
RESEARCH ARTICLE

Association of high-risk neuroblastoma

classification based on expression profiles

with differentiation and metabolism

Shunsuke KimuraID
1,2, Masahiro SekiguchiID

1, Kentaro Watanabe1, Mitsuteru Hiwatarai1,

Masafumi Seki1, Kenichi Yoshida3, Tomoya Isobe1, Yusuke Shiozawa3, Hiromichi Suzuki3,

Noriko Hoshino1, Yasuhide Hayashi4, Akira Oka1, Satoru MiyanoID
5, Seishi Ogawa3,

Junko Takita1,6*

1 Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,

2 Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima,

Japan, 3 Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University,

Kyoto, Japan, 4 Institute of Physiology and Medicine, Jobu University, Gunma, Japan, 5 Human Genome

Center Institute of Medical Science, The University of Tokyo, Tokyo, Japan, 6 Department of Pediatrics,

Kyoto University, Kyoto, Japan

* jtakita@kuhp.kyoto-u.ac.jp

Abstract

Neuroblastoma, the most common extracranial solid malignancy among children, originates

from undifferentiated neural crest cells (NCC). Despite recent intensified treatment, high-

risk patients still have a high mortality rate. To explore a new therapeutic strategy, we per-

formed an integrated genomic and transcriptomic analysis of 30 high-risk neuroblastoma

cases. Based on the expression profiling of RNA sequencing, neuroblastoma was classified

into Mesenchymal (MES; n = 5) and Noradrenergic (ADRN; n = 25) clusters, as previously

reported in the super-enhancer landscape. The expression patterns in MES-cluster cases

were similar to normal adrenal glands, with enrichment in secretion-related pathways, sug-

gesting chromaffin cell-like features built from NCC-derived Schwann cell precursors

(SCPs). In contrast, neuron-related pathways were enriched in the ADRN-cluster, indicating

sympathoblast features reported to originate from NCC but not via SCPs. Thus, MES- and

ADRN-clusters were assumed to be corresponding to differentiation pathways through SCP

and sympathoblast, respectively. ADRN-cluster cases were further classified into MYCN-

and ATRX-clusters, characterized by genetic alterations, MYCN amplifications and ATRX

alterations, respectively. MYCN-cluster cases showed high expression of ALDH18A1,

encoding P5CS related to proline production. As reported in other cancers, this might cause

reprogramming of proline metabolism leading to tumor specific proline vulnerability candi-

date for a target therapy of metabolic pathway. In ATRX-cluster, SLC18A2 (VMAT2), an

enzyme known to prevent cell toxicity due to the oxidation of dopamine, was highly

expressed and VMAT2 inhibitor (GZ-793A) represented significant attenuation of cell

growth in NB-69 cell line (high SLC18A2 expression, no MYCN amplification) but not in

IMR-32 cell line (MYCN amplification). In addition, the correlation of VMAT2 expression with

metaiodobenzylguanidine (MIBG) avidity suggested a combination of VMAT2 inhibitor and
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MIBG radiation for a novel potential therapeutic strategy in ATRX-cluster cases. Thus, tar-

geting the characteristics of unique neuroblastomas may prospectively improve prognosis.

Introduction

Neuroblastoma, the most common extracranial solid malignancy among children under 15

years of age, accounts for 8%–10% of pediatric tumors [1, 2]. In general, neuroblastoma is

thought to originate from undifferentiated neural crest cells (NCC), which can become any of

several different cell types, depending on the location within the embryo [3]. NCCs may par-

tially differentiate into neuroblastoma or ganglioneuroblastoma, which are malignant, or may

differentiate into benign ganglioneuroma [4]. The primary site of neuroblastoma is typically

the adrenal medulla or tissues that originate from the sympathetic nervous system [2].

Although low- and intermediate-risk patients generally have a favorable outcome, high-risk

patients show a high mortality rate and fewer than 50% of patients have long-term survival

despite recent intensified treatment [5, 6].

Several genome-wide analysis studies have been reported which aimed to improve progno-

sis and develop a new therapeutic strategy for high-risk neuroblastoma [2, 7, 8]. Segmental

chromosomal aberration is common in high-risk neuroblastoma, such as amplification of the

MYCN oncogene [9] deletions of chromosomes 1p, 3p, 4p, and 11q, and gains of chromo-

somes 1q, 2p, and 17q [10–12]. These chromosomal aberrations greatly influence the clinical

course [13]. In contrast, recent high-throughput genome-wide studies have revealed that there

were few recurrent somatic alterations in high-risk neuroblastoma, except MYCN [9] ALK
[14–17] ATRX [18, 19] and TERT [20]. These genetic alterations do not account for the entire

genetic mechanism leading to high-risk neuroblastoma. Thus, effective targeted therapies for

intractable neuroblastoma remain limited.

Based on the super-enhancer landscape of neuroblastoma cell lines, there are two neuro-

blastoma subtypes: Noradrenergic (ADRN)-type and Mesenchymal (MES)-type, showing dis-

tinct expression patterns in core regulatory circuitry (CRC)-related genes [21, 22]. However,

expression profiling of high-risk neuroblastoma is not yet fully understood. In the present

study, we classified 30 cases of International Neuroblastoma Staging System (INSS) [23] Stage

4 neuroblastomas, based on expression profiles of whole transcriptome sequencing (WTS).

Then we conducted a combined analysis with data on mutations and copy number alteration

(CNA) to explore a new therapeutic strategy for high-risk neuroblastoma.

Materials and methods

Patients and materials

This study enrolled 30 specimens collected from pediatric patients (2–140 months) who had

been diagnosed with neuroblastoma with INSS Stage 4 neuroblastoma and admitted to Tokyo

University Hospital and various hospitals in Japan between January 2003 and December 2015

(S1 Table). Enrolled patients were treated under the various protocols. All patients and/or

their parents provided written informed consent, and the Human Genome, Gene Analysis

Research Ethics Committee of the University of Tokyo and other participating institutes

approved the study protocols. Studies were conducted at Department of Pediatrics, The Uni-

versity of Tokyo, in accordance with the principles of the Declaration of Helsinki. Biopsy sam-

ples at the primary tumor site were collected from neuroblastoma patients. No matched

normal samples were available. Genomic DNA and RNA of each sample was isolated from
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frozen biopsy samples by NucleoSpin DNA RapidLyse kit and NucleoSpin RNA kit

(Macherey-Nagel Gmbh & Co., Düren, Germany) according to the manufacturer’s protocol.

Targeted capture sequencing (TCS)

Targeted capture was performed using a SureSelect custom kit (Agilent Technologies, Palo

Alto, CA, USA) as previously described [24–26] The custom bait library (U-Tokyo Onco-

panel ver.1) related to pediatric cancers (S2 Table) [24] was designed to include the following:

(i) all coding exons of 367 genes; (ii) untranslated regions and introns of CD274, CTNNB1,

ERG, ETV1, ETV4, EWSR1, FEV, FLI1, FOXO1, FUS, INO80D, NCOA1, NCOA2, NOTCH1,

PAX3, and PAX7 for detecting breakpoints of structural variations; (iii) promoter and

enhancer regions of FGFR3, MYC and TERT; (iv) microRNA genes MIR100, MIRLET7A1,

MIRLET7A2, MIRLET7A3, MIRLET7B, MIRLET7C, MIRLET7D, MIRLET7E, MIRLET7F1,

MIRLET7F2, and MIRLET7G; and (v) 3,527 positions of single nucleotide polymorphisms

(SNP) for copy number analysis to generate genome-wide allele-specific copy number profiles.

We selected 381 targeted genes and regions, not including the SNP positions, to include the

following: (a) genes adopted in more than one of the following existing gene panels: MSK-IM-

PACT27 CMS400 (Life Technologies, Carlsbad, CA, USA), FoundationOne (Foundation

Medicine, Cambridge, MA, USA), or the Human Comprehensive Cancer Panel (QIAGEN,

Hilden, Germany); (b) the most frequently mutated 20 genes in each type of malignancy

according to the Catalogue of Somatic Mutations in Cancer (COSMIC) v78; and (c) genes that

were recurrently affected in pediatric malignancies, including neuroblastoma, hepatoblastoma,

pleuropulmonary blastoma, rhabdomyosarcoma, Ewing’s sarcoma, and germ cell tumor.

Captured targets were subjected to sequencing using a HiSeq 2000 or 2500 platform (Illu-

mina, San Diego, CA, USA) with a standard 125-bp paired-end read protocol according to the

manufacturer’s instructions. With mean depths of 411 reads (range = 267–575, S3 Table),

sequence alignment and mutation calling were performed using our in-house pipeline “Geno-

mon v.2.5.0,” as previously described [25] Reads with a mapping quality score of<25, a base

quality score of<30, or five or more mismatched bases were excluded from the analysis. Can-

didate mutations with a variant allele frequency in tumor samples�0.1 and an EBcall [27]

(Empirical Bayesian mutation calling) P� 1 ×10−3 in coding regions were adopted, and fil-

tered by excluding the following: (i) synonymous mutations and variants without complete

ORF information; (ii) known variants listed in the 1000 Genomes Project (Oct 2014 release);

NCBI SNP database (dbSNP) build 131, National Heart, Lung, and Blood Institute (NHLBI)

Exome Sequencing Project (ESP) 6500, the Human Genome Variation Database (HGVD;

October 2016 release), or our in-house SNP database; (iii) variants present only in unidirec-

tional reads; (iv) variants occurring in repetitive genomic regions; (v) variants with<5 sup-

porting reads in tumor samples; and (vi) all variants found in non-paired normal samples

(n = 30) showing an allele frequency of>0.0025. Finally, mapping errors were removed by

visual inspection on the integrative genomics viewer browser [28] Copy numbers were calcu-

lated by allele frequencies and sequence depths of SNPs using our in-house pipeline “CNACS”

[29, 30] We defined amplification, gain, or loss of genes and segments when calculated signal

values were >10,>2.75 or <1.25 (<0.75 on the X chromosome of male subjects), respectively.

Significant CNAs were identified using GISTIC 2.0 (q< 0.1).

Whole transcriptome sequencing (WTS)

Total RNA was assessed for integrity and concentration using an Agilent 4200 TapeStation sys-

tem. All samples had an RNA integrity number higher than 6.5. Libraries for RNA-seq were

prepared using the NEBNext Ultra RNA Library Prep kit for Illumina (New England BioLabs,
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Beverly, MA, USA). Normalized count data, obtained by Genomon v.2.5.0 and the R software

package DESeq2, were subjected to cluster analysis. We ascertained cluster stability via consen-

sus clustering by using the top 1,000 most variable genes on the basis of median absolute devia-

tion, with 1,000 iterations, using the R package ConsensusClusterPlus. The R software package

Rtsne was used to map the samples to tSNE plot. Heatmaps were generated by the R package

pheatmap using count data. Differentially expressed genes were extracted using the R package

DESeq2, and pathway analysis was performed using Metascape (http://metascape.org).

Data

The raw data of sequencing are available from the DNA Data Bank of Japan (DDBJ) (accession

number hum0035, JGAS00000000246). The results published here are in part based upon data

generated by the Therapeutically Applicable Research to Generate Effective Treatments

(https://ocg.cancer.gov/programs/target) initiative, phs000467. The data used for this analysis

are available at https://portal.gdc.cancer.gov/projects (TARGET-NBL).

Cell proliferation assay

NB-69 and IMR-32 cell lines were obtained from Dr. Yasuhide Hayashi (Jobu University).

Mycoplasma infection and short tandem repeat were not tested. To select representative cell

lines for each cluster (MYCN- and ATRX-cluster), we used public data of transcriptomic pro-

filing in 39 neuroblastoma cell lines (GSE89413) [31]. Cells were seeded in triplicate at the con-

centrations of 3,000 cells/well in 96-wells plate. After 24 hours, cells were treated with DMSO

(control), Tolcapone (COMT inhibitor, Sigma #SML0150) or GZ-793A (VMAT2 inhibitor,

Sigma #SML0851). Cell proliferation was measured by using Cell Counting Kit-8 (Sigma,

#96992) at 24, 48, 72, 96 hours after treatment. Cell proliferation rate was calculated by com-

paring the absorbance before and after the treatments.

Statistical analysis

Statistical analyses were performed using R v3.4.0 software. Adjusted P values of differentially

expressed genes were calculated by DESeq2 and were considered statistically significant at

adjP< 0.01. P values and q values of pathway analysis were analyzed by using Metascape and

were considered statistically significant at q< 0.01. Statistical significance of gene expression

level and variant allele frequency were assessed using the Wilcoxon rank-sum test. The result-

ing values were considered statistically significant at P< 0.05.

Results

Mutation and copy number analysis

We performed TCS for 381 pediatric cancer-related genes and regions (U-Tokyo Onco-panel

ver.1) [24] (S2 Table) on 30 cases of INSS Stage 4 neuroblastoma (S1 Table). Each neuroblas-

toma sample harbored a mean of 4.2 variants (range = 1–10) (S4 Table). Variants in OBSCN
(23.3%) were the most frequent, followed by ALK variants (16.7%) (Fig 1A and S1 Fig). Broad

gains of chromosomes 17q (83.3%), 1q (40%), and 2p (40%), and deletions of chromosomes

11q (50%) were commonly detected (Fig 1B). Twelve cases (40%) possessed focal amplification

of the MYCN oncogene. Alterations of ATM (46.7%), ARID1A (36.7%), and ATRX (26.7%),

including broad and focal deletions in the coding region (annotated in blue) and mutations

(annotated in green and purple), were also observed as previously reported [7, 12, 32]. Alter-

ation in TERT gene region was not detected. Consistent with previously reported [33], RAS
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and p53 pathways were frequently affected (S1 Table). The amplification of the MYCN onco-

gene and alterations in ATRX appeared to be mutually exclusive (Fig 1B).

Unsupervised consensus clustering based on expression profiles

We performed gene expression profiling of 30 individuals with INSS Stage 4 neuroblastoma,

in addition to publicly-available expression data of normal adrenal gland tissues (GSE93499,

GSE88682, GSE88668), to characterize neuroblastoma in genomic terms [34] We obtained

two stable clusters using unsupervised consensus clustering which validated in tSNE plot (S2

Fig). Importantly, five (17%) cases of neuroblastoma had similar expression profiles to the nor-

mal adrenal gland (Fig 2A). Among these five cases, information about the primary tumor site

was available in four cases; three were in the adrenal gland, and one in the retroperitoneum

(S3 Fig and S1 Table). Although samples of these five cases were obtained from a biopsy of the

primary site, results of CNA and variant allele frequency detected by TCS were compatible

with the rest of 25 neuroblastoma cases in the other cluster (S4 Fig and S4 Table). Therefore,

these five samples seemed to have sufficient numbers of tumor cells. We concluded that the

effects of contaminated normal adrenal gland cells were not strong compared to the rest of the

samples.

Comparison of expression profiles of these two clusters revealed that several transcription

factors involved in CRC, including ETV6 and FOSL1, were highly expressed in the cluster as

previously described [22], showing similar expression patterns to normal adrenal glands (Fig

2B and S5A Fig). Cases in the other cluster also showed a high expression of CRC-related

genes in neuroblastoma, such as GATA3 and HAND2 (Fig 2B and S5B Fig). We validated the

expression profiles of these two clusters using differentially expressed genes between ADRN-

and MES-types reported in the classification of super-enhancer-associated transcription factor

networks (S5 Table) [21, 22] As a result, expression patterns of the cluster showing similar

expression profiles to normal adrenal glands corresponded with the MES type, whereas the

other cluster corresponded with the ADRN type (Fig 2C). These two subtypes, MES- and

ADRN-clusters were validated by using expression profiles of 94 cases with high-risk neuro-

blastoma in the Therapeutically Applicable Research to Generate Effective Treatment (TAR-

GET) database (S6 Fig and S6 Table). Thus, based on expression profiling, INSS Stage 4

neuroblastoma in the present study was classified into two subtypes, MES- and ADRN-clus-

ters, and cases in the MES-cluster presented similar expression patterns to normal adrenal

glands.

Pathway analysis in MES- and ADRN-clusters

For further characterization of MES- and ADRN-clusters, we performed pathway analysis

using the 500 top-ranked differentially expressed genes between these clusters (S7 Table). In

the MES-cluster, pathways related to secretion and vesicles were enriched significantly,

whereas the ADRN-clusters had enriched neuron- and synapse-related pathways (Fig 2D and

2E). These results indicated that the individual cases in MES- and ADRN-clusters harbored

features of chromaffin cells and the sympathetic nervous system, respectively. About 80% of

chromaffin cells, which are the main components of the adrenal medulla, were reported to be

Fig 1. TCS in 30 cases of INSS Stage 4 neuroblastoma. (A) Recurrently detected gene alterations (> 10%) by TCS for

381 pediatric cancer-related genes. Since only tumor samples were available, candidate variants were filtered according

to our previous study to estimate somatic mutations. (B) Mutational landscape in 30 cases of neuroblastoma, along

with copy number alterations based on TCS data. TCS, targeted capture sequencing. Broad and focal deletions and

amplifications in the coding regions were also annotated in “Gene alteration”.

https://doi.org/10.1371/journal.pone.0245526.g001
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generated from NCC-derived Schwann cell precursors (SCPs) later in embryonic development

[35] Furthermore, SCPs and sympathoblasts originate from unique single NCCs traced from

E8.5 [35] Thus, the MES- and ADRN-clusters appeared to correspond to differentiation path-

ways through SCP and sympathoblast cells, respectively, in the development model. These dif-

ferences might be involved in expression patterns and the development of neuroblastoma of

Fig 2. Classification of 30 cases of Stage 4 neuroblastoma based on expression profiles. (A) Unsupervised consensus clustering of total 34 samples (30 neuroblastoma

and four normal adrenal glands; GSE93499, GSE88682, GSE88668 [34]) identified two distinct subgroups, MES- and ADRN-clusters. Five cases of MES-cluster

neuroblastoma showed similar expression profiles to normal adrenal gland samples. (B) The expression of core genes indicated two subtypes. Normalized expression was

calculated from read counts on each gene with DESeq2 software. The P-value was calculated using the Wilcoxon rank-sum test. The mean and 25th and 75th percentiles

are represented in the box plots by the midline and box edges, respectively, and whiskers extend to 1.5 times the interquartile range. (C) Supervised hierarchical clustering

of 30 neuroblastoma cases using the same gene set used for classification of MES- and ADRN-clusters in previous reports [21, 22]. Pathway analysis with Metascape

software by using top 500 differentially expressed genes in (D) ADRN-cluster and (E) MES-cluster. MES, Mesenchymal; ADRN, Noradrenergic.

https://doi.org/10.1371/journal.pone.0245526.g002
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each cluster (Table 1). In fact, all cases that originated from the neck and mediastinum, rather

than the adrenal gland or the retroperitoneum, were classified into the ADRN-cluster, while

all MES-cluster cases originated from the adrenal gland or the retroperitoneum (S1 Table).

Further classification of ADRN cluster based on expression profiles

We performed unsupervised consensus clustering again only for the ADRN-cluster neuroblas-

toma cases (n = 25) to further characterize this cluster that accounted for 80% of INSS Stage 4

neuroblastoma cases in the present study. With the top 1000 most variable genes, the ADRN-

cluster was divided into two groups by 2nd-unsupervised consensus clustering and tSNE plot

(S7 Fig). Based on genetic alterations detected by TCS, these two subtypes were characterized

into MYCN- and ATRX-clusters (Fig 3A). The MYCN-cluster contained all the cases with

MYCN amplification, as well as frequent alterations of ALK and ARID1A including focal and

broad aberrations in the coding region. The ATRX-cluster contained all of the cases with ATRX
abnormalities and frequent ATM alterations involving coding region, although no cases with

MYCN focal amplification were classified into this cluster. CNA revealed frequent segmental

chromosomal aberration in the ATRX-cluster, especially deletions of chromosome 11q, includ-

ing the ATM locus, and gains of chromosomes 2p and 17q (Fig 3B and S7 Table). In contrast,

MYCN-cluster featured deletions of chromosome 1p with a gain of chromosome 2p including

the MYCN and ALK loci (Fig 3C and S7 Table). Thus, neuroblastoma cases in the ADRN-clus-

ter were classified into two genetically distinct clusters, MYCN- and ATRX-clusters.

Differentially expressed genes between MYCN- and ATRX-clusters

Pathway analysis using the 500 top-ranked differentially expressed genes between the MYCN-

and ATRX-clusters (S8 Table) revealed significant enrichment of ribosome-related pathways

in the MYCN-cluster (Fig 4). This result was consistent with the fact that MYC family proteins

were regulators of ribosome biogenesis and translation [36] In addition to MYCN and ribo-

some-related pathway genes, ALDH18A1 was expressed significantly in the MYCN-cluster

compared to the ATRX-cluster (Fig 4A). ALDH18A1 encodes P5CS, an enzyme involved in

the conversion of glutamate to pyrroline-5-carboxylate (P5C). This enzyme is important for

producing proline from glutamate, as well as PYCR1, which also highly expressed in the

MYCN-cluster (Fig 4B). These results might indicate reprogramming of proline and glutamine

metabolism, increasing proline biosynthesis in the MYCN-cluster.

In the ATRX-cluster, SLC18A2 encoding the protein VMAT2 was significantly expressed

(Fig 4) compared to the MYCN-cluster. VMAT2 is a vesicular monoamine transporter that

accumulates cytosolic monoamines, such as dopamine, into synaptic vesicles. This action was

consistent with the pathway analysis results, which enriched vacuole- and vesicle-related path-

ways in the ATRX-cluster (Fig 4C and 4D). Therefore, metabolic pathways related to dopa-

mine in the ATRX-cluster might be distinct from other neuroblastoma cases.

Table 1. Characterization of ADRN- and MES-clusters considering of differentiation.

Noradrenergic (ADRN) Mesenchymal (MES)

Time of differentiation Early Late

Origin Neural crest cell (NCC) Schwann cell precursor (SCP)

Cell Sympathetic neuron Chromaffin cell

Tissue Sympathetic nervous system Adrenal gland

Synapse Yes No

https://doi.org/10.1371/journal.pone.0245526.t001
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Targeting the dopamine related metabolic pathways

To explore the vulnerability in the metabolic pathways related to dopamine in the ATRX-clus-

ter, we examined the efficacy of GZ-793A (VMAT2 inhibitor) and/or Tolcapone (catechol-O-

methyltransferase [COMT] inhibitor) in representative cell lines for each cluster, NB-69

(ATRX-cluster with high SLC18A2 [VMAT2] expression without MYCN amplification) and

IMR-32 (MYCN-cluster with MYCN amplification), based on the MYCN amplification status

and gene expression profiles of publicly available WTS data (GSE89413) [31] because VMAT2

and COMT are enzymes to protect cells from excess reactive oxygen species (ROS) by

Fig 3. Further classification of 25 neuroblastoma cases in ADRN-cluster. (A) Unsupervised consensus clustering classified 25 cases of ADRN-cluster neuroblastoma

into two subgroups, ATRX- and MYCN-clusters, characterized by genetic alterations. Clinical data and mutational landscapes are also shown. The results of copy number

analysis based on TCS data in (B) ATRX-cluster and (C) MYCN-cluster are shown. TCS, targeted capture sequencing. Broad and focal deletions/gains and amplifications

in the coding region were also annotated.

https://doi.org/10.1371/journal.pone.0245526.g003
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degradation of monoamines [37, 38]. Consistent with the result from expression profiles, GZ-

793A treatment significantly suppressed cell proliferations in NB-69 but not in IMR-32 (Fig

5). In contrast, Tolcapone treatment attenuated cell proliferation only in higher concentration

(20μM) but not 10μM for both NB-69 and IMR-32 (Fig 5). Combination of GZ-793A and Tol-

capone represented efficacy even in lower concentration of Tolcapone (10μM) in IMR-32,

however, this synergistic effect was not observed in higher concentration (20μM) (Fig 5).

Discussion

In the present study, we classified INSS Stage 4 neuroblastoma into two subtypes, MES- and

ADRN-clusters, based on WTS expression profiles. These two clusters were validated with

Fig 4. Characterization of gene expression between MYCN- and ATRX-clusters. (A) Differentially expressed genes between MYCN- and ATRX-clusters based on

normalized WTS read counts. Green dots represent genes regulated by MYCN. (B) Expression of genes in MES-, ATRX- and MYCN-clusters. Normalized expression

was calculated from read counts on each gene with DESeq2 software. The P-value between ATRX- and MYCN-clusters was calculated using the Wilcoxon rank-sum

test. The mean and 25th and 75th percentiles are represented in the box plots by the midline and box edges, respectively, and whiskers extend to 1.5 times the

interquartile range. Pathway analysis with Metascape software by using top 500 differentially expressed genes in (C) ATRX-cluster and (D) MYCN-cluster. MES,

Mesenchymal.

https://doi.org/10.1371/journal.pone.0245526.g004
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independent large cohort and consistent with the previous classification of the super-enhancer

landscape of neuroblastoma cell lines [21, 22]. A small set of core transcription factors forms

an interconnected auto-regulatory loop, CRC, which is often driven by super-enhancers [39].

ADRN-type neuroblastoma, showing sympathetic noradrenergic identity, was characterized

by CRC modules formed by several transcription factors, such as HAND2, PHOX2B, and

GATA3, leading to high expression of these genes. CRC modules, including AP-1 transcrip-

tion factors, defined the MES- subtype [21, 22]. Because the formation of these CRCs is associ-

ated with differentiation, the pathway analysis results between MES- and ADRN-clusters

might provide information about the origin of neuroblastomas. In the present study, enrich-

ment of secretion- and vesicle-related pathways in the MES-cluster represented the features of

chromaffin cells, composing about 80% of the adrenal medulla. In contrast, neuron- and axon-

related pathways were enriched in the ADRN-cluster, which indicated sympathetic nervous

system features. Furthermore, primary lesions in MES-cluster cases were limited to the adrenal

gland or the retroperitoneum, whereas ADRN-cluster cases occurred in tissues originating

from the sympathetic nervous system. These results were consistent with previous reports

showing that most chromaffin cells originated from SCPs rather than from sympathoblasts,

although both SCPs and sympathoblasts are NCC-derived [35]. Thus, there was a strong corre-

lation between differentiation and classification of super-enhancer or expression profiles in

neuroblastoma.

Primary neuroblastoma is a mixture of both MES- and ADRN-type cells, with a balance

toward the ADRN type, in most samples [21, 22]. Because of intratumor heterogeneity and the

usage of bulk biopsy samples, the classification of expression profiles in the present study

might indicate the main cell type component in each neuroblastoma sample. Therefore, we

need to be careful to say that our classification, MES- and ADRN-clusters, is directly associated

with the origin of neuroblastoma. There are two possible reasons for the intratumor heteroge-

neity of neuroblastoma (containing both MES- and ADRN-type cells). First, critical alterations

Fig 5. Efficacy of VMAT2 and COMT inhibitor in neuroblastoma cell lines. (A) IMR-32 (MYCN-cluster with MYCN amplification) and (B) NB-69 (ATRX-cluster

with high SCL18A2 [VMAT2] expression) cells were examined in triplicate. Cells were treated with DMSO, GZ-793A (VMAT2 inhibitor, Sigma #SML0851), or

Tolcapone (COMT inhibitor, Sigma #SML0150) and examined cell proliferation in each condition by using Cell Counting Kit-8 (Sigma, #96992) at 24, 48, 72, 96 hours

after treatment. Mean (± SEM) cell proliferation rate was calculated by comparing detected absorbance before and after treatment.

https://doi.org/10.1371/journal.pone.0245526.g005
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leading to neuroblastoma might occur in NCCs before differentiating into SCPs. In this case,

mutated NCCs might differentiate into both MES- and ADRN-types. Second, critical alter-

ations may occur in a later development stage, when NCC derivatives have been already deter-

mined to become either MES- or ADRN-type cells. In this case, either of the committed MES-

or ADRN-type cells might interconvert to the other type. In fact, ADRN cell lines transitioned

toward MES-type profiles upon chemotherapy [21, 22]. To elucidate the relevance of intratu-

mor heterogeneity and differentiation, further analyses including single-cell analysis might be

required.

Cases in the ADRN-cluster were classified into MYCN- and ATRX-clusters in the present

study. MYCN-cluster cases showed high expression in ALDH18A1 (encoding P5CS) and

PYCR1, important enzymes in converting glutamate to proline. In Burkitt lymphoma, MYC

suppressed POX/PRODH expression and increased P5CS and PYCR1, leading to reprogram-

ming of proline and glutamine metabolism [40]. This tumor metabolic reprogramming contrib-

utes to tumor cell proliferation despite tumor-specific proline vulnerability as a compensatory

mechanism [41]. In invasive breast carcinoma and kidney cancers, extensive proline production

is necessary to maintain tumorigenic growth because tumor cell proliferation depends on pro-

line [41]. As a result, high expression of PYCR1 was induced in these cancer cells. Similar to

these cancers, neuroblastoma especially in MYCN-cluster might possess a tumor-specific pro-

line vulnerability, which could be used as a target metabolic pathway for treatment.

On the other hand, SLC18A2 encoding VMAT2 was expressed significantly in ATRX-clus-

ter cases and its inhibition with GZ-793A (VMAT2 inhibitor) represented significant attenua-

tion of cell proliferation. VMAT2 is a membrane protein that transports monoamines from

the cytosol into synaptic vesicles. Production of monoamines such as dopamine and noradren-

aline is a hallmark of neuroblastoma. These monoamines are degraded by enzymes, COMT

and monoamine oxidase (MAO), and are finally excreted as monoamine metabolites homova-

nillic acid and vanillylmandelic acid [42, 43] Excess free dopamine in the cytosol undergoes

oxidation [38] producing ROS [37]. Since this generation of ROS induces cytotoxicity and

neurodegeneration, COMT, MAO, and VMAT2 play an important role in preventing dopa-

mine oxidation in dopaminergic neurons [38]. Therefore, Tolcapone, a potent COMT inhibi-

tor to treat Parkinson’s disease, was reported in neuroblastoma cell lines to induce oxidative

stress leading to caspase-3-mediated apoptosis and to inhibit tumor proliferation [44]. The

efficacy of Tolcapone in neuroblastoma cell lines was also demonstrated in the present study

and showed synergy effect with VMAT2 inhibitor in MYCN-cluster representative IMR-32

cell line. However, this synergistic effect was not observed when treated with higher Tolcapone

concentration (20μM), suggesting that MYCN-cluster phenotype might use additional path-

ways for their proliferation and survival because Tolcapone and VMAT2 inhibitor target the

same monoamine metabolism pathway. Furthermore, a report from the Children’s Oncology

Group showed correlation of metaiodobenzylguanidine (MIBG) avidity with high VMAT2

expression in neuroblastoma cases without MYCN amplification [45]. Thus, the combination

of VMAT inhibitor with COMT/MAO inhibitor (MYCN-cluster) or MIBG radiation therapy

(ATRX-cluster) might be a potential therapeutic strategy for treating neuroblastoma cases.

In the present study, 30 cases with INSS Stage 4 neuroblastoma was classified into MES-

and ADRN-clusters based on expression profiles. These two clusters showed association with

the differentiation process and the origin of neuroblastoma (Fig 6). Further classification of

the ADRN-cluster identified MYCN- and ATRX-clusters, characterized by genetic alterations

and metabolism with potential therapeutic strategy. Treatment of high-risk neuroblastoma has

already been intensified to the maximum limit without exceeding toxicity levels harmful to the

patients. Thus, targeting metabolic reprogramming distinct in each cluster might be helpful

for the development of a new therapeutic strategy for high-risk neuroblastoma.
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