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OBJECTIVE—The contribution of innate immunity responsible
for aggressive b-cell destruction in human fulminant type 1 di-
abetes is unclear.

RESEARCH DESIGN AND METHODS—Islet cell expression
of Toll-like receptors (TLRs), cytoplasmic retinoic acid–inducible
gene I (RIG-I)-like receptors, downstream innate immune
markers, adaptive immune mediators, and apoptotic markers
was studied in three autopsied pancreata obtained 2 to 5 days
after onset of fulminant type 1 diabetes.

RESULTS—RIG-I was strongly expressed in b-cells in all three
pancreata infected with enterovirus. Melanoma differentiation–
associated gene-5 was hyperexpressed in islet cells, including
b- and a-cells. TLR3 and TLR4 were expressed in mononuclear
cells that infiltrated islets. Interferon (IFN)-a and IFN-b were
strongly expressed in islet cells. Major histocompatibility com-
plex (MHC)-class I, IFN-g, interleukin-18, and CXC motif ligand
10 were expressed and colocalized in affected islets. CD11c+
MHC-class II+ dendritic cells and macrophage subsets infiltrated
most islets and showed remarkable features of phagocytosis of
islet cell debris. CD4+ forkhead box P3+ regulatory T cells were
not observed in and around the affected islets. Mononuclear cells
expressed the Fas ligand and infiltrated most Fas-expressing
islets. Retinoic acid–receptor responder 3 and activated caspases
8, 9, and 3 were preferentially expressed in b-cells. Serum levels
of IFN-g were markedly increased in patients with fulminant type
1 diabetes.

CONCLUSIONS—These findings demonstrate the presence
of specific innate immune responses to enterovirus infection
connected with enhanced adoptive immune pathways responsi-
ble for aggressive b-cell toxicity in fulminant type 1 diabetes.
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F
ulminant type 1 diabetes is a unique subtype of
type 1 diabetes and is characterized by an abrupt
onset of severe hyperglycemia/ketoacidosis and
severe b-cell damage that is preceded by flu-

like symptoms (1–3). Recently, we have reported unique
enterovirus-induced mechanisms for b-cell destruction
involving CXC chemokine ligand 10 (CXCL10) and che-
mokine receptor CXCR3 in fulminant type 1 diabetes (4).

In this study, we examined the in situ status of innate
and adaptive immunity of enterovirus-induced fulminant
type 1 diabetes. This includes expression of Toll-like
receptors (TLRs) TLR3 and TLR4 and cytoplasmic retinoic
acid–inducible gene I (RIG-I)-like receptors (RLRs) RIG-I
and melanoma differentiation–associated gene-5 (MDA5).
TLRs and RLRs are major receptor systems for detecting
RNA viruses like enterovirus (5). As interferon (IFN)-a and
-b potentially inhibit viral replication and enhance cytotoxic
b-cell immunity (6), their expression, cytokine/chemokine ex-
pression, and activity of dendritic cells (DCs)/macrophages,
CD4+ forkhead box P3 (Foxp3)+ regulatory T cells (Tregs)
in affected islet cells were examined.

RESEARCH DESIGN AND METHODS

Patients. Clinical profiles of three autopsied patients with fulminant type 1
diabetes have been reported (4). Briefly, case 1 was a 14-year-old boy who died
from diabetic ketoacidosis, following flu-like symptoms 5 days earlier. Case 2
was a 25-year-old man who died from diabetic ketoacidosis, following sudden
symptoms of nausea and epigastralgia 2 days earlier. Case 3 was a 29-year-old
man who died from diabetic ketoacidosis, following slight fever, nausea, and
vomiting 2 days earlier.
Control subjects. Pancreatic tissues from 10 nondiabetic men (mean age 6
SD, 62 6 10 years) with gastric carcinoma who had undergone partial pan-
createctomy and from five autopsied nondiabetic men (65 6 11 years) were
used as nondiabetic control subjects for immunohistochemical analysis.
Pancreatic tissues from four autopsied type 1 diabetic patients (44 6 9 years)
who had histopathological insulitis and glutamic acid decarboxylase auto-
antibodies (titer: 3.0 6 1.5 U/mL, cutoff ,1.5) were examined as type 1 di-
abetic control subjects.
Immunostaining. Methods for immunohistochemical analyses have been
reported previously (4). Primary antibodies used in this study are listed in
Supplementary Table 1. The definition of insulitis and frequencies of insulitis
and mononuclear cell (MNC) phenotypes in islets of cases 1–3 have been
documented previously (4). The number of pancreatic acinar cells surrounded
by CD8+ T cells was counted in the randomly selected 60 photos of pancreatic
section in each case. A confocal laser-scanning microscope, Fluoview FV1000
(Olympus, Tokyo, Japan), was also used.
Measurement of serum IFN-g. We obtained sera from 18 patients with
fulminant type 1 diabetes (age [range]: 32.3 6 13.5 [17–58] years, sex [man/
woman]: 12/6, duration: 31.0 6 64.1 [0–240] days), 27 patients with typical
type 1 diabetes (age: 31.4 6 14.7 [6–55] years, sex: 12/15, duration: 12.5 6 25.4
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[0.1–108] months), and 30 nondiabetic control subjects (age: 33.3 6 13.3 [20–
60] years, sex: 17/13). Serum level of IFN-g was measured by ELISA (PBL
Biomedical Laboratories, R&D Systems, Piscataway, NJ).
Ethics. The Ethics Committee of the University of Yamanashi approved all of
the procedures performed in this study. All patients gave informed consent for
measuring serum IFN-g.
Statistical analysis. Differences in variables between groups were compared
using Student t test and ANOVA. Fisher exact test was used to compare fre-
quencies of islets. Values are expressed as means 6 SD unless otherwise
mentioned.

RESULTS

MDA5, RIG-I, and enterovirus-capsid protein ex-
pression. MDA5 was strongly expressed in b-cells, a-cells,
and other types of islet cells of fulminant type 1 diabetic
pancreata (Fig. 1A–D). In nondiabetic control and type 1
diabetic control subjects, weak MDA5 expression was ob-
served in a few a-cells (Supplementary Fig. 1). Significant

expression of RIG-I was observed preferentially in b-cells
in all three patients with fulminant type 1 diabetes
(Fig. 1E–H), yet it was not expressed in nondiabetic and
type 1 diabetic control subjects (Supplementary Fig. 1).
Enterovirus-capsid protein (VP1) was detected in b- and
non–b-cells of fulminant type 1 diabetic pancreata con-
firming our previous report (Supplementary Fig. 2) (4)
but not type 1 diabetic control and nondiabetic control
subjects.
TLR3 and TLR4 expression. Both TLR3 and TLR4 were
expressed in MNCs that had infiltrated islets of fulminant
type 1 diabetic pancreata but not nondiabetic and type 1
diabetic control subjects (Table 1).
IFN-a, IFN-b, interferon regulatory factor-7, and
major histocompatibility complex class I expression.
In all three pancreata of the patients with fulminant type 1
diabetes, IFN-a and -b1 were strongly expressed (Fig. 2A–
F). Some MNCs that had infiltrated around or in islets and
pancreatic acinar and ductal cells also expressed theses
cytokines in fulminant type 1 diabetes (Fig. 2A and B) but
not in either control subject. The numbers of pancreatic
acinar cells surrounded by CD8+ T cells were 11/mm2,
24/mm2, and 22/mm2, respectively, in the pancreatic sec-
tions of cases 1, 2, and 3. Most IFN-a–expressing cells
were b-cells, a-cells, and islet non–b- and non–a-cells
(Fig. 2C–F). Interferon regulatory factor (IRF)-7 (7) was
strongly expressed in b- and a-cells (Fig. 2G–I) and mostly
stained around and in the nucleus of the islet cells (Fig. 2G).
Major histocompatibility complex class I (MHC-I) was
hyperexpressed in all islet cell subsets of fulminant type 1
diabetic pancreata (Fig. 2J). Nondiabetic control and type 1
diabetic control subjects did not show expression of
IFN-a, IFN-b1, or IRF-7 and hyperexpression of MHC-I in
their islets.
CD11c+ cells in islets. Remarkable CD11c+ cells mi-
gration to the islets was observed in most islets of fulmi-
nant type 1 diabetic pancreata (Table 1). Intraislet CD11c+
cells expressed MHC class-II molecules (Fig. 2K–N).
Confocal microscopy showed that some CD11c+ cells
contained b-cell debris positive for insulin (Fig. 2O). Such
findings were not observed in islets of nondiabetic or type
1 diabetic control subjects. Most CD11c+ cells were also
positive for CD1a and some for CD68 (Fig. 2P), likely
representing DCs and macrophage subsets. CD56+ or
CD57+ NK cells and Tregs (CD4+ Foxp3+ cells) were not
detected in or around islets of fulminant type 1 diabetic
pancreata and either control. Tregs, CD4+ Foxp3+ cells,
were not detected in or around the islets or in exo-
crine regions of the pancreas in fulminant type 1 diabetic,
nondiabetic control, or type 1 diabetic control subjects
(Table 1).
IL-18, IFN-g, and CXCL10 expression. IL-18 was
expressed in islet cells in all three fulminant type 1 di-
abetes (Fig. 3A and E). Most residual b-cells expressed
both IFN-g and IL-18 (Fig. 3G and H). IL-18, IFN-g, and
CXCL10 colocalized in most b- and islet non–b-cells (Fig.
3A–H). IL-12 was not expressed in any cells in affected
pancreata. A few islets of type 1 diabetic control subjects
(mean [range]: 2.8% [0–5.2]) expressed IL-18 and IFN-g but
not CXCL10. Nondiabetic control subjects did not express
IL-18, IFN-g, and CXCL10.
Serum IFN-g levels in patients with fulminant type 1
diabetes. Serum levels of IFN-g in patients with fulminant
type 1 diabetes were approximately three times higher
than those in nondiabetic and type 1 diabetic control
subjects (Fig. 3I).

FIG. 1. Intracytoplasmic double-stranded virus RNA receptor expres-
sion in enterovirus-associated human fulminant type 1 diabetes. A–C:
Triple-immunostaining of MDA5 (A), insulin (B), and glucagon (C).
The merged image (D) demonstrates hyperexpression of MDA5 in
b-cells (light blue, arrowheads), a-cells (orange), and other types of
islet cells (green, arrows) (3400, case 2). Triple-immunostaining of
RIG-I (E), insulin (F), and glucagon (G) is also shown. The merged
image (H) demonstrates specific expression of RIG-I in b-cells (light
blue, arrowheads) (3400, case 2). (A high-quality digital representa-
tion of this figure is available in the online issue.)
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Fas expression in islet cells and infiltration of islet
Fas-ligand–bearing MNCs. Elevated expression of Fas in
islet cells coincided with marked MNC infiltration in ful-
minant type 1 diabetic pancreata (Fig. 3J). The subsets of
islet cells with Fas expression were mostly b-cells. Fas-
ligand (FasL)-bearing MNCs infiltrated most islets of ful-
minant type 1 diabetic pancreata (Fig. 3K–M) (Table 1).
In islet cells of nondiabetic control and type 1 diabetic
control subjects, Fas was not expressed (Supplementary
Fig. 3). FasL-bearing MNC infiltration of islets was ob-
served in type 1 diabetic but not nondiabetic control sub-
jects (Table 1) (Supplementary Fig. 3).
Expression of retinoic acid–receptor responder 3 and
activated caspases 8, 9, and 3 in islet b-cells. Retinoic
acid–receptor responder 3 (RARRES3) (8,9) was ex-
pressed in b-cells of fulminant type 1 diabetic pancreata
(Supplementary Fig. 4). Cleaved caspase 8, a marker of
the Fas-mediated extrinsic apoptotic pathway, cleaved cas-
pase 9, a marker of the activated non–Fas-mediated apo-
ptotic pathway, and activated caspases 3, a marker of the
end stage of b-cell apoptosis, were expressed specifically in
islet b-cells (Supplementary Fig. 4). In islets of autopsied
nondiabetic control subjects, RARRES3, cleaved caspases 8,
-9, and -3 were not expressed (Supplementary Fig. 5). In type
1 diabetic control subjects, RARRES3, cleaved caspases 8,
-9, and -3 were expressed weakly in some islet b-cells
(Supplementary Fig. 5).

DISCUSSION

Both RIG-I and MDA5 were strongly expressed in b-cells of
fulminant type 1 diabetic pancreata. MDA5 was also
hyperexpressed in a-cells and non2b-/non–a-cells in af-
fected islets. Hyperexpression of RIG-I and MDA5 with
expression of IFN-a and -b1 in b-cells suggests a crucial
role of RIG-I and MDA5 for sensing and responding to
enterovirus infection in the pancreas of patients with ful-
minant type 1 diabetes. Mutations of MDA5 genes have
been implicated in reducing the risk of type 1 diabetes
(10). Reports also noted RIG-I mRNA expression in human
islets infected with Coxsackievirus B3 and B5 (11,12). We
showed that IRF-7, a master transcription factor of IFN-a
and -b (7), translocated to the nucleus and that IFN-a and
-b, essential factors that protect b-cells against viral in-
fection (6), were strongly expressed in both b- and a-cells.
These results indicate that all islet cells are in an activated
state of innate immunity in response to enterovirus in
patients with fulminant type 1 diabetes.

Increased TLR3+ MNCs that infiltrate affected islets
should participate in sensing viral RNA and subsequently
destroy b-cells with RIG-I– and MDA5-initiated proin-
flammatory signal axes in the innate immune response
against Coxsackievirus B3 (13). Intra- and peri-islet DCs
and macrophage subsets drastically increased in number
and showed active phagocytosis of enterovirus-infected
b-cells, whereas MHC-I was hyperexpressed in all islet
subsets. Some DCs and macrophage subsets also expressed
MHC-II molecules. Activated innate immune responses in-
cluding virus sensing by RIG-I and MDA5 with subsequent
IFN-a and -b production and DC and macrophage activation
will not only protect for enteroviral infection by upregu-
lating RIG-I and MDA5 (12,14) but will also enhance the
adaptive immunity cascades for islet cell destruction
(6,15,16). Indeed, patients with fulminant type 1 diabetes
showed elevated serum levels of IFN-g.T
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CD4+ Foxp3+ cells, which represent a pivotal subset of
Tregs, were not observed in or around the islets of fulmi-
nant type 1 diabetic pancreata, suggesting that the ex-
tremely polarized local condition to predominance for Th1
in response to enteroviral infection suppresses Treg dif-
ferentiation from naive T CD4+ precursors (17). In turn,
the Treg-depleted islet condition enhances Th1 cytokine
(i.e., IFN-g) generation.

Notably, IL-18, an IFN-g–inducing factor, was exten-
sively expressed in islet cells of infected fulminant type 1
diabetic pancreata. In response to viral infection, IL-18 is
promptly secreted from virus-activated macrophages, DCs,
and T cells (18), stimulating production of IFN-g syner-
gistically with IFN-a and -b through a unique pathway that
sometimes occurs independently of IL-12 or NK cells (19).
Conversely, IL-18 can be induced by IFN-g alone or in

combination with other cytokines in islet b-cells (20).
Thus, for fulminant type 1 diabetes, enterovirus itself or
enterovirus-activated T cells and macrophages most likely
infiltrate islets to induce IL-18 production in these cells. In
addition, IFN-a and -b, produced in islet cells and islet-
infiltrating MNCs, can enhance IL-18–mediated signaling
(21). Subsequently, islet-secreted IL-18 may induce IFN-g
production via receptors on the islet cells or islet stromal
cells in an autocrine/paracrine manner. Once this positive
autocrine/paracrine circuit for production of IL-18, IFN-g,
and CXCL10 is established in islet cells, destructive
mechanisms involving CXCR3+ T cells and macrophages
might persist until complete destruction of the b-cells (4).

We found that Fas was highly expressed in affected islet
b-cells and islet-infiltrating FasL+ cells. Taken together
with the finding that MHC-I and IFN-a, -b, and -g were

FIG. 2. Immunohistochemical staining of IFN-a, IFN-b1, IRF-7, and MHC-class I in a pancreas with fulminant type 1 diabetes (3200, case 2). A and
B: Immunostaining of IFN-a (A) and IFN-b1 (B). C–F: Triple-immunohistochemical staining of IFN-a (C), insulin (D), and glucagon (E). A merged
image (F) demonstrates a high proportion of b-cells and a-cells expressing IFN-a. Color balance of F has been adjusted. G–I: Double-immuno-
histochemical staining of IRF-7 (G) and insulin (H). Insert in G demonstrates strong peri- and intranuclear staining of IRF-7, indicating trans-
location of IRF-7 from the cytoplasm to the nuclease, thus acting as an activated transcription factor. The merged image (I) shows strong
expression of IRF-7 in both islet b-cells and islet non–b-cells. Color balance of I has been adjusted. J: Triple-immunostaining shows MHC-class I
molecules are hyperexpressed at the cell surface (green) in b-cells (blue), a-cells (orange), and non–b-/non–a- (nonstained for cytoplasm) islet
cells. K–N: Triple-immunostaining of CD11c (K), insulin (L), and MHC-II (M). Merged image (N) demonstrates that CD11c+ cells expressing
MHC-II migrate around and into the islets (3200, case 1). O: Confocal microscopic demonstration of intraislet CD11c+ cells (green), showing
phagocytosis of the unprocessed b-cell antigen, insulin (red; arrowheads) (3400, case 1). P: Merged image of triple-immunostaining of CD11c
(red), CD68 (green), and insulin (blue). Arrowheads indicate positive cells (yellow) both for CD11c and CD68 (3200, case 1). (A high-quality
digital representation of this figure is available in the online issue.)
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strongly expressed in affected islet cells, effecter mecha-
nisms for b-cell apoptosis in fulminant type 1 diabetes are
likely mediated in part by MHC-I and by the Fas-FasL
pathway (22). Inflammation-induced Fas-FasL expression
in b-cells was reported to lead to rapid and massive b-cell
destruction (23). Other apoptotic mechanisms through the
IFN-g–dependent JAK/STAT pathway (24) and innate im-
mune pathway (25) will also exert b-cell destruction.
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