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A B S T R A C T

The problem of optimally allocating a limited supply of vaccine to control a communicable disease has
broad applications in public health and has received renewed attention during the COVID-19 pandemic.
This allocation problem is highly complex and nonlinear. Decision makers need a practical, accurate, and
interpretable method to guide vaccine allocation. In this paper we develop simple analytical conditions that
can guide the allocation of vaccines over time. We consider four objectives: minimize new infections, minimize
deaths, minimize life years lost, or minimize quality-adjusted life years lost due to death. We consider an SIR
model with interacting population groups. We approximate the model using Taylor series expansions, and
develop simple analytical conditions characterizing the optimal solution to the resulting problem for a single
time period. We develop a solution approach in which we allocate vaccines using the analytical conditions
in each time period based on the state of the epidemic at the start of the time period. We illustrate our
method with an example of COVID-19 vaccination, calibrated to epidemic data from New York State. Using
numerical simulations, we show that our method achieves near-optimal results over a wide range of vaccination
scenarios. Our method provides a practical, intuitive, and accurate tool for decision makers as they allocate
limited vaccines over time, and highlights the need for more interpretable models over complicated black box
models to aid in decision making.
1. Introduction

The problem of optimally allocating a limited supply of vaccine
to control a communicable disease has broad applications in public
health: for example, in the control of diseases such as dengue, Ebola,
seasonal influenza, and COVID-19. For many epidemic diseases such
as COVID-19 and seasonal influenza, vaccination is an essential part of
control; non-pharmaceutical and other interventions (e.g., treatment)
may be helpful but insufficient. Often, however, vaccine supplies are
constrained, so policy makers must address the question of how best to
allocate limited vaccine supplies.

A number of studies have examined the general problem of optimal
vaccine allocation. For the case of a one-time vaccine allocation, some
studies use linear or mixed linear programming formulations with the
objective of minimizing the number or cost of vaccines needed to
reduce the epidemic reproduction number 𝑅0 below 1 (e.g., [1–3]).

ther studies develop simple analytical conditions to guide a one-
ime vaccine allocation, as a function of the objective to be optimized
e.g., minimize deaths, new infections, life years lost, quality-adjusted
ife years [QALYs] lost, or 𝑅0) [4,5]. For the case of vaccine allocation
ver time, some studies use optimal control formulations to assess the
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level of vaccination needed to reduce 𝑅0 below 1 (e.g., [6–8]). One
study uses a stochastic linear program to determine optimal allocation
of limited vaccine doses to different geographic regions in two time
periods [9]. A study of influenza vaccination showed that the optimal
allocation is dynamic and depends on population structure: for exam-
ple, in some cases it is optimal to first vaccinate high-transmission
groups and then switch to vaccinating the most vulnerable groups in
order to minimize deaths [10].

The vaccine allocation problem has received renewed attention dur-
ing the COVID-19 pandemic [11]. For the case of a one-time allocation,
some studies use numerical analysis of age-based and exposure risk-
based compartmental models to evaluate alternative allocation policies
(e.g., [12–15]), generally finding that vaccinating older individuals
minimizes deaths whereas vaccinating younger individuals or those in
high-contact occupations minimizes transmission and new infections.
Using numerical analysis of dynamic compartmental models, two stud-
ies show that dynamic allocation of COVID-19 vaccines to different
population groups over time can be highly beneficial in minimizing
infections, deaths, and life years lost, with the optimal allocation
depending on the objective [16,17]. For example, a study of COVID-
19 in China showed that if the goal is to minimize new infections, then
https://doi.org/10.1016/j.mbs.2022.108879
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individuals aged 15–39 years old should be prioritized for vaccination
until 47% of this group has been vaccinated, at which point it is optimal
to prioritize individuals aged 40–64 until 26% coverage is reached; if
the goal is to minimize deaths, 100% of individuals 65 and older should
be vaccinated, followed by vaccination of individuals aged 40–65 until
97% coverage is reached [16].

As highlighted in existing studies, the vaccine allocation problem is
highly complex and nonlinear, with no closed-form analytical solution,
even in the simplest cases. Decision makers need a practical, accurate,
and interpretable method to guide vaccine allocation. In this paper
we develop simple analytical conditions that can guide the allocation
of vaccines over time. A previous study that developed analytical
conditions for one-time vaccine allocation among different population
groups relied on a limiting assumption about the amount of vaccine
that could be allocated to any group [4]. Here we extend that work to
relax the upper bound on the amount of vaccine that can be allocated
and then develop a method for allocating vaccines over time. The
optimal allocation problem can no longer be reduced to a knapsack
problem. Instead, we reduce the problem for any single time period to
a piecewise linear optimization problem, and we then solve the multi-
period problem considering the time periods sequentially. We illustrate
our method with an example of COVID-19 vaccination, calibrated to
COVID-19 spread in New York State.

2. Framework

2.1. Vaccine allocation problem

We consider an SIR model of a population with 𝑛 ≥ 2 interacting
groups in which an infectious disease is spreading. Individuals in each
group 𝑖 can be susceptible (𝑆𝑖), infected (𝐼𝑖), recovered (𝑅𝑖), or dead
(𝐷𝑖). Individuals in group 𝑖 can acquire infection from contact with
individuals in their own population group (at rate 𝛽𝑖𝑖) or another
population group 𝑗 (at rate 𝛽𝑖𝑗). Infected individuals in group 𝑖 either
recover (at rate 𝛾𝑖) or die (at rate 𝜇𝑖). We consider a relatively short time
horizon and thus do not include births, non-infection-related deaths, or
other forms of entry into and exit from the population.

The compartmental model is governed by the following differential
equations:

d𝑆𝑖
d 𝑡

= −𝑆𝑖
(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗

)

∀𝑖 ∈ [[1, 𝑛]]

d 𝐼𝑖
d 𝑡

= 𝑆𝑖
(

𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗

)

− (𝛾𝑖 + 𝜇𝑖)𝐼𝑖 ∀𝑖 ∈ [[1, 𝑛]]

d𝑅𝑖
d 𝑡

= 𝛾𝑖𝐼𝑖 ∀𝑖 ∈ [[1, 𝑛]]

d𝐷𝑖
d 𝑡

= 𝜇𝑖𝐼𝑖 ∀𝑖 ∈ [[1, 𝑛]]

(1)

We assume that a preventive vaccine with effectiveness 𝜂 > 0 is
vailable and that vaccination of susceptible individuals moves them to
recovered health state. Vaccination does not affect the transmission

ates between infected and unvaccinated individuals (𝛽𝑖𝑗) nor the re-
overy rates of infected individuals (𝛾𝑖). We let 𝑃 denote the (constant)
opulation size.

For vaccine allocation, we consider a discrete set of time periods,
= 1, 2,…𝐾 and let 𝐯𝜏 = {𝑣1𝜏 , 𝑣2𝜏 ,… 𝑣𝑛𝜏} ∈ R𝑛, where 𝑣𝑖𝜏 denotes

he amount of vaccine allocated to population group 𝑖 in time period 𝜏.
e assume that vaccination is instantaneous at the start of each time

eriod. We let 𝜏 = [𝐯1, 𝐯2,… , 𝐯𝜏 ] ∈ R𝑛×𝜏 ; this is the set of vaccine
allocations up through period 𝜏. For notational simplicity we write the
full set of vaccine allocations 𝐾 as  . We assume that a limited number
of vaccines, 𝑁𝜏 < 𝑃 , are available to be distributed at the start of each
time period 𝜏.

We denote by 𝑆𝑖(0), 𝐼𝑖(0), 𝑅𝑖(0), and 𝐷𝑖(0) the proportion of individ-
uals in each compartment at time 𝑡 = 0 without vaccination. We let
2

𝑆𝑖(𝜏 ; 𝑡), 𝐼𝑖(𝜏 ; 𝑡), 𝑅𝑖(𝜏 ; 𝑡), and 𝐷𝑖(𝜏 ; 𝑡) be the proportion of individuals
n each compartment at time 𝑡 in the presence of vaccination 𝜏 where
ime 𝑡 falls within vaccination period 𝜏. Let time 𝑡𝜏 denote the beginning
f time period 𝜏. We have ∀𝑖 ∈ [[1, 𝑛]]

𝑖(𝜏 ; 𝑡𝜏 ) = 𝑆𝑖(𝜏−1; 𝑡𝜏 ) − 𝜂𝑣𝑖𝜏

𝑖(𝜏 ; 𝑡𝜏 ) = 𝐼𝑖(𝜏−1; 𝑡𝜏 )

𝑖(𝜏 ; 𝑡𝜏 ) = 𝑅𝑖(𝜏−1; 𝑡𝜏 ) + 𝜂𝑣𝑖𝜏

𝑖(𝜏 ; 𝑡𝜏 ) = 𝐷𝑖(𝜏−1; 𝑡𝜏 )

(2)

he allocation 𝑣𝑖𝜏 instantaneously moves a fraction 𝜂𝑣𝑖𝜏 of population
from the susceptible state 𝑆𝑖(⋅) to the recovered state 𝑅𝑖(⋅) at time

𝜏 . The epidemic evolves continuously and at discrete time points the
rajectory is changed by vaccine allocation.

We consider four different objectives 𝑓 (): cumulative new infec-
ions, deaths, life years lost, or quality-adjusted life years (QALYs) lost
ue to death, up to the end of time period 𝐾. We write the vaccine
llocation problem as follows:

inimize


𝑓 ()

ubject to
𝑛
∑

𝑖=1
𝑣𝑖𝜏 ≤

𝑁𝜏
𝑃

∀𝜏 ∈ [[1, 𝐾]]

𝑣𝑖1 ≤ 𝑆𝑖(0) ∀𝑖 ∈ [[1, 𝑛]]

𝑣𝑖𝜏 ≤ 𝑆𝑖(𝜏−1; 𝑡𝜏 ) ∀𝑖 ∈ [[1, 𝑛]], 𝜏 ∈ [[2, 𝐾]]

𝑣𝑖𝜏 ≥ 0 ∀𝑖 ∈ [[1, 𝑛]], 𝜏 ∈ [[1, 𝐾]]

(OPT1)

In each time period 𝜏 the available vaccine supply is limited to 𝑁𝜏∕𝑃 .
Allocation to each population group 𝑖 must be nonnegative and is
limited by the size of the susceptible (unvaccinated) population at the
start of the time period.

2.2. Solution approach

Our goal is to determine the allocation of vaccines over time that
minimizes 𝑓 (). However, the vaccine allocation problem is highly
nonlinear. Even during a single time period the epidemic evolves
nonlinearly, allocations to one population group affect epidemic growth
in the other population groups, and vaccine allocation can have a
nonlinear effect on epidemic evolution. For this reason, we develop a
solution approach in which we allocate vaccines in each time period
based on epidemic conditions at the start of the time period.

For each time period 𝜏, we thus solve the following optimization
problem:

minimize
𝐯𝜏

𝑓 (𝜏 )

subject to
𝑛
∑

𝑖=1
𝑣𝑖𝜏 ≤

𝑁𝜏
𝑃

𝑣𝑖1 ≤ 𝑆𝑖(0) ∀𝑖 ∈ [[1, 𝑛]], if 𝜏 = 1

𝑣𝑖𝜏 ≤ 𝑆𝑖(𝜏−1; 𝑡𝜏 ) ∀𝑖 ∈ [[1, 𝑛]], if 𝜏 ≥ 2

𝑣𝑖𝜏 ≥ 0 ∀𝑖 ∈ [[1, 𝑛]]

(OPT2)

2.2.1. Single-period approximated optimal solution
A previous study that considered only a single time period used

Taylor series approximations of the SIR model equations to develop op-
timality conditions for vaccine allocation for each of the four objectives
we consider [4]. The problem reduces to a knapsack problem, where
the coefficients of the knapsack problem are given by

(
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
)

,
𝜇𝑖
(
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
)

, 𝐿𝑖𝜇𝑖
(
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
)

, and 𝑞𝑖𝐿𝑖𝜇𝑖
(
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)
)

for the objec-
ives of minimizing new infections, deaths, life years lost, and QALYs
ost due to death, respectively. The term 𝐿𝑖 denotes the average number
f life years lost for individuals in group 𝑖 who die from the disease
nd 𝑞𝑖 denotes the quality-of-life multiplier for individuals in group 𝑖.

The knapsack approach was shown to achieve optimal or near-optimal

solutions for the case of a single time period [4]. However, the level of
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vaccination was restricted to be lower than min𝑖{𝛼𝑖(𝑇 )}, where 𝑇 is the
ength of the time period, and

𝑖(𝑇 ) = min
{

𝑆𝑖(0),
1
𝜂

(

𝑆𝑖(0) −
(𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇 − 𝐼𝑖(0)

(
∑𝑛

𝑗=1 𝛽𝑖𝑗𝐼𝑗 (0))𝑇

)}

,

so that the approximations are always positive over the considered time
horizon, and so that 𝛼𝑖(𝑇 ) ≤ 𝑆𝑖(0).

Here we develop optimality conditions for a single time period
for higher levels of vaccination: in particular, we extend the analysis
so that the upper bound on the level of vaccination is ∑

𝑖 𝛼𝑖(𝑇 ). The
resulting problem is no longer a knapsack problem, but the objective
functions are piecewise linear, which allows us to develop simple con-
ditions characterizing the optimal solution. For simplicity in notation
we omit the subscript 𝜏 and without loss of generality we let 0 and 𝑇
denote the start and end of the time period, respectively.

For the objective of minimizing new infections, we approximate the
disease dynamics at time 𝑇 using first-order Taylor expansions, and
take the positive part so that the approximation of 𝐼𝑖(⋅) is positive for
all 𝑣𝑖 ≤ 𝑆𝑖(0)∕𝜂:

𝐼𝑖(𝐯; 𝑇 ) ≃
(

𝐼𝑖(0) + (𝑆𝑖(0) − 𝜂𝑣𝑖)
(
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)

)

𝑇 − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇
)+

𝑅𝑖(𝐯; 𝑇 ) ≃ 𝑅𝑖(0) + 𝜂𝑣𝑖 + 𝛾𝑖𝐼𝑖(0)𝑇

𝐷𝑖(𝐯; 𝑇 ) ≃ 𝐷𝑖(0) + 𝜇𝑖𝐼𝑖(0)𝑇

For the objectives of minimizing deaths, life years lost, or QALYs
lost due to death, we use second-order Taylor expansions of 𝐷𝑖(⋅):

𝐷𝑖(𝐯; 𝑇 )

≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝑖(0) + 𝜇𝑖
(

𝐼𝑖(0)𝑇+
(

(𝑆𝑖(0) − 𝜂𝑣𝑖)(
∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0))

−(𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)
) 𝑇 2

2

)

if 𝑣𝑖 ≤ 𝛼𝑖(𝑇 )

𝐷𝑖(𝛼𝑖(𝑇 ); 𝑇 ) if 𝑣𝑖 > 𝛼𝑖(𝑇 )

Since we are considering a short period of time and do not consider
entry into or exit from the population, 𝐷𝑖 is a trapping state. Therefore,
the proportion of people who have died in each group 𝑖 has to be
increasing over time. By construction of 𝛼𝑖, the approximation of 𝐷𝑖(⋅)
is indeed increasing for all 𝑣𝑖 ≤ 𝑆𝑖(0)∕𝜂.

Using these approximations, we derive the optimal vaccine alloca-
tion for each objective, assuming that 𝑁∕𝑃 ≤

∑

𝑖 𝛼𝑖(𝑇 ). All proofs are
in the Appendix. For notational simplicity, we will write 𝛼𝑗 = 𝛼𝑗 (𝑇 ). We
define 𝛺1(𝐯) = {𝑖 | 𝑣𝑖 ≤ 𝛼𝑖} and 𝛺2(𝐯) = {𝑖 | 𝑣𝑖 > 𝛼𝑖}.

Minimize New Infections. Once an individual has been infected,
that person can either move to the recovered or dead compartment.
Therefore, the proportion of the population that has been infected by
time 𝑇 is given by

INF(𝐯; 𝑇 ) =
𝑛
∑

𝑖=1

[

𝐼𝑖(𝐯; 𝑇 ) + (𝑅𝑖(𝐯; 𝑇 ) − 𝜂𝑣𝑖) +𝐷𝑖(𝐯; 𝑇 )
]

The number of infections equals the sum over all population groups
of the proportion of the population in the infected, recovered, and
dead compartments (𝐼𝑖(𝐯; 𝑇 ), 𝑅𝑖(𝐯; 𝑇 ), and 𝐷𝑖(𝐯; 𝑇 ), respectively) minus
𝜂𝑣𝑖. The term 𝜂𝑣𝑖 corresponds to individuals who were effectively
vaccinated (and thus transitioned to the recovered state) but who were
never infected.
The approximated objective function is given by

INF(𝐯; 𝑇 ) =
𝑛
∑

𝑖=1

[

𝐼𝑖(𝐯; 𝑇 ) + (𝑅𝑖(𝐯; 𝑇 ) − 𝜂𝑣𝑖) +𝐷𝑖(𝐯; 𝑇 )
]

≃
𝑛
∑

𝑖=1

[

𝑅𝑖(0) +𝐷𝑖(0)
]

+
∑

𝑖∈𝛺2(𝐯)

(

(𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇
)

+
∑

𝑖∈𝛺1(𝐯)

(

𝐼𝑖(0) + (𝑆𝑖(0) − 𝜂𝑣𝑖)
(
∑

𝑗
𝛽𝑖𝑗𝐼𝑗 (0)𝑇

))
This function is continuous and piecewise linear in 𝐯.

3

Proposition 1. If 𝑁∕𝑃 ≤
∑

𝑖 𝛼𝑖, the solution 𝐯∗ that minimizes INF(𝐯; 𝑇 )
satisfies 𝑣∗𝑖 ≤ 𝛼𝑖. The term 𝛼𝑖 is the maximum level at which group 𝑖 can be
vaccinated in an optimal solution.

Proposition 2. Assume that 𝑁∕𝑃 ≤
∑

𝑖 𝛼𝑖 and that the population
groups are ordered in decreasing order of their initial force of infection,
i.e. ∑𝑗 𝛽𝑖𝑗𝐼𝑗 (0) ≥

∑

𝑗 𝛽𝑙𝑗𝐼𝑗 (0) if 𝑖 ≤ 𝑙. Define 𝑘 = max{𝑘′|1 ≤ 𝑘′ ≤
𝑛,
∑𝑘′

𝑖=1 𝛼𝑖 ≤
𝑁
𝑃 }. The vaccine allocation that minimizes INF(v;T) is

𝐯∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣∗1
⋮

𝑣∗𝑘
𝑣∗𝑘+1
𝑣∗𝑘+2
⋮

𝑣∗𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼1
⋮

𝛼𝑘
𝑁
𝑃 −

∑𝑘
𝑖=1 𝛼𝑖

0

⋮

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

In other words, it is optimal to vaccinate the groups in decreasing order of
their initial force of infection.

Minimize Deaths. The approximated objective function D(𝐯; 𝑇 ) is
iven by

(𝐯; 𝑇 ) =
𝑛
∑

𝑖=1
𝐷𝑖(𝐯; 𝑇 )

≃
∑

𝑖∈𝛺1(𝐯)
𝐷𝑖(0) + 𝜇𝑖𝐼𝑖(0)𝑇

+ 𝑇 2

2

[

𝜇𝑖
(

(𝑆𝑖(0) − 𝜂𝑣𝑖)(
𝑛
∑

𝑗=1
𝛽𝑖𝑗𝐼𝑗 (0)) − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)

)

]

+
∑

𝑖∈𝛺2(𝐯)
𝐷𝑖(𝛼𝑖(𝑇 ); 𝑇 )

his function is a continuous piecewise linear function of 𝐯.

roposition 3. If 𝑁∕𝑃 ≤
∑

𝑖 𝛼𝑖, the solution 𝐯∗ that minimizes D(𝐯; 𝑇 )
atisfies 𝑣∗𝑖 ≤ 𝛼𝑖. The term 𝛼𝑖 is the maximum level at which group 𝑖 can be
accinated in an optimal solution.

roposition 4. Assume that 𝑁∕𝑃 ≤
∑

𝑖 𝛼𝑖 and that the population groups
re ordered in decreasing order of their initial force of infection multiplied
y the mortality rate, i.e. 𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0) ≥ 𝜇𝑙
∑

𝑗 𝛽𝑙𝑗𝐼𝑗 (0) if 𝑖 ≤ 𝑙. Define
= max{𝑘′|1 ≤ 𝑘′ ≤ 𝑛,

∑𝑘′
𝑖=1 𝛼𝑖 ≤ 𝑁

𝑃 }. The vaccine allocation that
inimizes 𝐷(𝐯; 𝑇 ) is

∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣∗1
⋮

𝑣∗𝑘
𝑣∗𝑘+1
𝑣∗𝑘+2
⋮

𝑣∗𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼1
⋮

𝛼𝑘
𝑁
𝑃 −

∑𝑘
𝑖=1 𝛼𝑖

0

⋮

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

In other words, it is optimal to vaccinate the groups in decreasing order of
their initial force of infection multiplied by the mortality rate.

Minimize Life Years Lost and QALYs Lost. We can write the functions
for life years lost (LY(𝐯; 𝑇 )) and QALYs lost due to death (QALY(𝐯; 𝑇 ))
s follows:

Y(𝐯; 𝑇 ) =
𝑛
∑

𝑖=1
𝐿𝑖𝐷𝑖(𝐯; 𝑇 )

ALY(𝐯; 𝑇 ) =
𝑛
∑

𝑞𝑖𝐿𝑖𝐷𝑖(𝐯; 𝑇 )

𝑖=1
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Table 1
Values and sources for model parameters.

Parameter Description Value Source

𝑓1 Fraction of individuals <20 years old 0.25 [18]
𝑓2 Fraction of individuals 20–39 years old 0.27 [18]
𝑓3 Fraction of individuals 40–65 years old 0.31 [18]
𝑓4 Fraction of individuals ≥65 years old 0.16 [18]
𝑑𝑚 Average duration of mild infection (days) 11 [19–22]
𝑑𝑠 Average duration of severe infection (days) 8 [23,24]
𝛼1 Fraction of infections that become severe for individuals <20 years old 0.02 [18,25]
𝛼2 Fraction of infections that become severe for individuals 20–39 years old 0.15 [18,25]
𝛼3 Fraction of infections that become severe for individuals 40–65 years old 0.26 [18,25]
𝛼4 Fraction of infections that become severe for individuals ≥65 years old 0.46 [18,25]
𝑑1 Average duration of infection for individuals <20 years old (days) 11.13 Calculateda

𝑑2 Average duration of infection for individuals 20–39 years old (days) 12.18 Calculateda

𝑑3 Average duration of infection for individuals 40–65 years old (days) 13.10 Calculateda

𝑑4 Average duration of infection for individuals ≥65 years old (days) 14.68 Calculateda

𝜉1 Infected fatality ratio for individuals <20 years old 0.0000988 [18,26]
𝜉2 Infected fatality ratio for individuals 20–39 years old 0.0005750 [18,26]
𝜉3 Infected fatality ratio for individuals 40–65 years old 0.0043939 [18,26]
𝜉4 Infected fatality ratio for individuals ≥65 years old 0.0350831 [18,26]
𝜇1 Daily death rate for individuals <20 years old 0.0000088 Calculatedb

𝜇2 Daily death rate for individuals 20–39 years old 0.000047 Calculatedb

𝜇3 Daily death rate for individuals 40–65 years old 0.00034 Calculatedb

𝜇4 Daily death rate for individuals ≥65 years old 0.00239 Calculatedb

𝛾1 Daily rate at which individuals <20 years old recover and become immune 0.090 Calculatedc

𝛾2 Daily rate at which individuals 20–39 years old recover and become immune 0.082 Calculatedc

𝛾3 Daily rate at which individuals 40–65 years old recover and become immune 0.076 Calculatedc

𝛾4 Daily rate at which individuals ≥65 years old recover and become immune 0.066 Calculatedc

𝜂 Vaccine effectiveness 0.90 [27]
𝐿1 Expected life years lost for individuals <20 years old 69.29 [18,28]
𝐿2 Expected life years lost for individuals 20–39 years old 50.28 [18,28]
𝐿3 Expected life years lost for individuals 40–65 years old 29.81 [18,28]
𝐿4 Expected life years lost for individuals ≥65 years old 12.95 [18,28]
𝑞1𝐿1 Quality-adjusted expected life years lost for individuals <20 years old 63.02 [18,28,29]
𝑞2𝐿2 Quality-adjusted expected life years lost for individuals 20–39 years old 45.04 [18,28,29]
𝑞3𝐿3 Quality-adjusted expected life years lost for individuals 40–65 years old 27.50 [18,28,29]
𝑞4𝐿4 Quality-adjusted expected life years lost for individuals ≥65 years old 11.22 [18,28,29]

aThe average infection duration 𝑑𝑖 is calculated as 𝑑𝑖 = 𝑑𝑚 + 𝛼𝑖𝑑𝑠 ,∀𝑖.
The infected fatality ratio 𝜉𝑖 is estimated from the cumulative number of infections and deaths. Since we do not model the severity of the disease (mild vs. severe infection), the
verage death rate 𝜇𝑖 is calculated as 𝜇𝑖 =

𝜉𝑖
𝑑𝑖
,∀𝑖.

cThe average recovery rate 𝛾𝑖 is calculated as 𝛾𝑖 =
1
𝑑𝑖

− 𝜇𝑖 ,∀𝑖.
Since the functions LY(⋅) and QALY(⋅) are weighted sums of 𝐷𝑖, the
solution to minimizing life years lost and QALYs lost due to death
follows directly from the solution to minimizing deaths.

Proposition 5. Assume that 𝑁∕𝑃 ≤
∑

𝑖 𝛼𝑖. To minimize 𝐿𝑌 (𝑣; 𝑇 ), it
is optimal to vaccinate groups in decreasing order of their initial force
of infection multiplied by the mortality rate and expected life years lost
(𝐿𝑖𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)), up to the level 𝛼𝑖. To minimize 𝑄𝐴𝐿𝑌 (𝑣; 𝑇 ), the optimal
solution is to vaccinate groups in decreasing order of their initial force of
infection multiplied by the mortality rate and expected QALYs lost due to
death (𝑞𝑖𝐿𝑖𝜇𝑖

∑

𝑗 𝛽𝑖𝑗𝐼𝑗 (0)), up to the level 𝛼𝑖.

For all four objective functions considered, the approximated opti-
mal solution is an all-or-nothing allocation: we allocate as much of the
vaccine as possible to groups in order of priority (up to the level 𝛼𝑖
or each group 𝑖) until no vaccine remains, and thus may allocate no
accine to some population groups.

.2.2. Dynamic allocation
We solve the dynamic vaccine allocation problem sequentially,

pplying the single-period optimality conditions to determine an allo-
ation at the beginning of each time period based on the state of the
pidemic at that point. The optimality conditions for all four objectives
epend on the fraction of infected individuals when the allocation is
ade. We simulate the model numerically to determine 𝐼𝑖(𝜏 ; 𝑡𝜏+1) for

ach time period 𝜏. Algorithm 1 summarizes our solution approach.
Here we solve the optimal vaccine allocation problem sequentially

sing first- and second-order approximations. We note that even using

irst-order Taylor series expansions directly in the original multi-period m

4

Algorithm 1: Dynamic vaccine allocation
Input: 𝑆𝑖(0), 𝐼𝑖(0), 𝑅𝑖(0), 𝐷𝑖(0), 𝛽𝑖𝑗 , 𝜇𝑖, 𝐿𝑖, 𝑞𝑖
Output: 
for 𝜏 ∶= 1,… , 𝐾 do

Determine the optimal solution (v𝜏 ) to the optimization
problem (OPT2) using Propositions 2, 4, or 5

Apply the optimal allocation, and simulate the model
numerically to determine 𝐼𝑖(𝜏 ; 𝑡𝜏+1)

end
 = (v1,v2,… ,v𝐾 )

problem (OPT1) yields a non-convex problem. For the case of a single
time period, the resulting problem reduces to (OPT2), but for multiple
time periods, the resulting problem is non-convex and can only be
solved numerically; we provide an example for the case of two time
periods in Supplemental Section B. We have instead chosen to use an
approach that yields analytical insight.

2.2.3. Extensions
Fairness is often an important concern when allocating scarce med-

ical resources such as vaccines [11,30–32]. Our optimization problems
(OPT1)–(OPT2) can be extended to include an equity constraint:

𝑣𝑖𝜏 ≥ 𝑚𝑖𝜏 ,∀𝑖 ∈ [[1, 𝑛]],

where 𝑚𝑖𝜏 is the minimum fraction of the population in group 𝑖 that
ust be vaccinated in time period 𝜏. We define the matrix  ∈ R𝑛×𝐾
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Fig. 1. Calibrated model’s daily number of deaths, and multiples of daily confirmed cases compared to reported values (7-day rolling averages) for New York state.
Table 2
Optimal vaccine allocation for each time horizon, time period, vaccine level, and objective function, as determined using the dynamic allocation method.

Length of time periods Time period Available vaccine level Optimal group order of vaccination

Minimize new infections Minimize deaths, LYs and QALYs lost

𝑇 = 7 days

𝜏 = 1 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 2 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 3
0% ≤ 𝑁

𝑃
≤ 6% 2, 1, 3, 4 4, 3, 2, 1

7% ≤ 𝑁
𝑃

≤ 8% 1, 2, 3, 4 4, 3, 2, 1

𝑇 = 15 days

𝜏 = 1 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 2 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 3
0% ≤ 𝑁

𝑃
≤ 5% 2, 1, 3, 4 4, 3, 2, 1

6% ≤ 𝑁
𝑃

≤ 7% 1, 2, 3, 4 4, 3, 2, 1
𝑁
𝑃

= 8% 1, 3, 2, 4 4, 3, 2, 1

𝑇 = 30 days

𝜏 = 1 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 2 0% ≤ 𝑁
𝑃

≤ 8% 2, 1, 3, 4 4, 3, 2, 1

𝜏 = 3
0% ≤ 𝑁

𝑃
≤ 4% 2, 1, 3, 4 4, 3, 2, 1

𝑁
𝑃

= 5% 1, 2, 3, 4 4, 3, 2, 1
6% ≤ 𝑁

𝑃
≤ 8% 1, 3, 2, 4 4, 3, 2, 1
s
h
d
3
m
F
s
t

p
n
r

𝛽

such that 𝑖𝜏 = 𝑚𝑖𝜏 . In this case, we consider  ′ =  −  as our
decision variable with the constraints 𝑣𝑖𝜏 ≥ 0,∀𝑖 ∈ [[1, 𝑛]], 𝜏 ∈ [[1, 𝐾]].
With this equity constraint, the optimal solution follows the same
priority order given by Propositions 2, 4, and 5, but each group 𝑖 is
first allocated at least 𝑚𝑖𝜏 vaccines.

We can also modify the model to constrain the level of vaccination
in group 𝑖 to be lower than 𝜔𝑖𝑆𝑖(0), where 𝜔𝑖 ≤ 1 is the vaccine
acceptance rate in group 𝑖. Such a constraint could reflect vaccine
hesitancy or lack of vaccine access among certain populations. In this
case, we define

𝛼𝑖(𝑇 ) = min
{

𝜔𝑖𝑆𝑖(0),
1
𝜂

(

𝑆𝑖(0) −
(𝛾𝑖 + 𝜇𝑖)𝐼𝑖(0)𝑇 − 𝐼𝑖(0)

(
∑𝑛

𝑗=1 𝛽𝑖𝑗𝐼𝑗 (0))𝑇

)}

,

so that it is never optimal to vaccinate group 𝑖 above 𝜔𝑖𝑆𝑖(0). Again, the
optimal solution follows the priority order given by Propositions 2, 4,
and 5, with each group 𝑖 being limited to 𝜔𝑖𝑆𝑖(0) vaccines in any time
period.

In both cases our solution methodology still applies.

3. Example: COVID-19 vaccination

We illustrate our dynamic allocation method with the example of
COVID-19 in New York State. We divide the population into 𝑛 = 4
ge groups: individuals under age 20 (group 1), individuals aged 20–39
group 2), individuals aged 40–65 (group 3), and individuals over age
5 (group 4).
 𝛽

5

3.1. Model instantiation and calibration

We instantiate the epidemic model using data for New York State
from September 1, 2020 to November 30, 2020. We use daily COVID-19
cases and deaths in New York State, and obtain values for other model
parameters from the published literature (Table 1).

We use model calibration to determine the transmission rate param-
eters (𝛽𝑖𝑗) and the initial total number of infected individuals (𝐼(0) =
∑

𝑖 𝐼𝑖(0)). We assume that the initial distribution of cases is consistent
with the age distribution; that is, 𝐼𝑖(0) = 𝑓𝑖𝐼(0) for all 𝑖. Since several
tudies have shown that the total number of cases could be many times
igher than the number of confirmed cases [33,34], we calibrate to a 7-
ay rolling average of reported deaths from September 1 to November
0, 2020 (Appendix Figure C.1a) and compare our model projections to
ultiples of a 7-day rolling average of new confirmed cases (Appendix

igure C.1b). We calibrate to daily deaths only up until December 1
ince vaccination began on December 14 [35], and we want to capture
he trend of the epidemic without vaccines.

We use Latin hypercube sampling for calibration, randomly sam-
ling each parameter from a range of values [36]. We measure good-
ess of fit using the sum of squared errors. The calibrated transmission
ate values are:

11 = 0.246, 𝛽12 = 0.067, 𝛽13 = 0.075, 𝛽14 = 0.061,

= 0.030, 𝛽 = 0.347, 𝛽 = 0.055, 𝛽 = 0.071,
21 22 23 24
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Fig. 2. 𝑇 = 7 days. Percentage difference between the approximated and numerical optimal solutions.
Fig. 3. 𝑇 = 7 days, 𝜏 = 3. Numerical and approximated optimal vaccine allocation to minimize new infections.
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31 = 0.050, 𝛽32 = 0.038, 𝛽33 = 0.213, 𝛽34 = 0.035,

41 = 0.047, 𝛽42 = 0.073, 𝛽43 = 0.015, 𝛽44 = 0.213.

nd the starting initial infected population is 𝐼(0) = 0.000377. The
esulting 𝑅0 value is 1.14.

Fig. 1 compares the calibrated model’s output to the New York State
ata on deaths and confirmed cases. The model output closely matches
he calibration target of reported deaths (Fig. 1(a)). The model’s pro-
ected total number of infected individuals is approximately 2.5 times
igher than daily confirmed cases in New York State (Fig. 1(b)), which
s consistent with studies such as [33,34] that suggest that the total
umber of people infected could be 2–5 times the number of con-
irmed cases due to a large population of asymptomatic individuals and
ntested individuals.

As there is uncertainty about the number of COVID-19 cases, we
lso consider scenarios where there are two, five, and ten times [37]
s many infected and recovered individuals as calibrated. We refer to
he scenario that uses the calibrated values as the base case scenario.
 l

6

.2. Dynamic vaccine allocation

We consider three time periods of length: 𝑇 = 7, 15, or 30 days. We
ssume that a vaccine with effectiveness 𝜂 = 0.90 is available [27].
e assume that 𝑁 vaccines are available at the beginning of each

ime period (𝑁𝜏 = 𝑁,∀𝜏 and 𝑁 ≤
∑

𝑖 𝛼𝑖(𝑇 )). We consider available
accination levels 𝑁∕𝑃 between 0% and 8% of the population in
ncrements of 1%.

We have extended the analysis of a previous study [4] so that
he upper bound on the level of vaccination is ∑

𝑖 𝛼𝑖(𝑇 ) instead of
in𝑖{𝛼𝑖}; in doing so, we now solve a piecewise linear optimization
roblem rather than a knapsack problem. Supplemental Table D.1
hows the maximum proportion of the susceptible population that can
e vaccinated in the first time period for each scenario and time horizon
onsidered. For short time horizons (𝑇 ≤ 15 days), the bound of
𝑖 𝛼𝑖(𝑇 ) corresponds to more than 94.8% of the susceptible population,

ompared to only 16.5% with the previous bound of min𝑖{𝛼𝑖}. For
∑
onger time horizons (𝑇 = 30 days), the bound of 𝑖 𝛼𝑖(𝑇 ) corresponds
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Fig. 4. 𝑇 = 15 days. Percentage difference between the approximated and numerical optimal solutions.

Fig. 5. 𝑇 = 15 days. Numerical and approximated optimal vaccine allocation to minimize new infections.

7
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Fig. 6. 𝑇 = 30 days. Percentage difference between the approximated and numerical optimal solutions.
to approximately 55% of the susceptible population, compared to only
8.2% with the previous bound of min𝑖{𝛼𝑖}.

Using the parameter values from the calibration and the litera-
ure (as detailed in Section 3.1), we determine the optimal vaccine
llocation using Propositions 2, 4, and 5 for each time horizon, time
eriod, vaccination level, and objective function. Table 2 summarizes
ur findings. The optimal vaccine allocation did not vary across sce-
arios (when varying the initial proportion of infected and recovered
ndividuals) so we only present results for the base case scenario.

For the objective of minimizing infections, group 2 is vaccinated
irst for any time period length and available vaccine level in the first
nd second time periods. The allocation switches to a different group
n the third time period if the available vaccine level is high enough:
hen the length of the time periods is short (𝑇 = 7 days), the allocation

witches to vaccinating group 1 before group 2 if 𝑁∕𝑃 ≥ 7%; when the
ength of the time periods is longer (𝑇 ≥ 15 days), group 3 is vaccinated
efore group 2 and after group 1 for high enough levels of vaccine (for
∕𝑃 = 8% when 𝑇 = 15 days, and for 𝑁∕𝑃 ≥ 6% when 𝑇 = 30 days).
To minimize deaths, life years lost, and QALYs lost due to death, the

rder of vaccination is group 4, followed by group 3, then group 2, and
inally group 1. This result holds across all time periods, time period
engths, and available vaccine levels. The result is intuitive because
ortality increases significantly with age (𝜇4 ≫ 𝜇3 ≫ 𝜇2 ≫ 𝜇1) and

the expected gain in life years or QALYs from vaccinating younger age
groups is not enough to offset the higher mortality of older age groups.

3.3. Quality of decisions

To evaluate the accuracy of the approximated optimal allocations,
we compare the solutions to allocations determined using the exact
Eqs. (1). We determine the true optimal solution via exhaustive search,
discretizing the range of feasible vaccine allocations (0 ≤ 𝑣 ≤
𝑖𝜏

8

𝑆𝑖(𝜏−1; 𝑡𝜏 ) and ∑

𝑖 𝑣𝑖𝜏 = 𝑁∕𝑃 ,∀𝑖, 𝜏) using a grid size of 0.001. We
present results for each time period length: 𝑇 = 7, 15, or 30 days.

T = 7 days. Fig. 2 compares the value of the objective function at
the numerical and approximated optimal solution when 𝑇 = 7 days.

For the objectives of minimizing deaths, life years lost, and QALYs
lost due to death, the approximated optimal solution matches the
numerical optimal solution found via exhaustive search in all cases (for
any level of vaccination and time period).

For the objective of minimizing new infections, the approximated
and numerical solutions differ slightly in the third time period (for
6% ≤ 𝑁∕𝑃 ≤ 7%), but the percentage difference in new infections
is small (≤0.0002%). The discrepancy in allocations occurs close to
the switching point (Fig. 3): the approximated solution allocates all
vaccines to group 2 when 𝑁∕𝑃 = 6%, and to group 1 when 𝑁∕𝑃 = 7%.
In contrast, the numerically optimal solution allocates vaccines to both
groups 1 and 2 when 6% ≤ 𝑁∕𝑃 ≤ 7%. The discrepancy occurs because
the approximated solution method leads to an all-or-nothing allocation,
which is not always optimal.

T = 15 days. Fig. 4 compares the value of the objective functions
at the numerical and approximated optimal solution for a time horizon
of 𝑇 = 15 days.

For the objectives of minimizing deaths, life years lost, and QALYs
lost, the approximated and numerical optimal solution match in all
cases.

For the objective of minimizing new infections, the approximated
and numerical solutions differ in the second time period when 𝑁∕𝑃 ≥
7%, and in the third time period when 𝑁∕𝑃 ≥ 5%. However, the
percentage difference in new infections is small (≤0.00053%). The dis-
crepancy between the two solutions occurs near a switching point
(Fig. 5). For example, in the third time period, the approximated
solution allocates vaccines to group 2 followed by group 1 when 0% ≤
𝑁∕𝑃 ≤ 5%, to group 1 followed by group 2 and then group 3 when
6% ≤ 𝑁∕𝑃 ≤ 7%, and to group 1 followed by group 3 when 𝑁∕𝑃 = 8%.
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Fig. 7. 𝑇 = 30 days. Numerical and approximated optimal allocations.
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he numerical optimal solution allocates vaccines to both groups 1 and
when 𝑁∕𝑃 = 5%, to groups 1, 2 and then 3 when 𝑁∕𝑃 = 6%, and

to groups 1 and 3 when 7% ≤ 𝑁∕𝑃 ≤ 8%. The switch occurs more
radually in the numerical solution because the approximated solution
s an all-or-nothing allocation.
T = 30 days. Finally, Fig. 6 compares the value of the objective

unctions at the numerical and approximated solution for 𝑇 = 30 days.
or deaths, life years, and QALYs, the objective function values vary
y at most 0.005%, and for new infections, the objective function
alues vary by at most 0.02%. The solutions match for lower levels
f vaccination (𝑁∕𝑃 < 8%, 𝑁∕𝑃 < 6%, 𝑁∕𝑃 < 5% in the first,
econd, and third time periods, respectively) but diverge for higher
evels of vaccination. Again, this is because the approximate solution
n each period is an all-or-nothing allocation whereas the numerical
ptimal solution involves a partial allocation between groups (Fig. 7).
he allocations also differ due to upper limits on allocation in the
pproximate method: for example, in time period 𝜏 = 2 for 𝑁∕𝑃 ≥ 6%,
 t

9

hen considering the objective of minimizing deaths, life years lost,
r QALYs lost, the numerical optimal solution allocates all vaccines to
roup 4 whereas the approximate solution allocates vaccines to both
roup 4 and group 3.

Supplemental Table D.2 summarizes the percentage difference be-
ween the approximated and numerical optimal solution for each time
orizon, time period, vaccine level, and objective function. The approx-
mated and numerical solution differ by at most 0.018%. Supplemental
able D.3 shows the run times in seconds to find the approximated
nd numerical optimal solution for all vaccination levels and objective
unctions, for each scenario, time horizon, and time period. The average
un time for the approximated solution was no more than a tenth of a
econd whereas the average run time for the numerical solution was on

he order of hundreds or thousands of seconds.
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Fig. 7. (continued).
4. Discussion

Our method for dynamic allocation of limited vaccines to control an
infectious disease uses a simple rule based on epidemic conditions at
the start of each time period. Using numerical simulations of COVID-
19 in New York State we show that our method achieves near-optimal
results over a wide range of vaccination scenarios.

The approximated optimal solution is an all-or-nothing allocation.
Numerical simulations show that the approximated and numerical
optimal solutions match for lower levels of vaccination. For higher
levels of vaccination where partial allocation is optimal, we find that
discrepancies occur near switching points, but the numerical solution
nevertheless follows the priority order given by the approximated
solution, and the numerical and approximated optimal solution differ
by at most 0.018%. In practice, when considering longer time horizons,
the accuracy of the allocation method can be improved by considering
more time periods with shorter lengths.
10
The method we developed is practical for decision makers as it
provides simple, interpretable conditions for vaccine allocation over
time, and avoids the need to solve an intractable nonlinear dynamic op-
timization problem. Moreover, the simple analytical conditions match
our intuition: to minimize new infections in any period it is optimal to
vaccinate groups in decreasing order of their force of infection, whereas
to minimize deaths it is optimal to vaccinate groups in decreasing order
of their force of infection multiplied by the mortality rate. For the
example of COVID-19, we find that individuals aged 20–39 should be
prioritized for vaccination in the first time period to minimize new
infections because they have the highest initial force of infection. How-
ever, prioritizing older individuals (over age 65) minimizes deaths, life
years lost, and QALYs lost due to death because of the high mortality
rate in this group.

Our method is also practical because it generates a prioritized list
of population groups for vaccine allocation: for instance, in the COVID-

19 example, to minimize new infections in the first time period, the
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priority order for vaccination is first individuals aged 20–39, then
individuals under age 20, then individuals aged 40–65, and finally
individuals over age 65. In practice, public health decision makers
frequently allocate resources using prioritization schemes of this type.
For example, several U.S. states adopted age-based COVID-19 vaccine
allocation guidelines [38–41]. As another example, the Centers for Dis-
ease Control and Prevention’s (CDC’s) recommendations for COVID-19
vaccine allocation prioritize groups based on age, underlying medical
conditions, and occupation [42].

Our analysis has several limitations. We assumed that all available
vaccine doses in each time period are used. However, the number of
individuals receiving vaccination may vary due to factors such as access
to vaccination or vaccine hesitancy [11,43]. Additionally, epidemic
growth is typically stochastic while our method uses a deterministic
model to project epidemic evolution. Since our method determines
vaccine allocation at the beginning of each time period, the model
could be updated over time as more information becomes available.
For example, instead of forecasting the fraction of infected people
at the start of each time period using numerical simulations, policy
makers could observe actual infection trends and estimate the fraction
of infected people in each population subgroup. Additionally, the model
parameters could be recalibrated at the start of each time period before
generating the resulting allocation. Further work could automate our
decision tool and could extend the analysis to a stochastic setting.

The problem of allocating limited vaccines is important, but com-
plex. Our allocation method provides a practical, intuitive guide for
decision makers that can achieve near-optimal solutions as they al-
locate limited vaccines over time. For the COVID-19 example, our
findings are consistent with CDC and other recommendations to priori-
tize older age groups for vaccination so as to minimize deaths [11,42].
For vaccination against other communicable diseases, our method can
also provide practical, intuitive solutions. Although black box models
are prevalent in the literature on vaccine allocation, our study shows
that accuracy need not be sacrificed for interpretability. Our analysis
highlights the need for interpretable models to aid in important prob-
lems in public health and epidemic control, including that of allocating
limited vaccines to control a communicable disease.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by Grant R37-DA15612 from the National
Institute on Drug Abuse, and by a Stanford Interdisciplinary Graduate
Fellowship.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2022.108879.

References

[1] N. Becker, D.N. Starczak, Optimal vaccination strategies for a community of
households, Math. Biosci. 139 (2) (1997) 117–132.

[2] M. Tanner, L. Sattenspiel, L. Ntaimo, Finding optimal vaccination strategies
under parameter uncertainty using stochastic programming, Math. Biosci. 215
(2) (2008) 144–151.

[3] S. Enayati, O. Özaltın, Optimal influenza vaccine distribution with equity, Eur.
J. Oper. Res. 283 (2) (2019) 714–725.

[4] I.J. Rao, M.L. Brandeau, Optimal allocation of limited vaccine to control an
infectious disease: Simple analytical conditions, Math. Biosci. 337 (106821)
(2021).
11
[5] I.J. Rao, M.L. Brandeau, Optimal allocation of limited vaccine to minimize the
effective reproduction number, Math. Biosci. 339 (108654) (2021).

[6] H. Rodrigues, M. Monteiro, D.F.M. Torres, Vaccination models and optimal
control strategies to dengue, Math. Biosci. 247 (2013) 1–12.

[7] T. Yuzo Miyaoka, S. Lenhart, J.F. Meyer, Optimal control of vaccination in a
vector-borne reaction–diffusion model applied to Zika virus, J. Math. Biol. 79
(3) (2019) 1077–1104.

[8] R.M. May, R.M. Anderson, Spatial heterogeneity and the design of immunization
programs, Math. Biosci. 72 (1) (1984) 83–111.

[9] H. Yarmand, J. Ivy, B. Denton, A. Lloyd, Optimal two-phase vaccine allocation
to Geographically Different Regions under uncertainty, Eur. J. Oper. Res. 233
(1) (2014) 208–219.

[10] L. Matrajt, I. Longini, Optimizing vaccine allocation at different points in time
during an epidemic, PLoS One 5 (11) (2010) e13767.

[11] Engineering, and Medicine Committee on Equitable Allocation of Vaccine for
the Novel Coronavirus National Academies of Sciences, Equitable Allocation of
Vaccine for the Novel Coronavirus, National Academy of Sciences, Engineering
and Medicine, Washington, DC, 2020.

[12] T.N. Tran, N.B. Wikle, E. Albert, H. Inam, E. Strong, K. Brinda, S.M. Leighow, F.
Yang, S. Hossain, J.R. Pritchard, P. Chan, W.P. Hanage, E.M. Hanks, M.F. Boni,
Optimal SARS-CoV-2 vaccine allocation using real-time attack-rate estimates in
Rhode Island and Massachusetts, BMC Med 19 (1) (2021) 162.

[13] L. Matrajt, J. Eaton, T. Leung, E.R. Brown, Vaccine optimization for COVID-19:
Who to vaccinate first? Sci. Adv. 7 (6) (2021) eabf1374.

[14] Y. Ko, J. Lee, Y. Kim, D. Kwon, E. Jung, COVID-19 vaccine priority strategy using
a heterogenous transmission model based on maximum likelihood estimation in
the Republic of Korea, Int. J. Environ. Res. Public Health 18 (12) (2021).

[15] A. Babus, S. Das, S. Lee, The Optimal Allocation of COVID-19 Vaccines, MedRxiv,
2020, http://dx.doi.org/10.1101/2020.07.22.20160143.

[16] S. Han, J. Cai, J. Yang, J. Zhang, Q. Wu, W. Zheng, H. Shi, M. Ajelli, X.H.
Zhou, H. Yu, Time-varying optimization of COVID-19 vaccine prioritization in
the context of limited vaccination capacity, Nature Commun. 12 (1) (2021) 4673.

[17] J.H. Buckner, G. Chowell, M.R. Springborn, Dynamic prioritization of COVID-19
vaccines when social distancing is limited for essential workers, Proc. Natl. Acad.
Sci. U S A 118 (16) (2021).

[18] US Census Bureau, National population by characteristics: 2010–2019, 2020,
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-
detail.html. (visited on 08/30/2020).

[19] Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S.A. Truelove, T.
Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J.
Zhang, T. Ma, J. Lessler, T. Feng, Epidemiology and transmission of COVID-19 in
shenzhen China: Analysis of 391 cases and 1,286 of their close contacts, Lancet
Infect. Dis. 20 (8) (2020) 911–919.

[20] S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H. Meredith, A.S. Azman,
N.G. Reich, J. Lessler, The incubation period of COVID-19 from publicly reported
confirmed cases: Estimation and application, Ann. Intern. Med. 172 (9) (2020)
577–582.

[21] A. Hill, Modeling COVID-19 spread vs healthcare capacity, 2020, https://alhill.
shinyapps.io/COVID19seir/. (visited on 08/20/2020).

[22] S. Sanche, Y.T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, R. Ke, High con-
tagiousness and rapid spread of severe acute respiratory syndrome coronavirus
2, Emerg. Infect. Dis. 26 (7) (2020) 1470–1477.

[23] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu,
L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Clinical
course and risk factors for mortality of adult inpatients with COVID-19 in wuhan,
China: A retrospective cohort study, Lancet 395 (102229) (2020) 1054–1062.

[24] Z. Wu, J.M. McGoogan, Characteristics of and important lessons from the
coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of
72,314 cases from the Chinese center for disease control and prevention, JAMA
323 (13) (2020) 1239–1242.

[25] R. Verity, L.C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-
Dannenburg, H. Thompson, P. Walker, H. Fu, A. Dighe, J. Griffin, M. Baguelin, S.
Bhatia, A. Boonyasiri, A. Cori, Z. Cucunubá, R. FitzJohn, K. Gaythorpe, W. Green,
A. Hamlet, W. Hinsley, D. Laydon, G. Nedjati-Gilani, S. Riley, S. van Elsland,
E. Volz, H. Wang, Y. Wang, X. Xi, C. Donnelly, A.C. Ghani, N.M. Ferguson,
Estimates of the severity of coronavirus disease 2019: A model-based analysis,
Lancet Infect. Dis. 20 (6) (2020) 669–677.

[26] A.B. Hogan, P. Winskill, O.J. Watson, P.G. Walker, C. Whittaker, M. Baguelin,
N.F. Brazeau, G.D. Charles, K.A. Gaythorpe, A. Hamlet, E. Knock, D.J. Laydon,
J.A. Lees, A. Lchen, R. Verity, L.K. Whittles, F. Muhib, K. Hauck, N.M. Ferguson,
A.C. Ghani, Within-country age-based prioritisation, global allocation, and public
health impact of a vaccine against SARS-CoV-2: A mathematical modelling
analysis, Vaccine 39 (22) (2021) 2995–3006.

[27] M. Thompson, J. Burgess, A. Naleway, et al., Interim estimates of vaccine
effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing
SARS-CoV-2 infection among health care personnel, first responders, and other
essential and frontline workers — eight U.S. locations, december 2020–march
2021, Morb. Mortal. Wkly Rep. 70 (13) (2021) 495–500.

[28] Social Security Administration, Actuarial life table, 2016, https://www.ssa.gov/
oact/STATS/table4c6.html. (visited on 09/08/2020).

https://doi.org/10.1016/j.mbs.2022.108879
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb1
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb1
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb1
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb2
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb2
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb2
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb2
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb2
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb3
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb3
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb3
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb4
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb4
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb4
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb4
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb4
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb5
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb5
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb5
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb6
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb6
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb6
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb7
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb7
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb7
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb7
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb7
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb8
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb8
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb8
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb9
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb9
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb9
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb9
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb9
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb10
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb10
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb10
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb11
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb12
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb13
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb13
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb13
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb14
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb14
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb14
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb14
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb14
http://dx.doi.org/10.1101/2020.07.22.20160143
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb16
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb16
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb16
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb16
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb16
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb17
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb17
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb17
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb17
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb17
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb19
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb20
https://alhill.shinyapps.io/COVID19seir/
https://alhill.shinyapps.io/COVID19seir/
https://alhill.shinyapps.io/COVID19seir/
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb22
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb22
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb22
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb22
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb22
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb23
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb24
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb25
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb26
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb27
https://www.ssa.gov/oact/STATS/table4c6.html
https://www.ssa.gov/oact/STATS/table4c6.html
https://www.ssa.gov/oact/STATS/table4c6.html


I.J. Rao and M.L. Brandeau Mathematical Biosciences 351 (2022) 108879
[29] J. Love-Koh, M. Asaria, R. Cookson, S. Griffin, The social distribution of health:
Estimating quality-adjusted life expectancy in England, Value Health 18 (5)
(2015) 655–662.

[30] B.W. Weston, Z.N. Swingen, S. Gramann, D. Pojar, Targeting equity in COVID-19
vaccinations using the ‘‘evaluating vulnerability and equity" (EVE) model, Am.
J. Public Health 112 (2) (2022) 220–222.

[31] A.R. Pressman, S.H. Lockhart, Z. Shen, K.M.J. Azar, Measuring and promoting
SARS-CoV-2 vaccine equity: development of a COVID-19 vaccine equity index,
Health Equity 5 (1) (2021) 476–483.

[32] H. Anahideh, L. Kang, N. Nezami, Fair and diverse allocation of scarce resources,
Socio-Econ. Plann. Sci. 80 (2022) 101193.

[33] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial
undocumented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2), Science 368 (6490) (2020) 489–493.

[34] D. Sutton, K. Fuchs, M. D’Alton, D. Goffman, Universal screening for SARS-CoV-2
in women admitted for delivery, New Engl. J. Med. 382 (22) (2020) 2163–2164.

[35] L. Ferré-Sadurní, J. Goldstein, 1St vaccination in U.S. is given in New York,
hard hit in outbreak’s first days, 2020, https://www.nytimes.com/2020/12/14/
nyregion/coronavirus-vaccine-new-york.html. (visited on 04/27/2021).

[36] M.D. Mckay, R.J. Beckman, W.J. Conover, A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code, Technometrics 42 (1) (2000) 55–61.
12
[37] S. Anand, M. Montez-Rath, J. Han, J. Bozeman, R. Kerschmann, P. Beyer,
J. Parsonnet, G.M. Chertow, Prevalence of SARS-CoV-2 antibodies in a large
nationwide sample of patients on dialysis in the USA: A cross-sectional study,
Lancet 396 (10259) (2020) 1335–1344.

[38] Littler Mendelson, Giving it our best shot - statewide vaccination plan, 2021, [On-
line]. Available: https://www.littler.com/publication-press/publication/giving-it-
our-best-shot-statewide-vaccination-plans.

[39] California Department of Public Health, Updated COVID-19 vaccine eligibility
guidelines, 2021, [Online]. Available: https://www.cdph.ca.gov/Programs/CID/
DCDC/Pages/COVID-19/VaccineAllocationGuidelines.aspx.

[40] State of Maine, Maine adopts age-based approach to expanding vaccine eligi-
bility, 2021, [Online]. Available: https://www.maine.gov/governor/mills/news/
maine-adopts-age-based-approach-expanding-vaccine-eligibility-2021-02-26.

[41] Ohio Department of Public Health, COVID-19 vaccine fact sheet priority popu-
lations and vaccine distribution, 2021, [Online]. Available: https://coronavirus.
ohio.gov/static/vaccine/general_fact_sheet.pdf.

[42] K. Dooling, M. Marin, M. Wallace, N. McClung, M. Chamberland, G.M. Lee, H.K.
Talbot, J.R. Romero, B.P. Bell, S.E. Oliver, The advisory committee on immu-
nization practices’ updated interim recommendation for allocation of COVID-19
vaccine — United States, December 2020, MMWR. Morbidity Mortality Weekly
Rep. 69 (5152) (2021) 1657–1660.

[43] C. Lin, P. Tu, T.C. Terry, Moving the needle on racial disparity: COVID-19 vaccine
trust and hesitancy, Vaccine (2021) S0264–410X(21)01444–4.

http://refhub.elsevier.com/S0025-5564(22)00077-3/sb29
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb29
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb29
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb29
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb29
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb30
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb30
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb30
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb30
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb30
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb31
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb31
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb31
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb31
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb31
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb32
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb32
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb32
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb33
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb33
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb33
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb33
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb33
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb34
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb34
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb34
https://www.nytimes.com/2020/12/14/nyregion/coronavirus-vaccine-new-york.html
https://www.nytimes.com/2020/12/14/nyregion/coronavirus-vaccine-new-york.html
https://www.nytimes.com/2020/12/14/nyregion/coronavirus-vaccine-new-york.html
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb36
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb36
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb36
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb36
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb36
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb37
https://www.littler.com/publication-press/publication/giving-it-our-best-shot-statewide-vaccination-plans
https://www.littler.com/publication-press/publication/giving-it-our-best-shot-statewide-vaccination-plans
https://www.littler.com/publication-press/publication/giving-it-our-best-shot-statewide-vaccination-plans
https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/VaccineAllocationGuidelines.aspx
https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/VaccineAllocationGuidelines.aspx
https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/VaccineAllocationGuidelines.aspx
https://www.maine.gov/governor/mills/news/maine-adopts-age-based-approach-expanding-vaccine-eligibility-2021-02-26
https://www.maine.gov/governor/mills/news/maine-adopts-age-based-approach-expanding-vaccine-eligibility-2021-02-26
https://www.maine.gov/governor/mills/news/maine-adopts-age-based-approach-expanding-vaccine-eligibility-2021-02-26
https://coronavirus.ohio.gov/static/vaccine/general_fact_sheet.pdf
https://coronavirus.ohio.gov/static/vaccine/general_fact_sheet.pdf
https://coronavirus.ohio.gov/static/vaccine/general_fact_sheet.pdf
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb42
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb43
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb43
http://refhub.elsevier.com/S0025-5564(22)00077-3/sb43

	Sequential allocation of vaccine to control an infectious disease
	Introduction
	Framework
	Vaccine allocation problem
	Solution approach
	Single-period approximated optimal solution
	Dynamic allocation
	Extensions


	Example: COVID-19 vaccination
	Model instantiation and calibration
	Dynamic vaccine allocation
	Quality of decisions

	Discussion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


