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Abstract

This study aimed to examine the effects of chronic methamphetamine use on the topological

organization of whole-brain functional connectivity network (FCN) by reconstruction of neu-

ral-activity time series at resting-state. The EEG of 36 individuals with methamphetamine

use disorder (IWMUD) and 24 normal controls (NCs) were recorded, pre-processed and

source-reconstructed using standardized low-resolution tomography (sLORETA). The brain

FCNs of participants were constructed and between-group differences in network topologi-

cal properties were investigated using graph theoretical analysis. IWMUD showed

decreased characteristic path length, increased clustering coefficient and small-world index

at delta and gamma frequency bands compared to NCs. Moreover, abnormal changes in

inter-regional connectivity and network hubs were observed in all the frequency bands. The

results suggest that the IWMUD and NCs have distinct FCNs at all the frequency bands,

particularly at the delta and gamma bands, in which deviated small-world brain topology

was found in IWMUD.

1. Introduction

Methamphetamine (MA) is a highly addictive drug that its consumption is associated with

increased feeling of awareness, energy, vigilance, and exhilaration. These psychological effects

and relatively easy access have made it a very popular drug among young adults [1]. World

Drug Report 2016 reported that there are around 14 to 54 million users of MA worldwide [2].

MA use disorder imposes a large burden on the society; hence, it is important to increase the

knowledge about it in the physiological and neurological terms, in order to improve associated

diagnosis and treatments.
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Functional magnetic resonance imaging (fMRI) and EEG data have been widely used to

acquire knowledge about brain disorders such as schizophrenia, Alzheimer’s disease, tinnitus

and addiction [3–10]. EEG is portable and less expensive than fMRI. Furthermore, it has a

high temporal resolution, which makes it a good instrument to study electrophysiology of the

brain in different frequency bands.

So far, few studies have explored the effects of MA use on the brain activity, using resting-

state EEG (rEEG) [11]. Newton et al. found increased power at delta and theta oscillatory

rhythms in IWMUD compared to the normal NCs [12] and Ahmadlou et al. reported dis-

rupted functional brain organization of IWMUD compared to that of NCs [13].The human

brain is a small-world topology which supports both segregation and integration in informa-

tion processing [14–16]. The network is segregated when containing a large number of con-

nected clusters and integrated when including short path lengths among its units. These

characteristics make the network efficient in information transfer with low wiring costs. Previ-

ous studies reported that the small-world topology abnormally alters in many disease e.g.

major depressive disorder[17], Parkinson’s disease [18], Alzheimer’s disease [19], schizophre-

nia and tinnitus [20, 21], opioids (heroin) and methamphetamine abuse [13, 22], Cirrhosis

[23], cognitive disorders related to aging [24, 25].

Ahmadlou et al. have investigated the brain functional organization of IWMUD in early

withdrawal stage using functional connectivity network (FCN) and graph theory [13]. They

reported increased gamma band small-world index (SWI) in IWMUD using rEEG and con-

structing the FCN at sensor level.

To date, no study has examined the differences in the brain FCN of IWMUD by rEEG at

neuronal source level compared to that of NCs. High-resolution EEG recording combined

with source localization methods can provide better spatial resolution for EEG-based connec-

tivity analysis. In the current study, we constructed and compared whole-brain FCN for a

group of IWMUD and a group of NCs using rEEG.

2. Materials and methods

2.1 Participants

Thirty-six IWMUD, with a minimum of 1 and maximum of 6 months of abstinence, were

recruited from "Peyrovan Hemmat Harm Reduction Institute" and "Iranian National Center

for Addiction Studies (INCAS) Academic Clinic" located in Tehran. 24 age-matched NCs

were also recruited in our research. This research is part of a registered brain stimulation trial

in Iranian Registry of Clinical Trials (IRCT) in 2018 (IRCT20170808035562N2). The rest EEG

were recorded before any intervention. All subjects signed a written informed consent form.

Table 1 shows the demographic characteristics and drug use history of the participants.

2.2 EEG data acquisition

We recorded five minutes of rEEG while the participants’ eyes were open. We instructed all

individuals to pay attention to a black-background screen in front of them during the record-

ing and attempt not to think about anything. All EEG data were recorded using a 62-channel

g.tec (http://www.gtec.at/) EEG system (g. HIamp) in National Brain Mapping Laboratory

(NBML) (https://nbml.ir/EN). The reference channel was placed on right ear lobe for all indi-

viduals. The sampling frequency of 512 Hz was selected for EEG recording. All data were

resampled to 200 Hz in preprocessing step to decrease the computational cost.
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2.3 Data preprocessing

EEG data were preprocessed using EEGLAB [26] and Fieldtrip [27] toolboxes of MATLAB.

The datasets were filtered by a 0.1 Hz high-pass filter and a notch filter to remove the voltage

drift and 50 Hz power line noise. The data were referenced to common average and artifact

rejection was firstly performed by visual inspection. Independent component analysis was

employed to remove artifactual components (e.g. eye blinks, eye movements, heartbeat, and

muscle artifacts). Then, with a moving window and a peak-to-peak threshold all parts, which

exceeded ±100 μv were removed. The preprocessed data, containing the least amount of arti-

facts, was segmented into 5-second trials (24 trials, totally 120 sec) which were in the range of

other resting-state EEG studies [21, 28–30].

2.4. Weighted phase lag index (WPLI) description

WPLI is the improved version of PLI connectivity index, proposed by Vinck et al. [27]. It is

highly sensitive and powerful to properly detect phase interactions of spatially close signals

and has shown robustness to volume conduction that outperforms PLI, coherence, and imagi-

nary coherence (IC) [27, 31, 32]. WPLI estimates the phase leads and lags between two inter-

acted time-series as follows.

WPLIxy ¼
n� 1
Xn

t¼1
jimagðSxytÞjsgnðimagðSxytÞÞ

n� 1
Xn

t¼1
jimagðSxytÞj

ð1Þ

Where Sxyt is the cross-spectrum of time-series x and y at time point t, and sgn is the sign

function. Function imag(.)returns only the imaginary component of the cross-spectrum.

WPLI weights the cross-spectrum according to the imaginary component’s magnitude. This

allows it to limit the impact of small noise on “true “sign of cross-spectrum around the real

axes.

2.5 Graph theory analysis

2.5.1. Network construction. After applying Laplacian filter to EEG data to reduce the

volume conduction effect and spatially enhance the data quality [33], functional connectivity

was computed in EEG-sensor space among pairwise electrodes. The connectivity values were

calculated for five EEG frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta

(15–30 Hz), and gamma (30–45 Hz) according to previous addiction studies [13, 34].

Table 1. Demographic and substance abuse characteristics.

Descriptive statistics

IWMUD NCs

Gender (male) 36/36 24/24

Age 30.55±6.43 30.75±4.63

Education (years) 14.36±2.79 16.58±2.5

Duration of MA abstinence (months) 1–6 -

Duration of MA use disorder (years) 8.35±4.07 -

Marital status (married) 25/36 7/24

Number of subjects with a history of opium use 20/36 0/24

Number of subjects with a history of alcohol use 23/36 0/24

Number of subjects with a history of heroin use 5/36 0/24

Number of subjects with a history of cigarette smoking 35/36 2/24

https://doi.org/10.1371/journal.pone.0226249.t001
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Accordingly, we obtained a functional network with 61 nodes in five bands (5×61×61 connec-

tivity matrix) for each subject, where the nodes were considered the sensors and the link

between them were acquired using the absolute value of the WPLI matrix.

2.5.2 Graph measures.

2.5.2.1 Node strength (NS). It is sum of the weights of links or edges connected to a node.

kwi ¼
X

j2N

wij ð2Þ

Where N is the set of all nodes in the network and the links (i,j) are related by connection

weight wij.

2.5.2.2 Characteristic path length (CP). Shortest weighted path length between two nodes

i and j is determined by

dw
ij ¼

X

auv2gi$wj

f ðwuvÞ ð3Þ

where f is a map (e.g. an inverse) from weight to length and g
i$
w
j
indicates the shortest weighted

path between nodes i and j. The averaged shortest path length between all the node pairs in a

network is known as the characteristic path length [35]:

CPw ¼
1

n

X

i2N

X

j2N;j6¼i
dw
ij

n � 1
ð4Þ

where n shows the number of nodes.

2.5.2.3 Clustering coefficient (CC). The number of weighted triangles around a node i is

defined as a basis for measuring segregation:

twi ¼
1

2

X

j;h2N

ðwijwihwjhÞ
1
3 ð5Þ

Clustering coefficient reflects the degree that the connected nodes in a graph tend to form

clusters and can illustrate the degree of local connectivity in the network [35, 36]. The cluster-

ing coefficient of the network is described by:

CCw ¼
1

n

X

i2N

ccwi ¼
1

n

X

i2N

2twi
kiðki � 1Þ

ð6Þ

Characteristic path length measures the integration of the network, while the clustering

coefficient is a measure for the network functional segregation.

Next to C and L, by following previous studies [13, 37], the small-world index (SWI = CCw/

CPw) was obtained for each individual. The larger the SWI value is, the more small-world the

network is. The small world organizations have simultaneously notably segregated and inte-

grated topologies [14, 15].

2.5.3 Hub identification. Hubs refer to highly linked nodes in the network. Following the

method used in previous studies [38] we used the node strength, betweenness centrality [14]

and eigenvector centrality [14] to identify hubs using BCT toolbox [14]. Nodes in each of the

mentioned measures that exceed one standard deviation from the mean value of the measure

were considered as hubs. Once the hubs were identified using the different techniques, those

hubs that were commonly obtained by the different techniques were compared between MA

abusers and controls.

Disrupted brain function in methamphetamine abusers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226249 December 11, 2019 4 / 20

https://doi.org/10.1371/journal.pone.0226249


2.6. Source reconstruction

Standardized low-resolution brain electromagnetic tomography (sLORETA) [39] was used to

estimate the intracerebral electrical sources, using FieldTrip. sLORETA computes neuronal

activity in current density (A/m2) without assuming a predefined number of active sources.

We first acquired a lead field (forward model) by creating a FEM volume conduction model of

the head. To do this, we used 61 electrodes, a grid with 3 mm3 resolution, and voxels of the

anatomical MRI (colin27 brain), segmented (i.e. separated) into the five different tissue types:

scalp, skull, CSF (Cerebro-Spinal Fluid), gray and white matter. We used sLORETA to recon-

struct neuronal activities in source points in the gray matter (cortical regions).

To parcellate the brain into 90 (45 in each hemisphere) regions of interest (ROIs), auto-

mated anatomical labeling (AAL) atlas were applied [40]. Table 2 lists the name of the ROIs

and their corresponding abbreviations. The single nearest voxel to central voxel has been con-

sidered as the great representation of each ROI by following previous studies [41, 42]. Accord-

ingly, we obtained a functional network with 90 nodes in the five frequency bands (5×90×90

connectivity matrix) for each subject, where the nodes are equivalent to the central points of

ROIs of AAL template and the link between them are the absolute value of the WPLI matrix.

MNI coordinates of the selected central voxels are brought in S1 Table.

3.Statistical analysis

We used the most relevant study carried out by Ahmadlou et al. to obtain the effect size for

most important variable [13]. As in that study, SWI in the gamma frequency band, which is a

Table 2. The names and the corresponding abbreviations of the ROIs specified in the AAL brain template (45 regions for each hemisphere) described by Tzourio-

Mazoyer et al.[40].

Regions Abb. Regions Abb.

Precentral gyrus PreCG Lingual gyrus LING

Superior frontal gyrus (dorsal) SFGdor Superior Occipital gyrus SOG

Orbitofrontal cortex (superior) ORBsup Middle occipital gyrus MOG

Middle frontal gyrus MFG Inferior occipital gyrus IOG

Orbitofrontal cortex (middle) ORBmid Fusiform gyrus FFG

Inferior frontal gyrus (opercular) IFGoperc Postcentral gyrus PoCG

Inferior frontal gyrus (triangular) IFGtriang Superior parietal gyrus SPG

Orbitofrontal cortex (inferior) ORBinf Inferior parietal lobule IPL

Rolandic operculum ROL Supramarginal gyrus SMG

Supplementary motor area SMA Angular gyrus ANG

Olfactory OLF Precuneus PCUN

Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL

Orbitofrontal cortex (medial) ORBmed Caudate CAU

Rectus gyrus REC Putamen PUT

Insula INS Pallidum PAL

Anterior cingulate gyrus ACG Thalamus THA

Middle cingulate gyrus DCG Heschl gyrus HES

Posterior cingulate gyrus PCG Superior temporal gyrus STG

Hippocampus HIP Temporal pole (superior) TPOsup

Parahippocampal gyrus PHG Middle temporal gyrus MTG

Amygdala AMYG Temporal pole (middle) TPOmid

Calcarine cortex CAL Inferior temporal gyrus ITG

Cuneus CUN

https://doi.org/10.1371/journal.pone.0226249.t002
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ratio of CC and CP, has been suggested as a potential bio-marker for IWMD who are in early

stage of MA withdrawal (<1 month), we considered it as the most important variable, primary

endpoint, to assess it for IWMD who are in middle stage of MA abstinence (>1 month).

We obtained an effect size of 0.96 and yielded a size of 18 in each group with type I error

5% (α = 0.05) and study power 80% (β = 0.2) using two-tailed test and G�Power software.

A multivariate analysis of variance (MANOVA) model was used to investigate statistical differ-

ences between topological metrics of brain FCN in IWMD and NCs. The model assumptions

were checked to be held: multivariate normality by Shapiro-Wilk test; homogeneity of covariance

matrices by Box’s M test; homogeneity of variance by Levene’s test; further, the absence of multi-

collinearity was checked by variance inflation factor. The effects of potential baseline confounding

variables, including age and total-score of depression, anxiety and stress (DASS-21 scale) were

controlled in the model. There was no any missing variable in the twenty topological characteris-

tics but there were a few ones for the DASS-21 scale that have been replaced by mean imputation.

Among the twenty variables, just six variables met the assumptions. Hence, the MANOVA

in sensor and source spaces comprised six dependent variables (DVs) and one independent

variable with two levels (IWMD vs. NCs). For the remaining variables, non-parametric test

(Mann–Whitney) was used. An α level of less than 0.05 was considered significant. The analy-

sis was carried out using “SPSS 22”.

To control the type I error in multiple comparisons of connectivity differences in each fre-

quency band, Benjamini–Hochberg procedure was carried out with false discovery rate 0.05

(q-value<0.05). The analysis was performed using MATLAB software.

4. Results

4.1 Sensor space results

MANOVA showed that there was no statistically significant difference in DVs based on group

levels (IWMD and NCs), F (1, 58) = 0.83, p = 0.54; Wilk’s Λ = 0.9. Adjusting for potential con-

founders including DASS and age had no significant effect on this association.

Mann–Whitney test revealed that NS (U = 224,p = 0.002) and SWI(U = 225, p = 0.002) of

IWMD in the delta frequency band is statistically significantly higher than those of NCs. Fur-

ther, CP of IWMD in delta frequency band are statistically significantly lesser than those of

NCs, (U = 246,p = 0.007), (Table 3).

The mean and SD of the topological metrics at all the frequency bands are brought in

Table 4 and shown in Fig 1. The values of topological metrics in sensor space along with

related statistical log file are brought in S2 Table and S1 File.

4.2 Source space results

The MANOVA showed that there was no statistically significant difference in DVs based on

group levels (IWMD and NCs), F (1, 58) = 1.13, p = 0.35; Wilk’s Λ = 0.88. Adjusting for poten-

tial confounders including DASS and age had no significant effect on this association.

Table 3. The statistical differences of topology metrics between IWMD and NCs (Mann–Whitney U / p-value) or

(F/p-value) in sensore space.

delta Theta alpha beta gamma

NS 224/ 0.002 345/ 0.24 419/0.9 331/0.17 331/0.17

CC 323/0.13 338/0.2 0.56/0.4a 0.002/0.9a 0.9/0.7a

CP 246/0.007 1.9/0.1a 0.003/0.9a 322/0.13 1.6/0.2a

SWI 225/0.002 325/0.14 362/0.37 392/0.6 354/0.3

The ‘a’ indicates parametric test. Significant differences (p<0.05) are bold.

https://doi.org/10.1371/journal.pone.0226249.t003
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Mann–Whitney test revealed that NS (U = 254,p = 0.007) and SWI (U = 284, p = 0.02) of

IWMD in the gamma frequency band are statistically significantly higher than those of NCs

(Table 5).

The mean and SD of the topological measurements at all the frequency bands are brought

in Table 6 and shown in Fig 1. The values of topological metrics in source space along with

related statistical log files are brought in S3 Table and S2 File.

The functional connectivity values were significantly different between two groups for

some pairs of AAL regions at all the frequency bands except at the theta band. In this regard,

the significance level was α = 0.05 using false discovery rate (FDR) q<0.05 to correct for multi-

ple comparisons. The gamma oscillatory rhythm revealed more connectivity differences com-

pared to the other rhythms. At the gamma band range, the functional connectivity of IWMUD

was greater than those of NCs, in seven AAL pairs, while for the delta band only two pairs have

shown enhanced coupling values in IWMUD compared to those of NCs. At the alpha fre-

quency band, IWMUD showed just attenuated functional coupling in two AAL pairs com-

pared two NCs, while at the beta oscillatory rhythm both enhanced and attenuated functional

couplings were revealed. There were no significant differences between two groups in the theta

band. These coupling differences are mapped on the brain image in Fig 2 using BrainNet

Viewer [43].

Common hubs calculated from the FCN of the two groups using the centrality measures

were different in the five frequency bands. These hubs are listed in Table 7 and mapped on the

brain in Fig 3.

4.3 Results of self-reported measurements

We used Barratt Impulsiveness Scale-11 (BIS-11) and Depression Anxiety Stress Scale-21

(DASS-21) to measure self-reported impulsivity, depression, anxiety and stress. The anxiety

and stress values were significantly different between the two groups (P<0.001), but the key

variable, SWI in the gamma frequency band, was not significantly correlated with these self-

reported scales (Table 8).

4.4 Power results

Power analysis revealed no significant differences between IWMUD and NCs at all the fre-

quency bands. Fig 4 shows the power spectrum of the two groups.

Table 4. Mean and standard deviation of the brain topology metrics in five frequency bands for IWMUD and NCs acquired in sensor space.

Frequency

Band

NS CC CP SWI

Mean(SD) Patient/Control Mean(SD) Patient/Control Mean(SD) Patient/Control Mean(SD)

Patient/Control

Delta 5.8663 (1.6133) / 5.2585 (1.0389) 0.18299 (0.030608) / 0.17685

(0.026965)

8.34(1.06)/ 8.9861 (0.64487) 0.2235(0.00357)/ 0.019796 (0.0034958)

Theta 5.0234 (1.3399) / 4.7144 (1.0519) 0.18181 (0.032516) / 0.1763 (0.028919) 9.73 (1.29) / 10.1423 (1.0025) 0.01913(0.003938)/ 0.017494

(0.0034958)

Alpha 5.2648 (2.1662) / 5.1363 (1.8444) 0.17625 (0.047435) / 0.18263

(0.040771)

9.97 (2.29) / 10.0138 (2.1707) 0.01926(0.008890)/ 0.019305

(0.0034958)

Beta 2.8326 (0.84394) /2.8701

(0.75815)

0.12963 (0.038471) / 0.12923

(0.046343)

17.16 (2.73) / 16.6225

(2.0136)

0.0077(0.00240)/ 0.0078475 (0.0034958)

Gamma 2.8529 (0.88257) /2.6812

(0.83643)

0.11636 (0.04189) / 0.11292 (0.046492) 16.95(2.62)/ 17.8008 (2.3357) 0.0068(0.00194)/ 0.00624 (0.0034958)

https://doi.org/10.1371/journal.pone.0226249.t004
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5. Discussion

In this study, we compared brain FCN of IWMUD with that of NCs using graph features. To

our knowledge, this is the first study that assessed FCN of IWMUD at neuronal source level

using rEEG. Table 9 summarizes the main findings of the current study along with previous

related studies.

5.1 Functional connectivity alterations

EEG oscillatory rhythms have been related to specific functions exclusively or in a combina-

tion. In this context, studies show that gamma band frequencies are associated with percep-

tion, attention, stimulus selection, memory process and conscious awareness [46–52]. The

theta rhythms have been related to attention, working memory, and emotional arousal [53].

The delta frequencies have been linked to learning motivation, memory and reward process-

ing, while alpha-band oscillations that are the dominant oscillations in the human brain, has

been linked to working memory functions [52, 54, 55]. Beta-band activity is related to cogni-

tion [56, 57]. A recent study reported that multiple oscillatory rhythms determine the temporal

organization of perception [56]. Hence, abnormal oscillations have been related to brain spe-

cific dysfunction. For example, abnormal gamma oscillations, have been related to dysregula-

tion of the dopaminergic system in the diseases of central nervous system, disinhibition in

GABAergic system, excitatory activation of the brain, and drug-seeking behaviors in addiction

[58–60]. Task-based fMRI studies showed that there are six networks abnormally changed in

addiction [7, 61]: default mode network (DMN), salience network, habit network, executive

control network and memory network. These networks revealed hyper-activation during drug

cue exposure compared to neutral stimuli. Zilverstand et al. [61], in accordance with impaired

response inhibition and salience attribution (iRISA) model [62], proposed increased engage-

ment of these networks to cognitive drug cue processing in addiction. The Resting-state fMRI

(rfMRI) studies reported that in chronic stimulant users, the reward, salience, habit, and mem-

ory networks demonstrated enhanced coupling with each other, as well as with the executive

network, whereas a decreased coupling was observed within the executive control network

[61].

In the current study, neural source level connectivity revealed enhanced intra-connectivity

at the gamma band within DMN network (Frontal-superior-R/L, frontal superior medial_R,

Temporal_inf_L), improved inter-connectivity between DMN and visual network (cingulum-

mid-right and ligual_L), also between executive control and sensorimotor networks (frontal-

Fig 1. Left column: Computed topological metrics (NS, CC, CP, and SWI) in the sensor space. Right column: computed

topological metrics in the source space. If the p-value is less than 0.05 it is flagged with one star (�). Each bar represents mean

values ±SE.

https://doi.org/10.1371/journal.pone.0226249.g001

Table 5. The differences of all topology metrics between IWMD and NCs (Mann–Whitney U / p-value) or (F/p-

value) in source space.

delta theta alpha beta gamma

NS 338/0.15 412/0.7 0.032/0.8a 322/0.09 254/0.007

CC 365/0.3 1.8/0.178a 0.024/0.8a 0.96/0.3a 416/0.8

CP 2.3/0.13a 422/0.8 0.2/0.6a 323/0.1 269/0.01

SWI 325/0.1 371/0.3 393/0.5 331/0.1 284/0.02

The ‘a’ indicates parametric test. Significant differences (p<0.05) are bold.

https://doi.org/10.1371/journal.pone.0226249.t005
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mid right, Paracentral-lobule_R). However previous resting-state studies did not find

increased intra-connectivity within DMN, related results of this study are in line with those of

fMRI studies with drug cue presentation [61]. The enhanced coupling between the executive

network and sensorimotor is consistent with previous studies [61]. Taken together, the abnor-

mally increased coupling at the gamma band may imply disrupted cognitive control regarding

Table 6. Mean and standard deviation of the brain topology metrics in five frequency bands for IWMUD and NCs acquired in source space.

Frequency

Band

NS CC CP SWI

Mean(SD) Patient/Control Mean(SD) Patient/Control Mean(SD) Patient/Control Mean(SD)

Patient/Control

delta 8.1383 (2.3436) / 7.3786

(1.1594)

0.19055 (0.030569) / 0.18306

(0.024361)

8.7826 (1.45) / 9.2687

(0.72281)

0.0228 (0.008) / 0.019924 (0.0033749)

theta 6.9361 (1.9247) / 6.6823 (1.107) 0.1868 (0.029246) / 0.17952

(0.025357)

10.24 (1.53) / 10.3356

(0.90367)

0.0189 (0.0055) / 0.01754 (0.0033749)

alpha 6.5183 (1.5906) / 6.5775

(1.3634)

0.18508 (0.028833) / 0.18584

(0.026051)

10.91 (1.93) / 10.6937

(1.4524)

0.0175 (0.0039) / 0.017707 (0.0033749)

beta 3.86 (1.1416) / 3.9243 (0.78829) 0.17541 (0.026241) / 0.17984

(0.024427)

18.43 (3.43) / 17.6271 (2.17) 0.0099 (0.0029) / 0.010369 (0.0033749)

gamma 3.7041 (0.83654) / 3.338

(0.57717)

0.17577 (0.027282) / 0.17171

(0.033844)

18.76 (2.50) / 20.402 (1.8259) 0.0095 (0.001728826) / 0.0084513

(0.0033749)

https://doi.org/10.1371/journal.pone.0226249.t006

Fig 2. Functional connectivity differences after FDR correction in the frequency bands. The red/blue means

attenuated/enhanced inter-regional connectivity in IWMUD compared to NCs.

https://doi.org/10.1371/journal.pone.0226249.g002
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attention and self-monitoring that may be interpreted in the perspective of altered attention

toward drug related stimuli.

Furthermore, the correlation between Putamen, which is an impaired region of habit net-

work in addicts [61], and impulsivity in IWMUD at the gamma band may be another evidence

for the addictive behavior.

Evidence reveals that the left inferior temporal gyrus may be involved in retrieval load and

visual perception [63–65]. Task-based and rfMRI studies have reported abnormally increased

activity of left inferior temporal gyrus. High-risk college students showed hyper-activation of

this gyrus during exposure to poly-drug cues compared to neutral cues [66]. Cocaine-depen-

dent individuals encountered with increased activity of their left inferior temporal gyrus in the

reward in comparison to no-reward condition [67]. Amphetamine-type Stimulant abusers

showed increased degree centrality in the left inferior temporal gyrus in a rfMRI study [68]. In

the current study, left inferior temporal gyrus showed increased node strength at the gamma

band in IWMUD compared to NCs. Hence, we may be able to conclude that the IWMUD

may allocate more attention resources to think about obtaining and using methamphetamine,

reflected in increased node strength of the left inferior temporal gyrus at the gamma oscillatory

band.

Comprehensive systematic reviews on resting-state brain patterns proposed that salience

and executive networks are tightly connected during acute drug use, while they become less

connected during abstinence. They further suggested that disengagement of the two networks

during abstinence impairs non-drug-related processing [7]. We found consistent results with

this disengagement at the alpha frequency band. In this regard, our results revealed decreased

intra-coupling in executive network (Frontal Mid-R and Frontal-Inf-Oper-L), which is consis-

tent with rfMRI findings [61], and inter-coupling between executive and salience networks

(Putamen-R and Frontal-Mid-R) that by following the reasoning of [7, 61] could lead to the

disengagement of salience and executive networks during abstinent and impairs non-drug-

related processing in IWMUD. Although, at the gamma band the MA’s brain undergoes no

decreased coupling, and this contrary-frequency alteration result requires further research

using EEG to speculate why it is occurring.

The occipital lobe is the visual processing center of the brain and Medial-OFC is related to

the reward system that has shown abnormally increased connectivity during drug cue expo-

sure in substance abusers[61]. Hence, although resting-state were investigated, the findings of

abnormally increased connectivity of medial-OFC and occipital lobe at the delta band may be

related to deficits in behavioral inhibition in IWMUD. Nevertheless, due to EEG high-pass

Table 7. The name of specific hubs of patient and control and common hubs between the two groups.

IWMD delta Frontal_Mid_Orb_L Frontal_Inf_Tri_R Supp_Motor_Area_L Supp_Motor_Area_R Frontal_Sup_Medial_R Frontal_Med_Orb_L

theta Frontal_Sup_Orb_R Angular_L Precuneus_L Precuneus_R Paracentral_Lobule_L Paracentral_Lobule_R

alpha Supp_Motor_Area_L Supp_Motor_Area_R Frontal_Med_Orb_L Calcarine_R Cuneus_R Occipital_Inf_L Temporal_Sup_L Temporal_Pole_Mid_R

beta Frontal_Inf_Orb_L Olfactory_L SupraMarginal_L Temporal_Sup_L Temporal_Mid_L

gamma Frontal_Sup_R Frontal_Inf_Orb_R Cingulum_Ant_R Calcarine_R Temporal_Sup_L Temporal_Inf_L

NCS delta Frontal_Mid_Orb_L Frontal_Inf_Tri_L Rectus_L Fusiform_R Parietal_Inf_R

theta Rolandic_Oper_L Calcarine_R Occipital_Sup_R Angular_R Precuneus_R Paracentral_Lobule_R

alpha Frontal_Sup_Orb_R Frontal_Mid_Orb_L Frontal_Mid_Orb_R Frontal_Inf_Tri_L Cuneus_R Heschl_L

beta Frontal_Mid_Orb_L Frontal_Mid_Orb_R Supp_Motor_Area_L Frontal_Med_Orb_R Calcarine_R Precuneus_R Temporal_Mid_R

gamma Frontal_Med_Orb_R Occipital_Inf_L Parietal_Inf_L Thalamus_R Temporal_Inf_R

Common Hubs delta Frontal_Mid_Orb_L

theta Precuneus_R Paracentral_Lobule_R

alpha Cuneus_R

https://doi.org/10.1371/journal.pone.0226249.t007
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filtering influence on the connectivity values at this oscillatory band, we should interpret the

delta-related results cautiously.

5.2 Topological characteristic alterations

The present study examined the topological organization of the functional brain networks in

IWMUD compared to NCs. The human brain is a complex system, with important topological

attributes such as small-world property, high clustering coefficient, and small characteristic

Fig 3. Hubs of IWMUD (top row) and NCs (bottom row) in the five frequency bands. The figures are ploted using brain net.

https://doi.org/10.1371/journal.pone.0226249.g003

Table 8. Results of correlations between anxiety, depression, stress and impulsivity and the SWI values in the

gamma band for the patient and control groups.

Mean (SD) Z P-value Corr. Coef. / P-Value

Characteristic Subjects (IWMD/

NCS)

IWMD NCs IWMD NCs

Stress 30/21 19.66

(10.62)

6.10

(2.7)

-4.7 <0.001 -.16/ 0.37 -0.07/

0.75

Anxiety 31/23 12.90 (8.66) 5.5(5.6) -3.4 .001 0.02/ 0.92 -0.06/

0.78

Depression 29/23 18.34

(10.14)

14.2

(6.4)

-1.4 0.15 -0.008/

0.96

-0.12/

0.58

Total DASS 36/24 46(21) 26(12) -4.2 <0.001 -0.17/0.47 -0.09/

0.65

Attention impulsivity 36/- 12.11(4.81) 0.15 / 0.35

Motor impulsivity 33/- 15.3(6.17) 0.38/ 0.03

Nonplanning

impulsivity

35/- 17.62 (4.09) -0.08 / 0.6

The missing values of Total DASS were replaced by mean series. Spearman correlation was used.

https://doi.org/10.1371/journal.pone.0226249.t008
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path length. These traits yield a highly integrated and segregated networks which are efficient

for information transfer [36, 69].

The source level results revealed that IWMD had significantly increased SWI and S with

decreased L at the gamma band compared to NCs. These results are in line with those of

Fig 4. The power spectrum of IWMUD and NCs computed in neural source space.

https://doi.org/10.1371/journal.pone.0226249.g004

Table 9. Meta data of previous studies who recruited MA abusers with corresponding data of the current study.

Study Subjects

(number of

males)

Age (year)

mean (SD)

Use

Duration

(year)

Abstinence

Duration

(days)

Analysis

space

Main Findings

IWMD/NCs IWMD/

NCs

Mean (SD) Mean (SD) EEG

sensors

Newton et al.

[12]

11/11 (8/8) 32.7 (7.5)/

36.5 (7.3)

11.0 (3.5) 4 (0) EEG

sensors

Enhanced delta and theta

power

Yun et al.

[44]

48/20 all

males

37.0 (5.8)

/ 34.5

(7.7)

11.8 (6.5) 30.5 (27.2) EEG

sensors

Decreased cortical complexity

Khajehpour

et al. [45]

36/24 all

males

30.55

(6.43)/

30.75

(4.63)

8.35(4.07) Range 30 to

180

EEG

sensors

Automatic discrimination of

IWMD from NCS (F-

score = 0.94)

Ahmadlou

et al.[13]

36/36 all

males

31.7 (8.8)/

32.7 (6.8)

6.42 (3.13) Range 7 to 21 EEG

sensors

Disrupted functional brain

topology at gamma band

The Current

study

36/24 all

males

30.55

(6.43)/

30.75

(4.63)

8.35(4.07) Range 30 to

180

Neural

sources

Disrupted functional brain

topology in delta and

especially in gamma bands.

Altered inter-regional

connectivity in delta, alpha,

beta and gamma bands.

Altered hub pattern in all the

frequency bands.

https://doi.org/10.1371/journal.pone.0226249.t009
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Ahmadlou et al. [13]. This implies enhanced integration and segregation of FCN among

IWMUD at the expense of increased node strength at the gamma frequencies.

The majority of connectivity changes at the gamma band are attributed to DMN network.

Hence, one may speculate that the gamma-dependent small-worldness may reflect an alter-

ation in the brain functional topology of IWMUD to be more efficient in an inter-modal dys-

functional network associated with rumination or other maladaptive self-referential

propensities.

Similar differences were also revealed in the delta band: significantly increased C, increased

L and SWI. Ahmadlou et al. also found a small difference in C at this frequency band. There-

fore, it could be concluded that brain dysfunction at the delta and gamma frequency band in

IWMUD is expected.

Balcony et al. suggested that the delta frequencies may be responsive-relevant rewarding

cues and their modulation may be related to a reward bias [70]. A meta-analysis on fMRI stud-

ies [71] suggested that the visual cortex consistently discriminates drug cues from neutral cues

in substance-dependent populations. The result of delta band revealed increased connectivity

between visual cortex (Occipital_Inf_L) and executive network (Frontal_Med_Orb_L). Hence,

it may be related to the attribution of incentive salience to drugs and drug-associated cues in

IWMUD.

Despite the differences in results at sensor and source level, however, their trend is the same

and it could be attributed to the fact that each EEG electrode collects the sum of the electrical

activity from different sources. Also, the source-localization is a statistical estimation of the

sources and, therefore, is subject to technical limitations for accurate estimation. Filtering may

cause some other aberrant differences between connectivity values of the two groups [72]. To

decrease the notch filtering influence at the gamma band, we examined two frequency ranges,

30-45Hz by following previous studies [34, 73] and 30-60Hz similar to the work presented at

[13]. The first range that is preserved from notch filtering effect yielded no significant differ-

ences by the sensor space analysis, while the second range (30–60 Hz) led to significant results

at the gamma band that may be due to notch filtering influence. Hence, here, the range of 30–

45 Hz was selected to attenuate the likely disruptive effect of notch filtering on connectivity.

Brain disorders are related to altered brain coupling that reflects either as a complete varia-

tion in the network topology by the replacement of hubs or by alteration of their inter connec-

tivity [74]. According to the hub-associated findings, it appears that the brain FCN of

IWMUD and NCs could be considerably distinct, not only at the delta and gamma band but

also at the other oscillatory bands because of having few common hubs in all the oscillatory

bands between IWMUD and NCs.

Gamma-related hubs of IWMUD are mostly attributed to reward (Frontal_Inf_Orb_R),

salience (Cingulum_Ant_R), DMN (Frontal_Sup_R, Temporal_Inf_L), visual and auditory

(Calcarine_R and Temporal_Sup_L), and the delta-associated hubs are mostly located in

reward (Frontal_Mid_Orb_L, Frontal_Med_Orb_L), DMN (Frontal_Sup_Medial_R) and sen-

sorimotor network.

Activations of sensorimotor areas in response to drug stimuli are correlated to craving, the

severity of dependence and automatized behavioral reactions towards drug-related stimuli

[75]. Salience and reward networks are also important in this regard. In sum, it may be specu-

lated that hub replacement and connectivity alterations in the gamma and delta frequency

bands are associated with regions that have an important role in disability of substance-depen-

dent individuals to control their addiction-related behaviors.

The delta and gamma related topology and connectivity changes could facilitate the devel-

opment of new treatment strategies and serves as a predictive biomarker of disease severity

and treatment outcome for IWMUD.
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The recruited IWMUD of the current study were in their middle stages of abstinence (1–6

months) and they did not experience considerable withdrawal effects. Therefore compared to

participants of Ahmadlou’s study [13] who were in early withdrawal stage (< 3 weeks), proba-

bility of this hypothesis is reinforced that the dysfunctional organization of the gamma fre-

quency band indexed by abnormal small-world properties of the brain FCN may be associated

with chronic exposure to MA and not to the abstinence.

5.3. EEG activity and impulsiveness, depression, anxiety and stress scales

According to a study among individuals with gambling disorder [76], high impulsivity (25th

percentile of BIS-11 scale) has the potential to affect EEG power spectrum in different fre-

quency bands except for the gamma band. Stress may alter EEG waves so that the baseline

rhythms in individuals with mild and moderate stress is alpha wave and in those with high

stress is beta wave [77]. Our recruited subjects were mostly in normal, mild or moderate levels

of impulsivity, stress, anxiety, and depression (Table 10). The correlation analysis revealed no

significant correlation between the gamma SWI and impulsivity or DASS scales; further, the

DASS score showed no significant effect in the MANOVA model. Moreover, previous related

study also reported abnormal alteration of brain topology metrics in this frequency band [13].

Accordingly, it may be concluded that the findings in the gamma frequency band are probably

due to methamphetamine dependence and its effect on brain resting-state networks, not with-

drawal effects. Nevertheless, the findings of other frequency bands may be affected by the

impulsivity and stress levels and also the power of brain activity is not directly associated with

its functional connectivity. We could not asses these undesired effects because the sample size

was low and just a few variables had the eligibility to be included in the MANOVA. Conduct-

ing a related research with large sample size is therefore suggested to confirm the functional

alterations found in the alpha and theta frequency bands.

5.4 Limitations

The present study had several limitations. First, as a human study, there were some intrinsic

limitations from matching the behavioral and demographic characteristics of IWMUD and

NCs because of inaccessibility of backgrounds of the participants. Therefore, more accurate

research using genetically modified animals with better control matching are required to sup-

port the obtained results of this study. Second, as some factors could probably vary the devel-

opmental period of vulnerability to methamphetamine toxicity in different genders, we

recruited only male participants to remove the confounding factor of gender variations [78,

79]. Research including both genders is needed. Third, we managed to scan the IWMUD dur-

ing substance withdrawal, while the NCs were not, so we were not able to absolutely exclude

the influence of smoking, drinking or caffeine. Forth, the numbers of subjects were moderate

Table 10. Number of subjects in different stress, anxiety, and depression levels.

Normal Mild Moderate High Sever

IWMD Stress 12 2 8 3 5

Anxiety 9 3 8 4 7

Depression 5 6 7 4 7

NCs Stress 21 0 - - -

Anxiety 16 4 1 1 1

Depression 3 8 10 0 2

https://doi.org/10.1371/journal.pone.0226249.t010
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because of practical difficulties in recruitment of IWMUD. Fifth, subcortical network (Puta-

men, palladium, thalamus, caudate) cannot be properly reconstructed by EEG.

6. Conclusion

Inter-regional functional connectivity and topological characteristics of brain FCN in

IWMUD are abnormally changed in the delta and gamma oscillatory bands.

Nevertheless, it seems that brain dysfunction of IWMUD is not limited to these frequency

bands, as altered hub patterns are extended to all the oscillatory rhythms. These findings may

help provide predictive biomarkers of disease severity and treatment outcome for IWMUD.
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28. González GF, Van der Molen M, ŽarićG, Bonte M, Tijms J, Blomert L, et al. Graph analysis of EEG rest-

ing state functional networks in dyslexic readers. Clinical Neurophysiology. 2016; 127(9):3165–75.

https://doi.org/10.1016/j.clinph.2016.06.023 PMID: 27476025

29. Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P. Reproducibility of functional con-

nectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI)

derived from high resolution EEG. PLoS One. 2014; 9(10):e108648. https://doi.org/10.1371/journal.

pone.0108648 PMID: 25286380

30. Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, et al. Resting-state theta band

connectivity and graph analysis in generalized social anxiety disorder. NeuroImage: Clinical. 2017;

13:24–32.

31. Ewald A, Aristei S, Nolte G, Rahman RA. Brain oscillations and functional connectivity during overt lan-

guage production. Frontiers in psychology. 2012; 3:166. https://doi.org/10.3389/fpsyg.2012.00166

PMID: 22701106

32. Haufe S, Nikulin VV, Müller K-R, Nolte G. A critical assessment of connectivity measures for EEG data:

a simulation study. Neuroimage. 2013; 64:120–33. https://doi.org/10.1016/j.neuroimage.2012.09.036

PMID: 23006806

33. Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electro-

encephalography and clinical neurophysiology. 1975; 39(5):526–30. https://doi.org/10.1016/0013-4694

(75)90056-5 PMID: 52448

34. Hu B, Dong Q, Hao Y, Zhao Q, Shen J, Zheng F. Effective brain network analysis with resting-state

EEG data: a comparison between heroin abstinent and non-addicted subjects. Journal of neural engi-

neering. 2017; 14(4):046002. https://doi.org/10.1088/1741-2552/aa6c6f PMID: 28397708

35. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. nature. 1998; 393(6684):440.

https://doi.org/10.1038/30918 PMID: 9623998

36. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional

systems. Nature Reviews Neuroscience. 2009; 10(3):186. https://doi.org/10.1038/nrn2575 PMID:

19190637

37. Beudel M, Tjepkema-Cloostermans MC, Boersma JH, van Putten MJ. Small-world characteristics of

EEG patterns in post-anoxic encephalopathy. Frontiers in neurology. 2014; 5:97. https://doi.org/10.

3389/fneur.2014.00097 PMID: 24982649

38. Mohan A, De Ridder D, Vanneste S. Emerging hubs in phantom perception connectomics. Neuro-

Image: Clinical. 2016; 11:181–94.

39. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): tech-

nical details. Methods Find Exp Clin Pharmacol. 2002; 24(Suppl D):5–12.

Disrupted brain function in methamphetamine abusers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226249 December 11, 2019 18 / 20

https://doi.org/10.1016/j.neuroimage.2012.05.048
https://doi.org/10.1016/j.neuroimage.2012.05.048
http://www.ncbi.nlm.nih.gov/pubmed/22634855
https://doi.org/10.1016/j.neulet.2010.04.032
http://www.ncbi.nlm.nih.gov/pubmed/20417253
https://doi.org/10.1371/journal.pone.0035266
http://www.ncbi.nlm.nih.gov/pubmed/22563460
https://doi.org/10.1371/journal.pcbi.0030017
http://www.ncbi.nlm.nih.gov/pubmed/17274684
https://doi.org/10.1016/j.neuroimage.2008.09.062
https://doi.org/10.1016/j.neuroimage.2008.09.062
http://www.ncbi.nlm.nih.gov/pubmed/19027073
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/j.neuroimage.2011.01.055
http://www.ncbi.nlm.nih.gov/pubmed/21276857
https://doi.org/10.1016/j.clinph.2016.06.023
http://www.ncbi.nlm.nih.gov/pubmed/27476025
https://doi.org/10.1371/journal.pone.0108648
https://doi.org/10.1371/journal.pone.0108648
http://www.ncbi.nlm.nih.gov/pubmed/25286380
https://doi.org/10.3389/fpsyg.2012.00166
http://www.ncbi.nlm.nih.gov/pubmed/22701106
https://doi.org/10.1016/j.neuroimage.2012.09.036
http://www.ncbi.nlm.nih.gov/pubmed/23006806
https://doi.org/10.1016/0013-4694(75)90056-5
https://doi.org/10.1016/0013-4694(75)90056-5
http://www.ncbi.nlm.nih.gov/pubmed/52448
https://doi.org/10.1088/1741-2552/aa6c6f
http://www.ncbi.nlm.nih.gov/pubmed/28397708
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1038/nrn2575
http://www.ncbi.nlm.nih.gov/pubmed/19190637
https://doi.org/10.3389/fneur.2014.00097
https://doi.org/10.3389/fneur.2014.00097
http://www.ncbi.nlm.nih.gov/pubmed/24982649
https://doi.org/10.1371/journal.pone.0226249


40. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated

anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. Neuroimage. 2002; 15(1):273–89. https://doi.org/10.1006/nimg.2001.0978 PMID:

11771995

41. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, et al. Assessing interac-

tions in the brain with exact low-resolution electromagnetic tomography. Philosophical transactions

Series A, Mathematical, physical, and engineering sciences. 2011; 369(1952):3768–84. https://doi.org/

10.1098/rsta.2011.0081 PMID: 21893527

42. Imperatori C, Della Marca G, Brunetti R, Carbone GA, Massullo C, Valenti EM, et al. Default Mode Net-

work alterations in alexithymia: an EEG power spectra and connectivity study. Scientific reports. 2016;

6:36653. https://doi.org/10.1038/srep36653 PMID: 27845326

43. Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PloS

one. 2013; 8(7):e68910. https://doi.org/10.1371/journal.pone.0068910 PMID: 23861951

44. Yun K, Park HK, Kwon DH, Kim YT, Cho SN, Cho HJ, et al. Decreased cortical complexity in metham-

phetamine abusers. Psychiatry research. 2012; 201(3):226–32. https://doi.org/10.1016/j.pscychresns.

2011.07.009 PMID: 22445216

45. Khajehpour H, Mohagheghian F, Ekhtiari H, Makkiabadi B, Jafari AH, Eqlimi E, et al. Computer-aided

classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cognitive

Neurodynamics. 2019:1–12. https://doi.org/10.1007/s11571-018-9509-x

46. Mantini D, Vanduffel W. Emerging roles of the brain’s default network. The Neuroscientist. 2013; 19

(1):76–87. https://doi.org/10.1177/1073858412446202 PMID: 22785104

47. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing.

Nature Reviews Neuroscience. 2001; 2(10):704. https://doi.org/10.1038/35094565 PMID: 11584308

48. Engel AK, König P, Kreiter AK, Schillen TB, Singer W. Temporal coding in the visual cortex: new vistas

on integration in the nervous system. Trends Neurosci. 1992; 15(6):218–26. https://doi.org/10.1016/

0166-2236(92)90039-b PMID: 1378666

49. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.

Trends in cognitive sciences. 2005; 9(10):474–80. https://doi.org/10.1016/j.tics.2005.08.011 PMID:

16150631

50. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation.

Annual review of neuroscience. 2009; 32:209–24. https://doi.org/10.1146/annurev.neuro.051508.

135603 PMID: 19400723

51. Jensen O, Kaiser J, Lachaux J-P. Human gamma-frequency oscillations associated with attention and

memory. Trends in neurosciences. 2007; 30(7):317–24. https://doi.org/10.1016/j.tins.2007.05.001

PMID: 17499860

52. Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, et al. The default mode network and EEG

regional spectral power: a simultaneous fMRI-EEG study. PLoS One. 2014; 9(2):e88214. https://doi.

org/10.1371/journal.pone.0088214 PMID: 24505434

53. Burgess AP, Gruzelier JH. Short duration synchronization of human theta rhythm during recognition

memory. Neuroreport. 1997; 8(4):1039–42. https://doi.org/10.1097/00001756-199703030-00044

PMID: 9141088

54. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci-

ence & Biobehavioral Reviews. 2007; 31(3):377–95.

55. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused

brain. Science. 1993; 262(5134):679–85. https://doi.org/10.1126/science.8235588 PMID: 8235588

56. Ronconi L, Oosterhof NN, Bonmassar C, Melcher D. Multiple oscillatory rhythms determine the tempo-

ral organization of perception. Proceedings of the National Academy of Sciences. 2017:201714522.

57. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Current opinion in neurobiology.

2010; 20(2):156–65. https://doi.org/10.1016/j.conb.2010.02.015 PMID: 20359884
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