cm out-then-back reaching movements between a
home circle and a rectangular target (15 cm wide). Visual feed-
back was provided at the end of each movement to ensure that
movement duration fell between 550 and 650 ms. Velocity-depen-
dent forces were generated according to the following equation:
[Fx Fy] =− b[Vx Vy], where Fx and Fy represent horizontal and ver-
tical forces, Vx and Vy the corresponding handle velocities and b is
a constant describing the scaling of the resistance. There were five
conditions: b = 0 (no forces), 30, 45, 60 and 70 N s m−1, each pre-
sented twice in blocks of 50 trials in randomized order.

Immediately following each block in the training session,
participants reported a modified RPE where they were asked
to rate the physical effort required to complete the task. The
first block tested was 0 N s m−1 followed by the second block
tested at 70 N s m−1. By providing these two blocks early, partici-
pants were able to set a floor and ceiling score to base the
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remaining three conditions within. RPE scores did not represent
absolute levels of exertion, but instead levels of exertion relative
to an already experienced maximum (70 N s m−1) and minimum
(0 N s m−1) resistance. After each block, participants completed
20 washout trials against no resistance (0 N s m−1). Each resist-
ance condition (sin null resistance) was repeated three times for
a total of 13 blocks. The last block of each condition was
inspected to confirm that the increase in resistance reflected a
relative increase in RPE score.

4.2. Metabolic session
In themetabolic session, the objective effort cost (i.e. metabolic cost)
of reaching against resistance was measured using methods pre-
viously developed in our laboratory [58,59]. Upon arrival at the
laboratory, participants completed three 6 min baseline blocks
where they sat quietly and we measured their metabolic cost. This
was followed by trial blocks of reaching against resistances of 0,
30, 45, 60 and 70 N s m−1. Robot force, position and velocity were
recorded at 200 Hz. The resistance in each block was fixed, but the
order of blocks was randomized. Each reaching block consisted of
300 trials lasting approximately 7 min. Expired gas analysis was
used to calculate the net metabolic cost (J) of seated resting and of
seated reaching against resistance. Before participants arrived for
the metabolic session, they were instructed to refrain from eating
and drinking anything but water for the morning of the session.
Fasting was necessary to minimize the thermal effect of food on
basalmetabolic rate [60]. Participantswore a nose-clip and breathed
intoamouthpieceduringall baseline andreachingblocks (figure1a).
A metabolic cart (ParvoMedics, TrueMax2400) was used to sample
the amount of consumed oxygen (O2, l min−1) and expired carbon
dioxide (CO2, l min−1) over 5 s intervals. At the beginning of each
metabolic session, gas fractions were calibrated to within an error
of ±0.03% using a certified standard gas mixture and flow rate
was calibrated to within an error of ±0.2% using a 3 l syringe
under various flow rates. Respiratory exchange ratio (CO2/O2)
was monitored to confirm that each subject was within physiologi-
cal ranges of aerobic respiration (0.7–1.0). Using the average O2 and
CO2 for the last 4 min of each reaching condition, gross metabolic
power (J s−1) was calculated using the Brockway equation [61].
Only the last 4 min of reaching were analysed to account for both
physiological and equipment delays. The primary source of physio-
logical delays is a result of the necessary time for the expired
metabolites to accurately represent the metabolic activity in the
active muscle. The primary source of equipment delay is due to
the time required to expire the ambient air through the system.
The net metabolic power for each condition was calculated by sub-
tracting the lowest average gross power of the three baseline blocks
from the average grossmetabolic power of that condition. The aver-
age net metabolic power measured for each resistance was
multiplied by the duration of the activity to represent the net meta-
bolic cost of reaching against that resistance (J). We refer to the net
metabolic cost of reaching as the objective effort cost.

For each reaching block, there was a gauge on the side of the
monitor displaying a number of red dots ranging from 1 to 5
(figure 1a). The number of dots corresponded to the magnitude of
the resistance (1 dot = lowest resistance, 5 dots = highest resistance).
Participants were instructed to associate the dots with the resistance
theywere experiencing. Theywere also informed that the increase in
resistance did not necessarily scale linearly with the number of dots.
These dots were used in the upcoming behaviour session to rep-
resent effort levels. Between each reaching block, the participant
rested for 5 min.

4.3. Behaviour sessions 1 and 2
In the behaviour sessions, participants made choices between
risky effort lotteries. Based on their choices, we determined
their subjective valuation of effort.
4.3.1. Choices
Participantswere instructed to choosewhichof tworeachingoptions
they preferred. In each pair of options, one was a reference option
and the otherwas a lottery, with each option involving the perform-
ance of an effortful reach continuously for 5 min. The reference
option was presented in every trial as a zero resistance reach
(0 N s m−1; figure 1b). Throughout the session, the reference option
was consistently displayed on one side of the screen, either the left
or right. The sidewas randomlydetermined foreach subject. The lot-
teryoption consisted of a probability of performing a high resistance
reachwith the alternative outcome of sitting quietly. The lotterywas
presentedwith a percentage value (53%, 63%, 72%, 84%, 95%) and a
given resistance communicatedbythenumberof reddots (figure1c).
The percentage represented the chance of having to reach continu-
ously for 5 min and the number of dots represented the resistance
experienced. The alternative outcome was to sit quietly in the chair
for 5 min. Importantly, each potential outcome had the same dur-
ation to control for the effect of time. A single block of choice trials
consisted of each resistance being paired with each percentage for
a total of 25 reaches per block. The behaviour session consisted of
six continuous blocks with the order of each block being randomly
generated for a total of 150 choice trials. Each choice combination
was presented on the screen for 4 s then the combination disap-
peared and the participant had 2 s to record their choice. Decisions
were recorded by pushing one of two buttons on a remote control.
No information was provided regarding previous choices and no
actual reaching was performed between choices.

4.3.2. Realization
At the end of the behaviour session, the participants’ choices were
realized by performing the results of three randomly chosen
choice trials. If the subject chose the reference option, then they
performed 5 min of reaching against zero resistance. If the partici-
pant chose the lottery option, they rolled two 10-sided dice. If the
number rolled was higher than the percentage of the chosen lot-
tery, the participant would sit in the chair for 5 min and not
have to perform the reaching task. Otherwise, they performed
5 min of reaching against the resistance assigned to the lottery.

4.4. Quantifying subjective valuation and probability
weighting

The average metabolic cost (objective effort cost) measured across
participants in the metabolic session was combined with individ-
ual choice behaviour in the behaviour session to calculate each
participant’s specific utility function for effort. Their choices
were used to fit decision-making parameters found in utility func-
tions derived from CPT [2] using maximum-likelihood estimation.

The first model examined, Msv, considered a utility in which
the subjective value of effort was subtracted from utility:

SVðxÞ ¼ �xa: ð4:1Þ

The parameter α is a measure of the subjective valuation of
the effort cost. There is no explicit reward in the task, so we
assume reward is zero and the utility is entirely determined by
the subjective value of effort. The effort cost, x, was represented
as the net metabolic cost with respect to quiet sitting. As sitting
quietly was the baseline condition to which the effort of each
reaching condition was compared, the net effort cost in the
seated condition was 0. The second parameter, γ, determines
the shape of the probability weighting function, ω( p(x)):

v( p(x)) ¼ exp[�(�ln( p(x))g)]: ð4:2Þ

Together, these two functions determine the option’s
expected utility (E[U ]):

E(U) ¼ SV(x)v( p(x)): ð4:3Þ
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In a two-alternative forced choice task, the α and γ variables are
fitted to the observed behavioural data using the following func-
tion, where the subscripts L and R refer to the lottery and the
reference options, respectively:

PL ¼ 1
1þ ekðE½UR ��E½UL �Þ : ð4:4Þ

PL represents the probabilityof choosing the lotteryand is based on a
logistic function that considers the difference in EU of each choice as
well as the third free parameter, k, which describes the logistic slope.
All three parameters were fitted using themaximum-likelihood esti-
mation. Parameter fits were confirmed by using maximum-
likelihood calculations from over 1000 model runs using different
initial conditions tominimize the riskof settling on a localminimum.
Additionally,weusednegative log likelihood to comparemodel per-
formance to that of a random decision-maker, as well as a model
based on fitting individual metabolics to individual choices, rather
than group average metabolics to individual choices.

We also tested a linear discount function, MIin, in which
effort is valued objectively:

SVðxÞ ¼ �x: ð4:5Þ

Here, αwas fixed to 1, and γ and the temperature, k, were free
parameters. Based on previous findings in both the perception
and decision-making literature, we tested an additive model,
M2, where effort was squared:

SVðxÞ ¼ �x2: ð4:6Þ
Here, α was fixed to 2, and γ and the temperature, k, were free
parameters. This function implies that effort is consistently sub-
jectively valued quadratically, meaning that small increases in
effort are valued as less costly compared to larger increases in
effort, leading to a concave discounting of reward.

We also considered a hyperbolic effort discount function in
which utility was discounted hyperbolically by effort, Mhb.
Here, the subjective value of the option is represented as

SVðxÞ ¼ � 1
1þ xa

: ð4:7Þ

Goodness of fit of the full additive model which considered
subjective value, MSV, was compared to the alternative models,
M*, using Bayes factors (BF):

BF ¼ p(MsvjD)
p(M�jD)

¼ p(DjMsv)P(Msv)
p(DjM�)P(M�)

: ð4:8Þ

Bayes factors were approximated with the Bayesian information
criterion (BIC) [62], calculated as the log likelihood of the model
with the best fit parameters, minus a penalty for the number of
parameters, n, and datapoints, m:

BIC ¼ log( p(DjM,ûM))� n
2
logm � log( p(DjM)): ð4:9Þ
BICs and Bayes factors were calculated for each subject, each
model and each model comparison. Aggregate BICs are pre-
sented as well as population-based Bayes factors, which were
interpreted as p-values with the following adjustment: p = 1/BF
[63]. Finally, we also present the protected exceedance probabil-
ities (pxp) [64,65] using the spm_BMS function available in
SPM12 software (Wellcome Trust Centre for Neuroimaging,
London, UK; http://www.fil.ion.ucl.ac.uk/spm).
4.5. Movement speed
Metabolic session: From the movement data acquired during the
metabolic session, we calculated the average and peak tangential
velocity and movement error for each trial. Movement error was
calculated as the absolute lateral deviation of the cursor from the
centre of the target when it had reached a distance of 20 cm from
the centre of the home circle. We compared the average velocity
in each block (i.e. resistance condition) to determine whether
participants had consistently maintained the required movement
velocity across resistance conditions. A similar analysis was
performed for movement error.
4.6. Statistics
The effect of resistance on metabolic cost, RPE and frequency of
choosing the lottery (both observed and model) was quantified
using a simple linear regression model. The parameters α and γ
were compared to unity using independent t-tests. Comparing the
observed frequency of choosing the lottery to the model frequency
of choosing the lottery was performed with a linear mixed effects
model in both effort and probability comparisons. In these compari-
sons, a dummy variable was used to indicate whether behaviour
was observed or modelled. The analysis of the effect of resistance
on reaching velocity and movement error was performed with a
linear mixed effects model. All statistical analyses were conducted
using a significance level of 0.05.Unless otherwise noted, descriptive
statistics are presented as mean [95% confidence interval].
Ethics. Each participant gave written informed consent as approved by
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