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Cushing’s disease is a syndromic pathological condition caused by adrenocorticotropic
hormone (ACTH)-secreting pituitary adenomas (ACTHomas) mediated by
hypercortisolemia. It may have a severe clinical course, including infection, psychiatric
disorders, hypercoagulability, and metabolic abnormalities, despite the generally small,
nonaggressive nature of the tumors. Up to 20% of ACTHomas show aggressive behavior,
which is related to poor surgical outcomes, postsurgical recurrence, serious clinical
course, and high mortality. Although several gene variants have been identified in both
germline and somatic changes in Cushing’s disease, the pathophysiology of aggressive
ACTHomas is poorly understood. In this review, we focused on the aggressiveness of
ACTHomas, its pathology, the current status of medical therapy, and future prospects.
Crooke’s cell adenoma (CCA), Nelson syndrome, and corticotroph pituitary carcinoma are
representative refractory pituitary tumors that secrete superphysiological ACTH. Although
clinically asymptomatic, silent corticotroph adenoma is an aggressive ACTH-producing
pituitary adenoma. In this review, we summarize the current understanding of the
pathophysiology of aggressive ACTHomas, including these tumors, from a molecular
point of view based on genetic, pathological, and experimental evidence. The treatment of
aggressive ACTHomas is clinically challenging and usually resistant to standard treatment,
including surgery, radiotherapy, and established medical therapy (e.g., pasireotide and
cabergoline). Temozolomide is the most prescribed pharmaceutical treatment for these
tumors. Reports have shown that several treatments for patients with refractory
ACTHomas include chemotherapy, such as cyclohexyl-chloroethyl-nitrosourea
combined with 5-fluorouracil, or targeted therapies against several molecules including
vascular endothelial growth factor receptor, cytotoxic T lymphocyte antigen 4,
programmed cell death protein 1 (PD-1), and ligand for PD-1. Genetic and
experimental evidence indicates that some possible therapeutic candidates are
expected, such as epidermal growth factor receptor tyrosine kinase inhibitor, cyclin-
dependent kinase inhibitor, and BRAF inhibitor. The development of novel treatment
options for aggressive ACTHomas is an emerging task.

Keywords: Cushing’s disease (CD), aggressiveness/physiology, pathology, medical treatment/surgical treatment,
targeted therapy
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INTRODUCTION

Cushing’s disease is a hypercortisolemic state caused by
adrenocorticotropic hormone (ACTH)-secreting pituitary
adenomas (ACTHomas). Although most ACTHomas can be
successfully resected using the transsphenoidal approach, up to
20% of ACTHomas exhibit aggressive behavior, which is defined
on the basis of clinical behavior, with a generally invasive, high
rate of recurrence, lack of response to optimal standard therapies,
or atypical pathological findings including carcinoma like
features (1). These result in poor surgical and hormonal
outcomes. Crooke’s cell adenomas (CCAs) are one of the well-
known aggressive ACTHomas that exhibit characteristic
pathological features. ACTHomas can be transformed into an
aggressive nature after bilateral adrenalectomy, and such tumors
are called Nelson’s syndrome. In pituitary carcinomas, the most
aggressive tumoral nature, corticotroph carcinomas followed by
or along with PRL-secreting pituitary carcinomas are the most
common features. Patients frequently have a clinically serious
course due to corticotroph carcinomas, and their management is
challenging. In contrast, silent corticotroph adenomas (SCAs)
exhibit aggressive tumor behavior, whereas hypercortisolemia is
not present. In this review, we summarize our current knowledge
of the definition, pathophysiology, and treatment of refractory
ACTHomas and provide directions for future research.
AGGRESSIVE ACTHOMAS

Crooke’s Cell Adenomas
Crooke’s changes are characterized by large perinuclear
cytokeratin filament accumulation in normal corticotrophs due
to long-term exposure to endogenous or exogenous
glucocorticoid excess, including Cushing’s syndrome. The
pathological finding represents an eosinophilic perinuclear
hyaline appearance on hematoxylin and eosin staining (2, 3).
Crooke’s changes were also discovered within corticotroph
adenomas by Kovacs et al. in 1981, called Crooke’s cell
adenomas (CCAs) (4). The frequency of Crooke’s changes in
ACTHomas varies from 36% to 100% among several reports, and
this change is significantly increased in cases with severe
hypercortisolism, at least fourfold greater than the upper limit
of the normal range of UFC (1, 3, 5). CCA is diagnosed when
Crooke’s cells account for more than 50% of the tumor cells (1).
These tumors exhibit a high frequency of macroadenoma
(77.2%) and more aggressive behavior with invasion to the
cavernous sinuses (79.2%) than macro-ACTHomas without
Crooke’s change. They can also transform into metastatic
pituitary carcinoma, which was previously shown in 7.5% of
cases. Some CCAs (24.4%) are clinically silent (6, 7). The
recurrence rate of CCAs after surgery is 66% due to the higher
frequency of cavernous sinus invasion (8).

Nelson’s Syndrome
The first case of Nelson’s syndrome was reported in 1958, in a
33-year-old woman who underwent bilateral adrenalectomy due
to refractory Cushing’s disease. Three years later, skin
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hyperpigmentation and visual defects with elevated ACTH
levels appeared. These symptoms improved after surgical
removal of pituitary tumors, which pathologically exhibited
ACTH production (9). Nelson’s syndrome is observed in 8–
38% of cases after bilateral adrenalectomy for Cushing’s disease
(10, 11).

Accumulating data suggest several risk factors for this
syndrome, including a rapid elevation of plasma ACTH after
bilateral adrenalectomy (12–14), insufficient steroid replacement
therapy (10, 15), residual corticotroph tumor after
transsphenoidal surgery (TSS) (16), younger age (17), and
histopathological characteristics of corticotroph tumor
specimens. Elevation of plasma ACTH levels of more than 100
pg/mL in the first year after bilateral adrenalectomy is associated
with the development of Nelson’s syndrome (18).

From a histological point of view, there is no difference
between the tumors of Nelson’s syndrome and those of
Cushing’s disease. Despite the low expression of Ki-67 (usually
less than 3%), tumor behavior is aggressive and invasive. The
most common clinical manifestation of Nelson’s syndrome is
dark skin hyperpigmentation, with markedly elevated plasma
ACTH levels. Bitemporal hemianopia and progressive visual loss
caused by aggressive tumors are clinically important issues to be
addressed. Therefore, regular follow-up should be monitored
using MRI.

Corticotroph Carcinoma
Pituitary carcinomas are currently defined as pituitary tumors
with craniospinal dissemination or metastasis to other types of
tissues (19). Pituitary carcinomas occupy only 0.1–0.2% of
pituitary neoplasms derived from the anterior pituitary (19).
Epidemiologically, there is no gender difference in the prevalence
of pituitary carcinomas (20). Metastasis is commonly identified
in the central nervous system, followed by the liver, bones, and
lungs (20). The specific symptoms of pituitary carcinoma are
absent and depend on the region of metastasis, such as hearing
loss, ataxia, or motor impairment (21). While CT and MRI are
most often utilized to identify the metastatic region, 18F-FDG,
111In-labeled octreotide, and 68Ga-DOTANOC in scintigraphy
are also useful according to recent case reports (21–23).

There are no pathological criteria to distinguish aggressive
adenomas from carcinomas. The following morphological
features are not useful in predicting malignant transformation
of pituitary adenomas: hypercellularity, nuclear and cellular
pleomorphism, increased mitotic activity, necrosis, and dural
and/or bony invasion, which are generally associated with
malignancy (24, 25).

In endocrinological manifestation, 85–90% of carcinomas
express pituitary hormone, and 15–20% of them are clinically
nonfunctioning. Prolactin or ACTH-secreting carcinomas are
the most frequent, followed by growth hormones and other rare
hormones (23, 26–28). In a literature review, corticotroph
carcinomas were shown to be the most common (34.7%)
among pituitary carcinomas, followed by prolactin-secreting
(23.6%) and null cells (15.3%) (20). Corticotroph carcinoma is
usually developed from a group that exhibits aggressive
phenotypes, such as invasive, rapid growth, and prone to
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recurrence. One case series of 31 patients with CCAs exhibited
more than 80% with single or multiple recurrences, and two
patients developed corticotroph carcinoma (6). Nelson’s
syndrome occurring after bilateral adrenalectomy has also
potentially progressed to carcinomas (21, 29). Furthermore,
malignant transformation of SCAs has been reported in rare
case reports (30).

Regarding prognosis, one case series of 15 patients with
pituitary carcinoma reported that 66% of the patients died
within 1 year and 20% were alive at the last follow-up 9–18
months after diagnosis (28). A recent review showed that 34 of
62 patients (55%) died within approximately 10 months after the
diagnosis of pituitary carcinoma (31–33).

Silent Corticotroph Adenomas (SCAs)
SCAs are defined as ACTH-expressing pituitary tumors that lack
both the clinical symptoms of Cushing’s syndrome and evidence
of autonomous cortisol secretion, which is diagnosed with
nonfunctioning pituitary adenomas (34–36). The clinical
importance of differentiating SCAs from other nonfunctioning
pituitary adenomas is due to their aggressive nature (37). The
prevalence of SCAs ranges from 3% to 6% in all pituitary
adenomas and less than 40% in corticotroph adenomas (36–39).

Patients with SCAs are younger and predominantly females
and have a higher prevalence of giant adenomas and an
association with cavernous sinus invasion than other
nonfunctioning pituitary adenomas, such as silent gonadotroph
adenomas (SGA) and null cell adenomas (40, 41). In imaging
studies of nonfunctioning pituitary adenomas, cystic or
hemorrhagic changes on MRI T2WI are observed in SCAs
(42). Regardless of tumor size, multiple microcystic changes
are more frequently observed within SCAs and are highly
specific to SCAs. These multiple microcysts have been
correlated with pseudopapillary features of SCA pathological
findings (42). According to the WHO classification, SCAs are
classified into two subtypes: type 1 (densely granulated) and type
2 (sparsely granulated) (24, 34, 41). Type 1 SCAs show strong
ACTH immunoreactivity similar to typical ACTHomas, while
type 2 SCAs exhibit weak and focal expression (43). The lack of
galectin-3 expression in corticotroph adenomas can be
pathologically diagnostic of SCAs rather than functioning
corticotroph adenomas (44). In type 2 SCAs, the expression
levels of fibroblast growth factor receptor-4, matrix
metalloproteinase-1, and b1-integrin which associates with
tumor aggressiveness, are higher than that in type 1 SCAs (45),
suggesting different tumor pathologies, however it remains
unclear whether these two subtypes indeed influence
tumor behavior.

The underlying mechanism of the discrepancy between
elevated ACTH levels and normocortisolemia remains unclear
in these patients. Various hypotheses have been reported to date.
First, SCAs are driven from an intermediate lobe, which, in turn,
demonstrates a low ACTH secretory capacity (30, 46). However,
this concept was not established in a subsequent study (47). As a
second hypothesis, SCAs secrete predominantly unprocessed
high-molecular-weight ACTH (also known as big ACTH),
which causes competition with mature ACTH at the receptor
Frontiers in Endocrinology | www.frontiersin.org 3
binding level (48). Another mechanism was suggested to be an
increased intracellular degradation of ACTH, which resulted in
insufficient ACTH exocytosis from the cell membrane (49). As
the most widely accepted concept, the expression levels of
prohormone convertase (PC), which is a critical enzyme in
POMC posttranslational processes, determine the characteristic
difference between SCAs and Cushing’s disease. POMC is
cleaved by PC1/3 and PC2 into biologically active ACTH and
alpha-MSH, respectively (50). Several reports have demonstrated
that SCAs exhibit decreased protein expression levels of PC1/3
concomitant with PC1/3 mRNA downregulation compared to
typical corticotroph adenomas (35, 51).

In a certain portion of corticotroph adenomas, bidirectional
transformation of the tumor phenotype between SCA and
Cushing’s disease has been reported (52) in 3.9% of cases, with
a transformation period ranging from 1 to 7 years (52).
Interestingly, an altered expression level of PC1/3 has been
observed with the lapse of time in identical pituitary
adenomas. The clinical phenotype correlates with PC1/3
mRNA or protein levels in corticotroph adenomas (43),
suggesting that PC1/3 expression levels play an important role
in determining the characteristics of these tumor phenotypes.
MOLECULAR PATHOLOGY

Typical ACTHomas and
Their Aggressiveness
The most common genetic cause of ACTHomas is the somatic
ubiquitin-specific protease 8 (USP8) variant within the 14-3-3
binding motif, which accounts for approximately 20–60% of
these tumors (53, 54). The underlying mechanisms of USP8
variants are thought to be mediated by increasing the
deubiquitylation activity of this enzyme, leading to epidermal
growth factor receptor (EGFR) overexpression (53). EGFR
overexpression in corticotrophs has been proven to be a
pathogenesis of ACTHomas due to its enhanced proliferation
and ACTH hypersecretion (55, 56). In USP8 wild-type
ACTHomas, the p.Met415 variant within the catalytic domain
of USP48 has been identified (57). However, these genetic
variants are found in small tumors and are not associated with
tumor aggressiveness in ACTHomas. The BRAF p.V600E
variant, which is also found in other cancers, has been
identified in ACTH-secreting macroadenomas (57). However,
tumor behavior remains unclear due to its low frequency (58).

Next-generation sequencing of USP8 wild-type ACTHomas
has revealed TP53 pathogenic variants that are associated with
larger and invasive tumors including tumors from patients with
Nelson’s syndrome or pituitary carcinomas (58, 59). TP53
variants with wild-type USP8 are associated with chromosome
instability, aneuploidy, and tumor aggressiveness (60). Another
possible gene associated with tumor aggressiveness is CABLES1,
a major glucocorticoid-dependent cell cycle regulator in
corticotrophs (61). Recently, mutations in the ATRX gene,
which is one of the driver mutations in neuroendocrine tumors
and regulates chromatin remodeling and telomere maintenance,
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have been shown to be associated with aggressive pituitary
adenomas, especially in ACTHomas (62). ATRX gene
mutations are associated with a lack of ATRX expression in
tumor specimens. Loss of function somatic mutations have been
found in the CABLES1 gene in children or young adult patients
with aggressive corticotroph adenomas (63).

As germline mutations, MEN1, PRKAR1A, CDKN1B, and AIP
genes should be considered as a young age-onset genetic syndrome
phenotype (64). In aggressive pediatric Cushing’s syndrome, the
DICER1 gene has been reportedly identified to have a causal role in
ACTH-producing pituitary blastoma caused by DICER1 syndrome
(65–67) (Table 1). Since DICER1 is an enzyme required for the
cleavage of a precursor into mature microRNA, noncoding RNA,
including microRNA, are associated with the pathogenesis of
pituitary ACTH-producing tumors and their aggressiveness.

Crooke’s Cell Adenomas (CCAs)
The genetic causes of CCAs have not been elucidated. In
histopathologic findings, the Ki-67 score has limitations in
predicting tumor proliferation and aggressiveness (6, 19).
Rather than the Ki-67 labeling index, miR-106b–25 and its
host gene MCM7, a member of the minichromosome
maintenance complex (MCM) family of proteins, have been
shown to be novel markers that correlate with tumor
recurrence and progression in invasive ACTH-producing
pituitary adenomas, including CCAs (68, 69).

Nelson’s Syndrome
The underlying mechanisms of pituitary tumorigenesis and
autonomous ACTH secretion in Nelson’s syndrome are not
fully understood. Corticotropin-releasing hormone (CRH)
hyperactivity induced by rapid cortisol reduction is thought to
be one of the pathogenesis of its marked ACTH elevation and
aggressive tumor enlargement. These tumors were originally
derived from monoclonal cells (70, 71). Essential transcription
factors (e.g., Ptx1, Tpit, NeuroD, Nur77) in corticotroph cells
and POMC gene posttranscriptional processes are properly
conserved, which results in a mature POMC product (72–74).
Regarding the molecular function of corticotroph tumors,
Frontiers in Endocrinology | www.frontiersin.org 4
CRHR1 and AVPR1b receptors on the tumor exhibit good
responsiveness to their ligands (72–75). Intriguingly, loss of
heterozygosity of the glucocorticoid receptor (GR) gene has
been reported in patients with Nelson’s syndrome, while GR
expression of the corticotroph tumor in Nelson’s syndrome is
conserved, similar to that in Cushing’s disease (76, 77). In some
tumors in Nelson’s syndrome, TP53 loss of function has been
identified after radiation therapy (78). The primary management
mode (pituitary surgery and radiotherapy (RT) followed by
adrenalectomy) of Cushing’s disease before the diagnosis of
Nelson’s syndrome has been reported as the highest risk and a
predictor of tumor progression (79).

Pituitary Carcinomas
The pathogenesis of pituitary carcinomas is not fully understood
due to its low frequency. However, TP53 variants or ATRX variants
have been shown in some corticotroph pituitary carcinomas (59,
62). Lynch syndrome, which is caused by MSH2 gene mutation
complicated with pituitary carcinoma, has been reported as a case
report, showing an association between this tumor-prone syndrome
and pituitary tumors (80). However, further investigations need to
clarify the tumor transformation’s underlying mechanism to the
malignant behavior in pituitary adenomas.

Silent Corticotroph Adenomas
The transformation from functioning ACTHomas into SCAs is
very rare (3.9%) (52). From an autopsy pathological study of the
human pituitary gland, it has been suggested that SCA originates
from pars intermedia POMC-positive cells, while ACTHomas
originate from the anterior lobe (46). This hypothesis was
confirmed by an animal study using tamoxifen-inducible
Pax7CreERp/WT Rbflox/flox mice, which revealed that Rb loss in
the Pax7-expressing pituitary intermediate lobe results in cell
proliferation leading to tumorigenesis expressing POMC without
circulating ACTH elevation (81). Regarding the genetic cause of
SCAs, candidate genes have not yet been clarified, and the USP8
mutation commonly found in functioning and silent
corticotroph adenomas (30, 82). Immunohistochemical
analysis of SCA has demonstrated that lower expression of
some proteins implicated in tumor progression and metastasis,
such as galectin-3, a beta-galactoside-binding protein, and
KLK10, belonging to the kallikrein family, in SCA than
functioning ACTHomas may be one mechanism of its
aggressiveness (30). Lower expression of CDKN2A with
upregulated cyclin D1 in SCA than functioning ACTHomas
has been shown to be another reason for its aggressive behavior
(83). Recently, gene and protein expression comparison analysis
between SCAs and functioning ACTHomas has been performed
using both RNA-seq and mass spectrometry-based proteomics
technology, revealing the downregulation of the gene related to
protein processing in the endoplasmic reticulum (ER) pathway
and upregulation of PCSK1N, an inhibitor of PC1/3 coding
PCSK1 gene. These results suggest a reason for the lack of
active ACTH secretion from these tumors. Moreover, the
extracellular matrix (ECM) protein cluster is downregulated in
SCAs compared to functioning ACTHomas, suggesting that this
is associated with their invasive behavior (84).
TABLE 1 | Causative Genes in Cushing’s disease and its association with
aggressiveness.

Gene SIG Frequency Aggressive

USP8 Both S>G 20-60% in CD No
USP48 S 13.3% in CD No
MEN1 Both G>S 1% in genetic syndrome No
CDKN1B G Rare - 2.6% in pituitary adenomas No
PRKAR1A G Very Rare No
AIP Both G>S 5% of FIPA Possibly No

BRAF S Rare Possibly Yes

CABLES1 Both 2.2% in CD Yes
DICER1 G Very rare Yes
TP53 S 12.5% in CD Yes

ATRX S 28% in PC Yes
13% in APT
S, somatic variants; G, germline variants; CD, Cushing’s disease; PC, pituitary carcinomas;
APT, aggressive pituitary tumors.
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TREATMENT

Surgery is the first-line treatment to control tumor volume for
refractory corticotroph tumors, even though the postoperative
recurrence rate remains high (8, 85). Radiosurgery is an
important option for treating postoperative residual tumor or
recurrence and progression of tumors. Stereotactic radiosurgery
is especially superior to radiosurgery in terms of a lower
incidence of adverse events and earlier remission (86, 87). In
aggressive ACTHomas, medical therapy is required, followed by
surgery and radiosurgery in most cases . Although
hypercortisolemia can be controlled by adrenal or GR-targeted
drugs, the effect of targeted therapy on ACTHoma remains a
challenge. Medical treatment can be initiated immediately after
the diagnosis until hypercortisolemia is collected, including the
perioperative period.

Surgery
Surgical treatment remains the first-line treatment choice even
for aggressive ACTHomas by a skilled neurosurgeon with
extensive experience in pituitary surgery (88). Endoscopic or
microscopic TSS can be performed according to the
neurosurgeon’s preference (89). Preoperative medical treatment
to improve hypercortisolemia is recommended, mainly using
steroidogenesis inhibitors, including metyrapone, ketoconazole,
and osilodrostat with or without hydrocortisone replacement
(90–92). Since a higher rate of morbidity, including poorly
control led diabetes mel l i tus , hypokalemia , venous
thromboembolism, gastrointestinal hemorrhage, and
osteoporosis, has been complicated in patients with refractory
Cushing’s disease, several pharmaceutical treatments such as
insulin, mineral corticoid antagonists, anticoagulants, proton
pump inhibitors, and anti-osteoporotic agents are required
during the perioperative period (91, 93). In a recent systematic
review, the complete surgical remission and recurrence rates of
macro-tumors in primary surgery were 68% (95% confidence
interval [CI]; 60–76) and 30% (95% CI; 18–43), and those in
revision surgery are 49% (95% CI; 23–75) and 45% (95% CI; 0–
98), respectively (94). If the tumor extends into the suprasellar
region, a transcranial approach may be needed (88). In a
literature review of initial surgery for ACTHomas, a tumor
with Knosp grades 3–4 have been identified in 12–20% of all
tumors, and 12 of 36 patients (33.3%) have achieved the
remission criteria (95), indicating that further treatment option
is emergently required for these tumors. In Nelson’s syndrome,
pituitary surgery is the first-line treatment; however, the
complete remission rate depends on whether the pituitary
tumor extends to the extrasellar region, similar to an ordinal
pituitary tumor (96).

Radiotherapy (RT)
Stereotactic RT (SRT), including the Gamma Knife™ (GK),
Cyberknife™ , and proton-beam RT, has become the
mainstream rather than the conventional fractionated RT
(CRT) and could be a second treatment option for aggressive
Cushing’s disease if residual or recurrent tumors are visible on
MRI despite TSS (97). Because of the recent development of drug
Frontiers in Endocrinology | www.frontiersin.org 5
therapy, the choice of second-line therapy needs to be
individualized according to tumor progression speed by MRI,
pathological findings, and patient background. In a systematic
review from 2000 to 2017, the tumor was controlled in 95% of
cases (83.3–100%) with a median follow-up of 56 months (2–17
years). Hormonal control has achieved 54–68% in SRT with a
follow-up of 5–10 years, while the definition of biochemical
remission is not unified. However, the recurrence rate of RT is
20–32% with a median time of 25.5–37 months (range 6–60)
after an initial remission. Adverse radiation effects for patients
with Cushing’s disease including hypopituitarism [12.3–52%
(median 22.6%)], visual toxicity (0–39%), and cranial nerve
neuropathy (0–5.5%) have reported, while secondary brain
tumors have not occurred yet. The median time to hormonal
normalization is 12–25 months (98–102). In aggressive Cushing
tumors, the mean time of hormonal control may have taken a
longer period than that in those with nonaggressive ones (33.0 ±
5.0 vs. 23.5 ± 6.3 months) (101). In patients with CCAs, SRT has
shown to be as effective as ACTHomas without Crooke’s hyaline
changes (87).

Medical Therapy
There are three therapeutic targets for drug therapy in patients
with Cushing’s disease: pituitary directed therapies, adrenal
directed therapies, and cortisol-target tissues. In aggressive
Cushing’s disease, which is usually accompanied by remarkable
hypercortisolemia, adrenal gland-targeted steroidogenesis
inhibitors, including ketoconazole, metyrapone, and etomidate,
can be the first choice for acute phase intervention or
preoperative treatment. Further medical treatment might be
required in the chronic phase, or if there are residual tumors
that oversecrete ACTH after the operation of the tumors.
Pituitary gland-targeted drugs, such as second-generation
somatostatin receptor ligands (SRLs), pasireotide, cabergoline
is a dopamine receptor agonist, could be the next treatment
choice with or without steroidogenesis inhibitors.

Our manuscript mainly focused on pituitary gland-targeted
therapies including currently approved and further developing
drugs (Figure 1), besides described adrenal gland-targeted drugs
and peripheral GR blockers.

Somatostatin Receptor Ligands
First-generation SRLs, octreotide and/or lanreotide, which
mainly target SSTR2, are not effective in most ACTHomas
because of their low expression of membrane SSTR2.
Pasireotide, a second-generation SRL that targets SSTR1, 2, 3,
and 5 with the highest affinity for SSTR5, has been approved as a
promising drug for the treatment of ACTHomas (103, 104). In a
recent meta-analysis, pasireotide was shown to be effective in
normalizing cortisol in 41.1% (95% CI, 32.7–49.8) of
patients (105).

In ACTH-secreting macroadenomas, ACTH reduction and
tumor shrinkage have been reported by initial treatment of
pasireotide (106). Furthermore, the effectiveness of rapid
ACTH and cortisol suppression as preoperative treatment has
been shown in several ACTH-secreting macroadenoma cases
(107). Conversely, escape from ACTH reduction, or even a
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paradoxical rise of ACTH has been reported (108), indicating
further investigation to clarify the effect of this drug on
aggressive ACTHomas.

The effect of pasireotide on CCAs is still under debate and
requires further studies to clarify the efficacy of such challenging
aggressive tumors. In Nelson’s syndrome, a sufficient effect on
ACTH reduction and tumor shrinkage has been reported in a
case report of pasireotide (109). A multicenter trial of pasireotide
treatment for Nelson’s syndrome has been reported (110). In this
trial, patients were treated with subcutaneous (s.c.) pasireotide
twice daily for 1 month (n=8), followed by treatment with
monthly pasireotide LAR for 6 months (n=5). ACTH
reduction showed a complete response (CR) in five out of
eight patients and partial response (PR) in two out of eight
patients by s.c. pasireotide and further exhibited a CR in three
out of five patients and PR in one out of five patients treated with
pasireotide LAR. However, tumor shrinkage was not observed
with hyperglycemia in six patients.

SCAs also exhibit a higher expression of SSTR2 and SSTR5
compa r ed t o nu l l c e l l a d enoma s and SGAs by
immunohistochemical analysis (40, 111). SSTR3 is also
abundantly expressed in SCAs (40). Although the efficacy of
somatostatin analogs for SCAs has not yet been established,
pasireotide LAR (PASSILCORT; ClinicalTrial.gov identifier,
NCT02749227) is under a phase II randomized clinical trial for
residual or recurrent SCAs.

Dopamine Receptor Agonist
Since dopamine 2 receptor (D2R) is frequently expressed on
ACTHomas, the dopamine receptor agonist cabergoline has
shown to be an effective drug in approximately 20–30% of
patients with Cushing’s disease (112–114). In a recent
multicenter study, the efficacy of cabergoline in hormone
reduction did not differ between microadenomas and
macroadenomas (112). The effect of cabergoline on CCAs
Frontiers in Endocrinology | www.frontiersin.org 6
remains unclear (8). Although some case reports show that
Nelson’s syndrome has been successfully treated with
cabergoline (115, 116), the efficacy of cabergoline for such
aggressive tumors is limited (79). In SCAs, a case report
revealed that cabergoline has been shown to induce tumor
shrinkage in a patient with SCA, in which D2R expression has
been proved by in situ hybridization (117). However, SCAs have
been reported to exhibit lower D2R mRNA levels than ACTH-
negative nonfunctioning adenomas (118).

Temozolomide
Temozolomide is the drug with the most developed evidence for
the treatment of aggressive pituitary adenomas and pituitary
carcinomas. Although insurance is not covered in most
countries, temozolomide is a promising therapeutic choice for
refractory hormone-secreting and non-secreting pituitary
tumors, including Cushing’s disease.

This drug was initially used in the treatment of glioblastoma
multiforme (GBM) because of its significant clinical benefits. It is
an alkylating agent that methylates specific guanine residue,
leading to DNA damages by triggering tumor apoptosis.
However, the existence of O6-methylguanine-DNA
methyltransferase (MGMT), a DNA repair enzyme that can
remove the methyl from the O6-methylguanine, works in
contrast with temozolomide. Therefore, high MGMT
expression levels in GBM tumors are related to drug
resistance (119).

The first two cases of pituitary carcinomas were reported in
2006, who were successfully treated with temozolomide after
initial therapy including surgery, dopamine agonists,
somatostatin analogs, radiation, and chemotherapy (120).
Following this report, more than 150 cases with pituitary
carcinomas or aggressive pituitary adenomas have been treated
with temozolomide, demonstrating a 69% (33–86%) response
rate, which is defined as either a complete remission (CR), partial
FIGURE 1 | Targeted drugs to Cushing’s disease and their mechanistic scheme. TMZ, temozolomide; RTK, receptor of tyrosine kinase.
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response (PR), or stable disease (SD). Additionally, 42% (29–
69%) of significant tumor volume reduction has been shown to
be either a CR or PR (88).

The reduction in tumor size occurred within 1–6 months after
initiation of temozolomide therapy. Noting a report from a
European cohort, after 3 (6) cycles of temozolomide, 23%
(59%) achieved maximal radiological response, indicating that
approximately 40% of patients experienced maximal radiological
tumor response after 6 months (88, 121). Moreover, a German
survey also reported that 52% of corticotroph tumors showed
regression, 21% stability, and 26% progression at the end of
temozolomide treatment. After a median follow-up of the 32-
month radiological evaluation, disease stabilization in 37% and
progression in 63% of patients were observed (121). These results
are consistent with previous findings in Italy and France (122).

Although randomized prospective trials, or head-to-head
studies of temozolomide compared to placebo or other
treatment options, have not been performed yet, temozolomide
can be a potential recommended therapy of choice for aggressive
pituitary adenomas and pituitary carcinomas.

In aggressive pituitary tumors, Cushing’s disease is the most
common type, with 45% of adenomas and 47% of carcinomas
(88). Generally, functioning tumors, especially prolactinomas
and corticotroph adenomas, have been reported to have a
better response to temozolomide than nonfunctioning tumors.
The response rate of temozolomide in corticotroph tumors is
estimated to be 56%, compared to 44% in prolactinomas, 38% in
somatotroph tumors, and only 22% in nonfunctioning tumors
(89), indicating that aggressive corticotroph adenoma and
corticotroph carcinomas are good candidates for temozolomide
treatment. In fact, five cases of CCAs, which showed lower
MGMT expression than noninvasive ACTHomas, treated with
temozolomide, were shown to have a partial or complete
reduction of tumor size in all cases. Plasma ACTH levels in
these cases have also been suppressed, except for one case in
which laboratory data were not documented (123). In addition, a
German survey reported that ACTH decreased from 42 (9–794)
pmol/L at baseline to a minimum of 23 (10–276) pmol/L after a
median of 6 (3–10) months on temozolomide and then increased
to 182 (12–671) pmol/L at the end of temozolomide
treatment (122).

In children, temozolomide treatment for aggressive pituitary
adenoma and carcinoma is quite rare, which leads to insufficient
treatment data. In limited cases of DICER1 mutations with
ACTH-secreting pituitary tumors, the effect of temozolomide
has not been clearly shown (65, 124). Although there is no
established course of treatment because of the paucity of data, the
ESE guidelines suggest that temozolomide might be beneficial in
adults (88). The common adverse events observed were similar to
those observed in adults, including diarrhea, constipation,
nausea, thrombocytopenia, headaches, syncope, and
somnolence (36, 125–127).

In SCAs, temozolomide is considered a possible
chemotherapeutic agent because of its low expression of
MGMT (36, 126, 127). Several case reports of SCAs treated
with temozolomide have been reported. Ceccato et al. reported
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two SCA patients treated with temozolomide: one associated
with pasireotide treatment showed stable disease (SD) with 6%
volume reduction and the other showed partial response (PR)
with 49% volume reduction (128). A systematic review and
meta-analysis reported that the recurrence rate of SCAs with a
mean follow-up of <5 years or >5 years was 25% and 31%,
respectively, and there was no significant difference in the
recurrence rates between SCAs and other nonfunctioning
pituitary adenomas (129). However, it should be noted that
there are many unresolved points because of the rarity of SCAs.

When pituitary tumors show metastatic spread or are
refractory to multiple treatments, temozolomide could be the
last resort and salvage therapy. However, some recent studies
have suggested that early use of temozolomide in these patients
could result in a better outcome (88, 121). In this regard, high-
grade tumors on MRI, such as invasiveness and increasing tumor
size, and pathological findings, including high MIB1-labeling
index, could be a sign of temozolomide initiation after surgery
under RT (130, 131). However, patients administered with
temozolomide in the early stage are relatively rare. Further
clinical investigations are needed to determine whether early
administration of temozolomide in patients with aggressive or
metastatic pituitary tumors is associated with better outcomes.

Tumors resistant to TMZ chemotherapy have been shown in
a certain number of refractory pituitary tumors (130). Thus, a
predictive marker for resistance to temozolomide needs to be
identified. As shown in GBM, low MGMT expression, a
beneficial predictor of the response to temozolomide in
glioblastoma (119), has been mostly associated with a positive
response to temozolomide in pituitary tumors. However, some
discrepancies, such as a high MGMT with a lack of response and
no response despite low MGMT expression, have also been
reported in pituitary tumors (88). Furthermore, no statistical
association between MGMT expression levels and resistance to
temozolomide has been shown (121, 122), indicating the
limitation of MGMT as a predictive marker in these tumors.
In addition to MGMT, several DNA mismatch repair (MMR)
pathway proteins have been proposed, including MLH1, MSH2,
MSH6, and PMS2, which recognize adducts including O6-
methylguanin and remove them, leading to cell death (132).
Therefore, the expression levels of MMR proteins may be critical
to the cytotoxic effects of temozolomide (88). In fact, MSH6
immunopositivity has been associated with responsiveness to
temozolomide in malignant pituitary neoplasms (133). Further
analysis of the relationship between MMR pathway protein
expression levels and temozolomide responsiveness is required
(132). Overall, the expression of DNA repair proteins, including
MGMT, may be associated with resistance to temozolomide
treatment but is still controversial.

Chemotherapy
There are no established chemotherapy protocols for pituitary
carc inomas . Mono- or combinat ion therapy using
chemotherapy, including capecitabine, carboplatin, etoposide,
c i sp la t in , doxorub ic in , 5 -fluorourac i l , t amox i f en ,
cyclophosphamide, lomustine, procarbazine, vincristine,
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oxaliplatin, dacarbazine, methotrexate, bleomycin, and
cyclohexyl-chloroethyl-nitrosourea, has been used for several
pituitary carcinoma cases, with some PR (20, 134–136).

Immune Therapy
As a successful immunotherapeutic strategy, immune checkpoint
inhibitors (ICIs) for several cancers, has recently been developed.
These targets include cytotoxic T lymphocyte antigen 4 (CTLA-4)
and programmed cell death protein 1 (PD-1), located in T cells, and
ligand for PD-1 (PD-L1), located in tumor cells. Ipilimumab, the
first developed ICIs targeting CTLA-4; nivolumab, pembrolizumab,
and cemiplimab targeting PD-1; and atezolizumab, avelumab, and
durvalumab targeting PD-L1, have been approved and applied for
the treatment of several cancers. For pituitary tumors, the first case
treated with ICIs has been reported to have ACTH-secreting
pituitary carcinoma exhibiting liver metastasis (137). In this
patient, initial treatment, including TSSs, fractionated RT and
pasireotide, and cabergoline, was performed followed by TMZ
and a combination of TMZ and capecitabine. Since the tumor
volume and hormonal hypersecretion were not controlled despite
these treatments, the combination of ipilimumab (3 mg/kg every 3
weeks) and nivolumab (1 mg/kg every 3 weeks) was initiated,
leading to regression of both sellar tumors and metastatic liver
tumors (59% and 92%, respectively) with a 90% reduction in ACTH
levels. In this report, genetic analysis of primary and metastatic
tumors revealed several pathogenic somatic gene hypermutations
possibly induced by medical therapy such as TMZ, which can be
neoantigens for the targets of ICIs. Following this report, successful
treatment of a second corticotroph carcinoma case derived from
Nelson’s syndrome, with a combination of ipilimumab (3 mg/kg)
and pembrolizumab (1 mg/kg) every 3 weeks, leading to stable
disease, has been reported (138). Immunotherapy could be the next
possible therapeutic candidate for aggressive ACTHomas.

Possible Targeted Therapy
Drug repositioning from several targeted therapies for cancers,
including neuroendocrine tumors to aggressive pituitary tumors,
has been investigated using receptors for tyrosine kinases,
including EGFR, human epidermal growth factor receptor 2
(HER2), vascular endothelial growth factor receptor (VEGFR),
intracellular signal transduction pathway proteins such as the
mammalian target of rapamycin (mTOR), BRAF, and nuclear
proteins such as cyclin-dependent kinase (CDK) (136, 139).

In ACTHomas, EGFR has been shown to be a tumorigenic
factor, especially in USP8 variants (53, 56, 140). Although
ACTHomas with USP8 mutations have been shown to be
small and nonaggressive, EGFR overexpression in ACTHomas
has been reported to be associated with aggressive ACTHomas
via the activated MAPK pathway (141). Since EGFR can induce
experimental corticotroph tumor proliferation both in vitro and
in vivo, its tyrosine kinase inhibitor (TKI) gefitinib has been
shown to reduce serum corticosterone levels with shrinking
pituitary tumors of corticotroph-specific EGFR overexpressing
mice, an animal model of Cushing’s disease (55, 56). EGFR TKI
erlotinib and dual EGFR and HER2 TKI lapatinib have been used
to treat aggressive pituitary tumors as a third-line treatment,
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revealing poor outcomes (142). Recently, lapatinib treatment for
aggressive PRLomas has been reported to have a partial effect on
tumor shrinkage and hormonal reduction (143). Further
investigation of EGFR targets is required for aggressive
corticotroph tumors.

VEGF inhibitors, including TKIs for VEGFR2, and
monoclonal neutralizing antibodies against VEGF-A have been
used for several vascular-rich cancers, including neuroendocrine
neoplasms. The rationale of these drugs is to suppress
angiogenesis, leading to the suppression of tumor growth and
induction of shrinkage. Bevacizumab, a humanized monoclonal
antibody for VEGF-A, has been used to treat SCA, leading to
stable disease for at least 26 months (144). Eight years of PFS
with RT, TMZ, and bevacizumab has been reported (145). Five
more cases of ACTHoma treated with bevacizumab have been
reported, showing some effectiveness (146) since VEGF can also
modulate the tumor microenvironment, their inhibition can act
as an antitumor immunity (147).

In pituitary adenomas, mTOR expression has been shown to
be higher than those in a normal pituitary gland and is elevated
in invasive tumors (148, 149), suggesting a potential therapeutic
target of mTOR for aggressive ACTHomas. Everolimus, an
mTOR inhibitor, has been approved for several cancer
treatments, including neuroendocrine neoplasms (150).
Everolimus has been reported as an effective therapy for STK11
mutated refractory ACTHoma with clinical improvement and
stable disease for at least 6 months (151). In contrast, one case of
corticotroph carcinoma was treated with everolimus with
octreotide, exhibiting resistance in both tumoral growth and
hormone secretion. According to the microarray investigation,
regulatory associated protein of mTOR (RAPTOR) mRNA
expression was low, suggesting the cause of everolimus
resistance in corticotroph carcinoma (152).

In ACTHomas with BRAF, V600E mutation, a rare variant,
has been shown to be a good candidate for the treatment with the
BRAF inhibitor vemurafenib (57).

From the Cushing’s disease model of corticotroph-specific
pituitary tumor transforming gene (PTTG) transgenic zebrafish,
drug screening has been performed, identifying that the CDK2/
cyclin E inhibitor, R-roscovitine, could be a potential drug for
human ACTHomas (153, 154).

Adrenal Gland-Targeted Drugs
Steroidogenesis Inhibitors
Adrenal steroidogenesis inhibitors block cortisol synthesis by
inhibiting various enzymes in steroidogenesis pathway while
they have no evidence in corticotroph tumor shrinkage.

Ketoconazole is known as an anti-fungal biotics, which can
inhibit cholesterol side-chain cleavage enzyme such as 17a-
hydroxylase and 17, 20-lyase and 11b-hydroxylase (155).
Ketoconazole which has numerous evidence in treating
hypercortisolemia due to Cushing’s syndrome, exhibited high
remission rate from 45 to 93% (91). Liver enzyme elevation is
one of the most common side effects, which was observed in
13.5% of patients. As other adverse events, gastrointestinal
disturbances and male hypogonadism should be considered (91).
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Mitotane is currently approved for treating adrenocortical
carcinoma, also widely used for Cushing’s syndrome, by
inhibiting not only steroidogenesis but also inducing cell death of
adrenocortical cells. According to a recent meta-analysis, mitotane
exhibited high remission rate in treating Cushing’s syndrome (105),
While dyslipidemia, gastrointestinal disturbances and neurological
disorders are frequently observed adverse events, mitotane-induced
adrenal insufficiency requires special caution, which demand more
glucocorticoid dose than physiological setting.

Metyrapone is widely used as a steroidogenesis inhibitor for
Cushing’s syndrome even though it has been still in off-label use in
US. Metyrapone inhibits 11b-hydroxylase and converting from
11-deoxycortisol to cortisol, results in reducing cortisol level.
Metyrapone showed a revised estimated average remission rate
of 75.9% (105) The frequently reported adverse events were
hirsutism in women, dizziness, arthralgias, gastrointestinal
disturbances, adrenal insufficiency, hypokalemia and peripheral
edema (156).

Novel Steroidogenesis Inhibitors
Levoketoconazole
Levoketoconazole which is an enantiomer of ketoconazole, was
developed for achievement of better efficacy and safety.
Levoketoconazole inhibits 21-hydroxylase, 17 alpha-hydroxylase,
and 11 beta-hydroxylase steroidogenesis enzymes, resulted in
exhibiting higher potency than ketoconazole (157). In phase 3
clinical trial, treated 81% patients with levoketoconazole achieved
normalization of UFC level. While most of adverse events such as
nausea and headache were acceptable, 13% of patients was obliged to
discontinue the drug due to serious adverse events such as abnormal
liver functio, prolonged QT interval, and adrenal insufficiency (158).

Osilodrostat
Osilodrostat is novel 11 beta-hydroxylase inhibitor that blocks
the conversion from deoxycortisol to cortisol, which has similar
action mechanism with metyrapone. Osilodrostat exhibited 3-
fold higher affinity to 11 beta-hydroxylase and longer half-life
than metyrapone. In please II clinical trial, osilodrostat treatment
reduced UFC in 78.9% of patients at week 22 (159). Adverse
events were very similar with those of other steroidogenesis
inhibitors, including nausea, diarrhea, asthenia, adrenal
insufficiency, and hirsutism in female (160).
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Glucocorticoid Receptor-Directed Drugs
Mifepristone is officially approved non-selective GR antagonist
for treating Cushing’s syndrome. The data from a multicenter,
open-label, prospective clinical trial showed the improvement of
clinical features associated with hypercortisolemia, psychiatric
symptoms and glucose intolerance (161). On the other hand,
specific inhibition of GR action causes hyperaldosteronism-like
phenotype due to cortisol binding to MR, such as hypertension
and hypokalemia. Apart from that, various adverse events also
have been reported as follows: nausea, fatigue, and endometrial
thickening in women (162).
CONCLUSIONS

In this review article, we introduced several aggressive types of
ACTHomas, including CCAs, Nelson’s syndrome, and SCAs.
The pathogenesis and treatment of these tumors have been
introduced. Although numbers of genetic variants and
mutations are implicated in ACTHomas, their mechanistic link
to the aggressiveness and, more importantly, to therapeutical
targeting are yet to be established. Future targeted drugs and
immunotherapy are shown with their potential evidence. Further
analysis and investigation are urgently required for this clinically
serious disease.
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