
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20120  | https://doi.org/10.1038/s41598-024-71174-z

www.nature.com/scientificreports

Twinned neuroimaging analysis 
contributes to improving 
the classification of young people 
with autism spectrum disorder
Ali Jahani 1, Iman Jahani 1, Ali Khadem 1*, B. Blair Braden 2, Mehdi Delrobaei 1,3 & 
Bradley J. MacIntosh 4,5,6,7

Autism spectrum disorder (ASD) is diagnosed using comprehensive behavioral information. 
Neuroimaging offers additional information but lacks clinical utility for diagnosis. This study 
investigates whether multi-forms of magnetic resonance imaging (MRI) contrast can be used 
individually and in combination to produce a categorical classification of young individuals with ASD. 
MRI data were accessed from the Autism Brain Imaging Data Exchange (ABIDE). Young participants 
(ages 2–30) were selected, and two group cohorts consisted of 702 participants: 351 ASD and 351 
controls. Image-based classification was performed using one-channel and two-channel inputs to 
3D-DenseNet deep learning networks. The models were trained and tested using tenfold cross-
validation. Two-channel models were twinned with combinations of structural MRI (sMRI) maps and 
amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) maps from resting-state 
functional MRI (rs-fMRI). All models produced classification accuracy that exceeded 65.1%. The two-
channel ALFF-sMRI model achieved the highest mean accuracy of 76.9% ± 2.34. The one-channel 
ALFF-based model alone had mean accuracy of 72% ± 3.1. This study leveraged the ABIDE dataset 
to produce ASD classification results that are comparable and/or exceed literature values. The deep 
learning approach was conducive to diverse neuroimaging inputs. Findings reveal that the ALFF-sMRI 
two-channel model outperformed all others.

Keywords Autism spectrum disorder, Artificial intelligence, Deep learning, Multimodal learning, Structural 
MRI, Resting-state functional MRI

Autism spectrum disorder (ASD) is a neurodevelopmental condition with diverse manifestations across symp-
toms including social challenges, repetitive behaviors, and difficulties in communication, both verbal and 
 nonverbal1. This complex condition emerges in childhood and can affect cognitive abilities, emotional aspects, 
sensory and motor skills, and social  interaction2. ASD often co-occurs with other disorders, such as intellectual 
challenges, seizures, and  anxiety3. According to the Centers for Disease Control and Prevention (CDC), the 
prevalence of ASD has increased, roughly 1 in 36 children are  affected4. ASD has a heritable component with 
genetic factors interacting with environmental  influences5. While the exact causes are not fully understood, ASD 
is likely mediated by differential pathways of synaptic and neuronal development, cortical structure, and brain 
 connectivity5. Synaptic alterations may be mediated by genetic factors that impact molecular pathways involved 
in brain growth and  development5.

Early ASD diagnosis is critical to enable early intervention, which can improve social communication, cogni-
tive, and behavioral outcomes in affected children, and provide support for families and  caregivers6. Neuroim-
aging techniques such as functional MRI (fMRI), structural MRI (sMRI), electroencephalography (EEG), and 
functional near-infrared spectroscopy (fNIRS) are promising tools for understanding the neural underpinnings 
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of ASD. sMRI reveals gray matter differences in  ASD7–9. Reduced gray matter volume and increased gyrification 
in the temporal and frontal lobes are linked to language difficulties in autistic  children7. Similarly, fMRI has pro-
vided valuable insights into the functional brain patterns associated with  ASD10,11, such as connectivity alterations 
in regions involved in social behaviors and other core ASD-related behavioral  differences12. Task-based fMRI 
reveals the "social brain" in ASD that implicates numerous brain regions including the medial prefrontal cortex, 
amygdala, and superior temporal  sulcus13. ASD is associated with hypoactivation of the social brain regions 
relative to  controls14. Meta-analysis of ten resting-state fMRI ASD studies helped to reveal altered functional 
connectivity in the default mode  network15. Other reports show a pattern of predominantly hypo-connectivity 
in resting-state fMRI (rs-fMRI) and task-based fMRI  studies16–18. Whereas, hyper-connectivity is also reported 
in  ASD17,19. The collective findings suggest that patterns of both hypo- and hyper-connectivity in the ASD 
brain, and the specific pattern may depend on the brain regions and tasks  involved20. Children with ASD often 
exhibit hyper-connectivity in regions such as the cerebellum and brainstem, which is linked to social interaction 
 deficits19. Adolescents and adults show a more complex pattern, with both hyper- and hypo-connectivity, espe-
cially in networks like the default mode network (DMN) and salience-executive  network19. Early development in 
toddlers with ASD is marked by hypo-connectivity between the DMN and visual circuits, associated with early 
social-communication  difficulties21. Into adulthood, ASD is associated with hypo-connectivity in higher-order 
association areas that are implicated in complex cognitive  functions22. Hyper-connectivity is linked to deficits in 
memory, attention, reasoning, and social interactions, while hypo-connectivity is associated with impairments 
in vision, execution, and social  cognition23.

Machine learning (ML) is a form of artificial intelligence that uses statistical techniques to make predic-
tions or decisions without being explicitly programmed. Deep learning has emerged as particularly robust to 
automatically extract data features and reduce from large and complex information to more rudimentary and/
or binary outcomes, namely  classification24,25. Although rs-fMRI can capture functional connectivity patterns 
and abnormalities linked to the  ASD26, and sMRI can reveal anatomical deviations, most prior studies use single 
modalities for ASD  classification27,28. With a sample of 500 individuals, a logistic regression ML framework dem-
onstrates the feasibility of classifying ASD adults versus controls based on neuroimaging regional  connectivity27.

Amplitude of low-frequency fluctuations (ALFF)29 and fractional ALFF (fALFF)30 are maps generated to 
reflect resting-state fMRI spontaneous brain activity. ALFF and fALFF images are associated the underlying neu-
ronal activity and metabolic processes in the  brain30. Regions with higher ALFF or fALFF values are considered 
to be more “active” or engaged in intrinsic brain processes during the resting  state30.

One potential theory is that the combination of rs-fMRI and sMRI in a multimodal framework could result in 
better classification results. For instance, it was possible to classify ASD vs. controls using a fusion of rs-fMRI and 
sMRI data with accuracy of 65.6%31. This combined accuracy surpassed the individual accuracies from exclusive 
use of rs-fMRI (60.6%), gray matter (63.9%), and white matter (59.7%) information. In addition to sMRI and 
fMRI, other data modalities have been explored for ASD classification, including behavioral, EEG, wearable 
sensors, eye-tracking, and genetic data. Using EEG in a lightweight convolutional neural network resulted in 
promising findings by decoding neural signals that were related to  ASD32. Researchers have also used computer-
aided diagnosis in ASD, employing behavior signal processing to analyze audio, video, and eye-tracking  signals33. 
By integrating multimodal data analysis, researchers can identify distinctive patterns associated with ASD that 
demonstrate promising accuracy in ASD classification.

In the current study, a multimodal deep learning framework for ASD classification was proposed using sMRI 
and rs-fMRI data. We extracted  ALFF29 and  fALFF30 from rs-fMRI and trained a stacked 3D-DenseNet model 
with one-channel and two-channel architectures. We hypothesized that employing twinned neuroimaging data 
sources would improve the performance of the ASD classification relative to single-input classifier approaches. To 
provide context for the 3D-DenseNet approach, we implemented an extreme gradient boosting (XGBoost)34 deci-
sion tree method that relied on region of interest (ROI) neuroimaging estimates to perform the classification task.

Materials and methods
Data
ABIDE I data were accessed on January 17,  202335, and consisted of 1112 potential participants, including 539 
with ASD and 573 healthy controls. Data were restricted to individuals between 2 and 30 years of age. Data quality 
was assessed using visual and empirical methods: i.e. scans were excluded due to movement artifacts, ghosting, 
incomplete brain coverage, and other scanner artifacts. The resulting groups consisted of 351 with ASD and 351 
control participants. Figure 1 shows the cohort details. Table 1 shows age and sex details, and the Supplementary 
Table S1 shows data collection by site and MRI scanner. We selected a balanced number of subjects from each 
site and within each group (ASD and control).

We ensured that participants with major comorbidities were excluded across the different sites contributing to 
our dataset to minimize the impact of comorbid conditions, which can significantly influence clinical and neuro-
biological profiles. Participants with major psychiatric disorders (e.g., depression, schizophrenia, bipolar disor-
der), neurological conditions (e.g., epilepsy, traumatic brain injury), genetic disorders (e.g., Fragile X syndrome), 
and other significant medical conditions were systematically excluded based on each site’s rigorous screening and 
diagnostic criteria. These exclusions help to minimize the potential influence of comorbid conditions.

sMRI data preprocessing
The sMRI were preprocessed using  AFNI36, FSL (FMRIB Software Library)37, and  SynthStrip38 implemented in 
 FreeSurfer39. T1-weighted images were downsampled to 3mm isotropic resolution using trilinear interpolation, 
making these data more comparable to the fMRI and reducing the deep learning computational requirements. 
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The sMRI retained site-acquisition matrix size differences. Specifically, the matrix sizes ranged from 58 × 79 × 66 
to 86 × 86 × 49. Data diversity was handled by adaptive average pooling layers in the deep learning architecture.

rs-fMRI data preprocessing
The first four volumes were discarded to prepare the functional data for the following steps: (1) motion correction 
and (2) skull stripping using the Brain Extraction Tool (BET) with a fractional intensity threshold of 0.5. Addi-
tional steps were performed in line with the ALFF calculations:29 (3) despiking, (4) removing the linear temporal 
trend, (5) spatial smoothing using a Gaussian kernel with a 6 mm full width at half maximum (FWHM), and (6) 
time series bandpass filtering between 0.01 and 0.08 Hz to isolate low-frequency fluctuations.

Power spectrum of the filtered time series was computed, and its square root was derived to obtain the ampli-
tude across frequencies. ALFF was calculated by summing the power within the 0.01–0.08 Hz low-frequency 
band. fALFF was computed as the ratio of ALFF to the total power across all frequencies, providing a fractional 
metric to control for individual variations in signal strength. Examples of ALFF and fALFF maps are provided 
for an ASD participant in Fig. 2.

Fig. 1.  The CONSORT-style flow diagram demonstrates the quality control process, including examination for 
exclusion criteria resulting in final analyzed participants.

Table 1.  Demographics of the participants.

Demographics Control (N = 351) ASD (N = 351) t or χ2 Statistic P-value

Age: mean (SD) 15.16 (4.9) 15.2 (5) 0.03 0.98

Females: n (%) 51 (14.5) 45 (12.8) 0.3 0.58
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Data augmentation
Data were augmented by rotation and scaling during model training. For each epoch, there was a 50% chance 
of data being randomly rotated ± 30 degrees around the z-axis and zoomed 0.7–1.3 × with the same probability.

Scaling and normalizing data
Image intensity histograms were examined for ALFF maps to evaluate potential site effects. A threshold was 
selected, and any ALFF voxel intensities beyond it were shifted to the new maximum bin value before all ALFF 
intensities were min–max normalized to the range (0, 1) using the following approach:

3D-DenseNet
The  DenseNet40 consisted of successive dense blocks. The layers within each block are connected through mul-
tiple feed-forward connections. The one-channel model used 3D image inputs and the details are presented in 
Supplementary Table S2 (e.g. the 2.44 million trainable parameters, batch normalization, ReLU activation, and 
convolutions in final layers). The one-channel 3D DenseNet classifier had an initial convolutional layer followed 
by four dense blocks. Each dense block contained a specific number of dense layers (4, 5, 5, 4). Following the 
last dense block, there were two fully connected output layers. A growth rate of 32 was used for the number of 
new feature maps added by each layer. The overall flowchart depicts the process, including the preprocessing of 
rs-fMRI and sMRI (Supplementary Fig. S1(a1)), ALFF and fALFF extraction (Supplementary Fig. S1(a2)), and 
employment of one-channel stacked 3D-DenseNet, as illustrated in Supplementary Fig. S1(b).

The two-channel DenseNet network accommodated twinned 3D MRI inputs: sMRI and ALFF, and sMRI 
and fALFF. The two-channel model had 3 dense blocks per channel, each with 4 dense layers as illustrated in 
Supplementary Fig. S1(c). The channel outputs were flattened, concatenated (464 features), and passed to a fully 
connected layer (200 neurons) and a final output layer (2 neurons).

Model training started with a limited number of epochs to assess parameter ranges and grid searches. The 
learning rate method varied from 0.00001 to 0.00005, depending on the epoch, for a total of 330 epochs. The 
batch size was 8 and the dropout rate was 0.1. The two-channel model had 3.22 million trainable parameters.

For all models, data were split into 90% training and 10% testing sets, and the model performance was con-
ducted using tenfold cross-validation. They were implemented in Python 3.10 using PyTorch (version 2.0.0)41 
and MONAI on a Linux operating  system42. Model training was performed using a high-performance computing 
environment (https:// docs. allia ncecan. ca/ wiki/ Cedar). The hardware consisted of 2 × Intel Silver 4216 Cascade 
Lake processors, each operating at 2.1 GHz, 32 GB of RAM, and 4 × NVIDIA V100 Volta GPUs, each with 32 GB 
HBM2 memory. One-channel networks trained for 9 h and 15 min, while two-channel networks trained for 14 
h. Visualization of training was done using an aggregator  tool43.

XGBoost
We applied the XGBoost algorithm to the same sMRI data, using the Brainnetome atlas for ROI extraction on 
T1-weighted images to provide more explainability to the classification task. We extracted 246 ROI volume means 
to create tabular data for the classification of ASD versus controls. The following steps were undertaken. We used 
FSL to register data onto the Brainnetome atlas and extract the ROIs. Using the XGBoost library in Python, we 

(1)IntensityNew =

x −min(x)

max (x)−min(x)

Fig. 2.  The views are shown for (a) ALFF and (b) fALFF rs-fMRI maps. The data corresponds to a 12-year-old 
male with ASD.

https://docs.alliancecan.ca/wiki/Cedar


5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20120  | https://doi.org/10.1038/s41598-024-71174-z

www.nature.com/scientificreports/

performed a grid search to find the best hyperparameters. The model was trained with fivefold cross-validation 
on 80% of the training data, with 20% reserved for testing.

Statistical analysis
Statistical tests were performed to analyze differences in age and sex between the ASD and control groups; there 
were no age (t-test) or sex (chi-squared) differences (p > 0.05).

Mean classification results are reported as accuracy, sensitivity, specificity, precision, and F1 score values, 
calculated across tenfolds for each data type (i.e. sMRI, ALFF, ALFF-sMRI). The 95% standard error (SE) con-
fidence interval and standard deviation (SD) are reported for accuracies, sensitivities, specificities, precisions, 
and F1 scores.

A one-way analysis of variance (ANOVA) and pair-wise t-tests were conducted to assess the significance of 
differences in mean accuracy, specificity, and sensitivity between the sMRI-ALFF model and the one-channel 
models (sMRI and ALFF) across the tenfolds. The performance of different classification models was evaluated 
using receiver operator characteristic (ROC) analysis and area under the curve (AUC) values across folds.

Results
A chi-square test for independence was performed to compare the distribution of eyes-open and eyes-closed cases 
between the ASD and control groups, and found that the results were non-significant (χ2 [1] = 1.63, p = 0.201).

Table 2 summarizes the performance metrics for three of the 3D-DenseNet models. The one-way ANOVA 
indicated significant differences in mean accuracy, specificity, precision, and F1 score between at least two of 
the models tested. Specifically, these differences were significant for accuracy (F (degrees of freedom [df = 2, 
27]) = 15.5, p = 0.00003), specificity (F [df = 2, 27] = 15.5, p = 0.00003), precision (F [df = 2, 27] = 15.12, p = 0.00004), 
and F1 score (F [df = 2, 27] = 8.27, p = 0.0015). Sensitivity was not significantly different across models (F (2, 
27) = 1.38, p = 0.26).

The results of the pair-wise t-tests are shown in Table 3. The simultaneous use of ALFF and sMRI data in a 
two-channel DenseNet had significantly improved classification accuracy compared to using only sMRI (t = 5.6, 
p = 0.0003) or ALFF (t = 2.8, p = 0.02). It was noted that the ALFF results individually and in combination with 
sMRI were much better than the fALFF model, hence the fALFF-based classification results are reported in 
Supplementary Tables S3 and S4.

Performance metrics are depicted in Fig. 3. The test accuracies and AUC values for one-channel ALFF, sMRI, 
and two-channel ALFF and sMRI are shown in Fig. 3a and b respectively. Notably, the two-channel ALFF and 
sMRI outperformed other models regarding mean AUC and mean accuracy. The ROC curves for these three 
models are shown in Fig. 3c–e.

The results of the sMRI-based XGBoost model are shown in Table 4. To interpret the model’s decisions, we 
generated a feature importance plot (Fig. 4), highlighting the ten most important ROIs contributing to the final 
decision. The top two ROIs, based on relative importance, were dCa_L (Basal Ganglia—Left dorsal caudate) with 
a score of 0.026, and IPFtha_L (Thalamus—Left lateral pre-frontal thalamus) with a score of 0.015.

Discussion
In this study, we evaluated whether a multi-modal 3D-DenseNet deep learning network could accurately classify 
ASD vs. controls. The sample consisted of a range of young people, which constitutes relevant age window for 
ASD diagnosis. Data were balanced across sites within each group (ASD and control) to maintain consistency 

Table 2.  Performance metrics for three of the 3D-DenseNet models are provided after tenfold cross-
validation. Accuracies, sensitivities, specificities, precisions, and F1 scores are shown as mean, standard error 
(SE), and standard deviation (SD).

Data type

Mean ± SE (SD)

Accuracy % Sensitivity % Specificity % Precision % F1 score %

sMRI 65.1 ± 3.36 (5.4) 71.7 ± 4 (6.4) 58.3 ± 6.64 (10.7) 64.3 ± 3.75 (6) 67.55 ± 2.8 (4.55)

ALFF 72 ± 3.1 (4.9) 66.5 ± 5.3 (8.6) 77.5 ± 6.5 (10.5) 75.2 ± 4.9 (7.9) 69.9 ± 3.15 (5.1)

ALFF + sMRI 76.9 ± 2.34 (3.8) 70.8 ± 5.1 (8.2) 83.14 ± 6.3 (11.6) 82.4 ± 5 (8.15) 75.6 ± 2.4 (3.9)

Table 3.  Each of the pairwise post-hoc t-tests showed a significant difference in the model accuracies. The 
two-channel models were superior to one-channel models. A positive t-value indicates data type 1 had higher 
accuracy than data type 2. Significant values are in bold.

N Data type 1 Data type 2 t-value P value

1 sMRI ALFF − 2.5 0.035

2 sMRI sMRI—ALFF − 5.6 0.0003

3 sMRI—ALFF ALFF + 2.8 0.02
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Fig. 3.  Evaluation performance (a) Test accuracy of different models across folds. (b) AUC values for different 
models across folds (c) ROC curve of one-channel sMRI (d) ROC curve of one-channel ALFF (e) ROC curve 
of two-channel sMRI + ALFF. Note: The fALFF model results were not shown due to lower performance than 
ALFF.

Table 4.  Performance metrics for the sMRI XGBoost model.

Data type

Mean

Accuracy % Sensitivity % Specificity % Precision % F1 score %

sMRI-XGBoost 57.45 57.89 56.92 56.92 59.46

Fig. 4.  The top ten most important ROIs in XGBoost model decision-tree that used sMRI as tabular data inputs 
for classification.
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across sites while also create a diverse total sample based on the number of imaging sites. This approach helps 
mitigate site-specific biases and ensures that the model is exposed to a broad range of data during training. 
Imaging data underwent modest preprocessing steps before inputting to the 3D-DenseNet for model training. 
The input images were three-dimensional ALFF, fALFF, or sMRI data. The advantage of this 3D model is that 
all brain voxels could in theory contribute to the classification. The two-channel model combining ALFF and 
sMRI demonstrated the best performance among the implemented networks. Statistical tests further indicated 
that, overall, two-channel networks composed of two different types of data could significantly achieve higher 
accuracy in classifying ASD and control individuals, outperforming the use of a single data type.

Different ASD classification methods have been applied to the ABIDE I dataset. Some of these approaches, 
which used a sample size of over 700, achieved classification accuracy that are comparable to the current study 
(i.e. 66.74% to 71.74%)44–54. Classification accuracy of 83% was reported on the ABIDE I dataset using an ensem-
ble classifier that fused features from conventional functional connectivity networks, low-order dynamic func-
tional connectivity networks, and high-order dynamic functional connectivity  networks55. It is noteworthy 
that the previous study used a relatively smaller ABIDE I sample, with 45 ASD and 47 controls. The current 
framework showcases significant differences and notable enhancements. The highest-performing deep learning 
model used both sMRI and rs-fMRI data, which is in contrast to the autoencoder and perceptron approaches 
used previously and based on rs-fMRI connectivity  features54. Other researchers transformed the fMRI data 
to temporal features that were used as 3D inputs for CNNs; this approach yielded 64%  accuracy49. While they 
evaluated multiple statistical features from the fMRI time series, their CNN models were only provided with a 
single type of extracted feature for classification.

The current results revealed that the fALFF-based model produced the poorest classification, which is note-
worthy as the finding aligns with a previous study that compared and contrasted fALFF, ALFF, and regional 
homogeneity (ReHo) fMRI  maps56. The fALFF is thought to correlate more strongly with the cerebral metabolic 
rate of glucose and oxygen utilization, compared to  ALFF56. The ALFF map correlates with cerebral blood vol-
ume and future work is needed to characterize the source of physiological contrast in these neuroimaging data.

The accuracy, specificity, precision, and F1 score results underscore the significance of using combined data 
channels to drive better classification results. The superior classification accuracy of the two-channel model did 
not come at the expense of worse sensitivity or precision. This was reflected by the F1 score, which was highest 
for the two-channel model. We note that the sMRI-based model had the poorest specificity and precision and it 
is likely to produce the highest number of false positives, which could be problematic in the context of a clinical 
evaluation of this method. Conversely, false negatives are also critical issues to reconcile as they would be the 
scenario where an individual is falsely assigned a healthy diagnosis.

The sMRI-based XGBoost classification results were inferior to the sMRI DenseNet, however, the explain-
ability of the XGBoost model results provide some insight. Namely, the high importance scores of the basal 
ganglia and thalamus ROIs for the classification. These regions play roles in ASD. Structural and functional 
abnormalities in the basal ganglia, crucial for motor control, cognition, and social behavior, are common in 
 ASD57,58. These abnormalities include volumetric changes, altered cell density, and increased connectivity with 
cortical areas, leading to motor delays, sensory processing difficulties, and repetitive  behaviors58,59. Similarly, 
the thalamus is a sensory and motor signal relay center and shows atypical thalamocortical connectivity in ASD, 
particularly in sensory  regions60,61.

Clinically, ML models applied to neuroimaging data, such as MRI, can enhance diagnostic accuracy by iden-
tifying subtle brain patterns associated with ASD. This can lead to earlier diagnosis, intervention, and treatment 
 options62. ML models can also assist in tailoring specific interventions based on the unique neurobiological 
profiles of patients. Additionally, the integration of ML with traditional diagnostic criteria can streamline the 
diagnostic process.

Future directions for this research include the development of more comprehensive and diverse datasets 
that integrate various imaging modalities (e.g., fMRI, sMRI, EEG) and demographic variables to improve the 
generalizability of ML models. Longitudinal studies tracking the developmental trajectory of ASD-related brain 
changes are essential for identifying predictive biomarkers and enhancing early  detection63. Advanced ML tech-
niques, such as deep learning and explainable AI, can improve the performance and interpretability of mod-
els. Furthermore, validating ML-based diagnostic systems in real-world clinical settings is critical. Developing 
standardized protocols and regulatory frameworks would ensure the safe and effective implementation of these 
tools. Focusing on pediatric and young adult populations presents opportunities where brain imaging data can 
be collected and image analysis could provide assistive decision support. The integration of neuroimaging and 
ML holds promise, for instance when there are more patient subgroups to consider.

There are likely many ways to continue to improve the MRI-based classification of ASD. First, because of the 
wider age range presented in ASD imaging studies, the brain age of individuals may be important, and incorpo-
rating a companion brain age element to the current classification approach could be interesting future  work64. 
Deep learning architectures are inherently flexible and others have demonstrated that is it feasible to pre-train 
a model to first perform a brain age estimate and then fine-tune to a different task, such as  classification65. The 
current study focused on ASD versus healthy controls, and it would be important to consider other related dis-
orders as intermediate subgroups, such as Attention Deficit Hyperactivity Disorder (ADHD). Such a multi-class 
approach would be crucial in clinical applications. The inclusion of ADHD would allow for a more comprehensive 
understanding of neurodevelopmental disorders, and precise ASD identification. It is noted that ASD and ADHD 
have a high  comorbidity66, which could necessitate more subgroups. Another possible future direction could be 
to explore sex-dependent classification approaches. As shown in a recent study, considering sex differences and 
developing separate classification pipelines for males and females could potentially improve ASD classification 
 performance67. Hence, sex could be incorporated as an additional model input to account for differences in brain 
connectivity patterns between males and females.
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Limitations
First, one of the challenges in large-scale MRI data sharing for research is the integration of data across multiple 
independent imaging sites, such as in ABIDE I. We did not explicitly account for scanner and site-related vari-
ations because we opted to preprocess images prior to model training. Including preprocessing steps detracts 
from the generalizability of the current method, however, this was a necessary step to improve image consistency. 
Second, although the current sample was large and we performed tenfold cross-validation, we did not consider 
an explicit external data source for model testing. Third, the overall performance scores for the ‘best’ sMRI-
ALFF model were high but there is still room for improvement. In particular, it would be prudent to consider 
the sensitivity results and the inherent risk of producing false negatives. Fourth, the current focus was on the 
DenseNet because it is ideal for imaging inputs; however, other approaches such as support vector machines, 
XGBoost, or ensemble methods have merit. Deep learning models, including the 3D DenseNet used in this 
study, pose significant challenges for explainable artificial  intelligence68. Specifically, the black-box nature makes 
it difficult to interpret which brain regions are contributing to classification decisions. Lastly, the current study 
relied exclusively on MRI, meanwhile, other ASD assessments could be used and/or incorporated into a multi-
modality classifier model. By relying solely on MRI data, we broaden the base of research tools that can be used 
independently or alongside other measures, such as behavioral assessments, neurodevelopmental evaluations, 
and cognitive testing.

Conclusion
The findings reveal that exclusive use of research-grade MRI can be used to perform automated classification of 
ASD relative to controls. Two-channel networks used the 3D features from sMRI and ALFF maps to produce 
superior performance results relative to any one-channel network.

Data availability
The code and preprocessed data supporting the findings of this study are available from the corresponding 
author, A.K, upon request.
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