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Abstract

We study historical correlations and lead-lag relationships between individual stock risk (volatility of daily stock returns) and
market risk (volatility of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-
correlation functions averaged over all stocks, using 71 stock prices from the Standard & Poor’s 500 index for 1994–2013. We
focus on the behavior of the cross-correlations at the times of financial crises with significant jumps of market volatility. The
observed historical dynamics showed that the dependence between the risks was almost linear during the US stock market
downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged
cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We
develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated
response functions suggest the presence of characteristic regimes near financial crashes, when the volatility of an individual
stock follows the market volatility and vice versa.
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Introduction

A financial market is a complex system demonstrating diverse

phenomena and attracting attention from a whole spectrum of

disciplines ranging from social to natural science [1]. Better

understanding of the behavior of financial markets has become an

integral part of the discussion on further sustainable economic

development. In this context, proper assessment of financial risks

[2] plays a crucial role: Underestimated risks contribute to

financial bubbles with eventual crashes while overestimation of

risks might cause inefficiency of financial resource allocations and

a slowdown in economic growth, giving rise to periods of

stagnation. This multifaceted problem, lying at the core of finance,

draws significant interest from the physical and mathematical

communities [3,4]. One of the key components of financial risk

analysis is a volatility assessment, which quantifies the financial

stability of an asset in question. To this end, a number of methods

have been proposed for risk modeling [5–8] and forecasting [9],

along with numerous studies of various empirical properties of

volatility, including such stylized facts as clustering [10–12], lead-

lag effects [13], asymmetries [14,15] and many others (for a review

see Refs. [16,17]). Related phenomena, being a result of collective

behavior, also involve such aspects as estimation of correlation

[18–20] and cross-correlation [21–24] matrices, study of their

dynamics [25,26], asymmetric correlations [27], nonlinear corre-

lations [28–30] and detrending [31,32], financial networks and

clustering [33–42], multivariate stochastic models [43,44], critical

phenomena [45,46], etc.

In the current paper, we focus on lead-lag effects between

individual and collective volatility behavior in the US stock

market, which might be further discussed in the context of the

systemic regulation problem [47]. Former studies reported an

increase of correlations across financial markets in recent times

[25] along with overall market disposition to systemic collapses

[48]. Our investigation thus has an aim to shed additional light on

the dynamics of systemic risk in the last decade. For this purpose,

we analyze historical prices of 71 stocks (Table 1) from the

Standard & Poor’s 500 index [49] (hereafter S&P 500) for 1994–

2013. Although we employ one of the simplest volatility

estimators—the simple moving average (SMA) standard deviation

of daily logarithmic returns—it is conjectured to correctly describe

asset risk dynamics on long time scales, on the order of months and

years [50]. We harness cross-correlation analysis which is a basic

tool in the analysis of multiple time series. By definition, the

absolute value of the normalized cross-correlation function lies

between 0 and 1, indicating the strength of a linear relationship

between time series, given that one is shifted by a particular lag

value. It is crucial to note that our approach is based on a study of

cross-correlations between derived quantities from the stock

returns (standard deviations) rather than the analysis of cross-

correlation matrices of the returns per se, implicitly involving

calculation of cross-correlations between correlations: Since
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portfolio return is the sum of stock returns, its variance is the sum

of all elements of the covariance matrix, C, [Eq. (3)], which can be

factorized into the product of a correlation matrix, R, and a

diagonal matrix of standard deviations, Cdiag, with elements

C
diag
ii ~

ffiffiffiffiffiffi
Cii

p
and C

diag
i=j ~0 : C~CdiagRCdiag. These more sophis-

ticated quantities will hopefully allow us to capture a more

systematic evolution of the market risk as a function of time.

Indeed, it was previously shown that market volatility and

correlation are tightly related across international financial

markets [51]. However, our calculations show that the cross-

correlation function averaged over all stocks (see equations below)

not only often has the maximum value close to 1 but also possesses

an asymmetric shape with respect to zero lag (Fig. 1). These

features suggest the presence of long-term trends, when equilib-

rium on the market is not reached within one trading day and

overall market risk tends to follow individual stock risks [Fig. 1(a)]

or vice versa [Fig. 1(b)]. Lately, emergence of intraday trends has

been reported for stock returns [52] and correlations [53], while

our investigation develops similar ideas for stock volatilities.

Generally, it is not possible to determine causality from an

arbitrary shape of the cross-correlation function. However, if the

cross-correlation function is asymmetric with respect to the time

Table 1. List of the companies which stock prices are used for the calculations in the paper.

Ticker Name Sector Ticker Name Sector

ABT Abbott Laboratories Hea AIG American International Group, Inc. Fin

AMGN Amgen Inc. Hea APA Apache Corp. Bas

APC Anadarko Petroleum Corp. Bas AAPL Apple Inc. Con

AXP American Express Company Fin BA The Boeing Company Ind

BAC Bank of America Corp. Fin BAX Baxter International Inc. Hea

BMY Bristol-Myers Squibb Company Hea C Citigroup, Inc. Fin

CAT Caterpillar Inc. Ind CELG Celgene Corporation Hea

CL Colgate-Palmolive Co. Con CMCSA Comcast Corporation Ser

COP ConocoPhillips Bas COST Costco Wholesale Corp. Ser

CSCO Cisco Systems, Inc. Tec CVS CVS Caremark Corp. Ser

CVX Chevron Corp. Bas DD E. I. du Pont de Nemours and Co. Bas

DE Deere & Company Ind DELL Dell Inc. Tec

DHR Danaher Corp. Ind DIS The Walt Disney Company Ser

DOW The Dow Chemical Company Bas EMC EMC Corporation Tec

EMR Emerson Electric Co. Tec EOG EOG Resources, Inc. Bas

EXC Exelon Corp. Uti F Ford Motor Co. Con

GE General Electric Company Ind HAL Halliburton Company Bas

HD The Home Depot, Inc. Ser HON Honeywell International Inc. Ind

HPQ Hewlett-Packard Company Tec IBM International Business Machines Corp. Tec

INTC Intel Corp. Tec JNJ Johnson & Johnson Hea

JPM JPMorgan Chase & Co. Fin KO The Coca-Cola Company Con

LLY Eli Lilly and Company Hea LOW Lowe’s Companies Inc. Ser

MCD McDonald’s Corp. Ser MDT Medtronic, Inc. Hea

MMM 3M Company Cng MO Altria Group Inc. Con

MRK Merck & Co. Inc. Hea MSFT Microsoft Corp. Tec

NKE Nike, Inc. Con ORCL Oracle Corporation Tec

OXY Occidental Petroleum Corp. Bas PEP Pepsico, Inc. Con

PFE Pfizer Inc. Hea PG The Procter & Gamble Company Con

PNC The PNC Financial Services Group Fin SLB Schlumberger Limited Bas

SO Southern Company Uti T AT&T, Inc. Tec

TGT Target Corp. Ser TJX The TJX Companies, Inc. Ser

TXN Texas Instruments Inc. Tec UNH UnitedHealth Group Incorporated Hea

UNP Union Pacific Corp. Ser USB U.S. Bancorp Fin

UTX United Technologies Corp. Ind VZ Verizon Communications Inc. Tec

WFC Wells Fargo & Company Fin WMT Wal-Mart Stores Inc. Ser

XOM Exxon Mobil Corp. Bas

Sectors are defined as basic materials (Bas), conglomerate (Cng), consumer goods (Con), financial (Fin), healthcare (Hea), industrial goods (Ind), services (Ser), technology
(Tec) and utilities (Uti).
doi:10.1371/journal.pone.0105874.t001
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reversal operation (change of a sign of the time lag), it might hint at

the presence of causal relationships [54]. Although determining

true causality is rather a philosophical matter, we use this term in

the predictive sense, i.e. if the past values of one time series can be

used to predict the present or future values of the other. In this

regard, one of the most widely used approaches is the Granger

causality test [55]. Following this method, one builds autoregres-

sive models for the time series including and excluding factors in

question and checks if the difference between models is statistically

significant. However, in the current investigation, we propose to

use an alternative approach utilizing a specific class of asymmetric

cross-correlation functions studied in linear response theory [56],

which provides a framework for describing input-output properties

of a physical system. Within this approach, causality implies the

absence of any response before an action (as long as there are no

long-term memory effects), that results in zero values of the cross-

correlation function for a particular lag direction—positive or

negative—depending on the input-output roles of the variables.

Figure 1. Cross-correlation function �rr(t) between stock and market volatility (blue solid line) averaged over N~71 stocks for two
different dates (Jun 15, 2011 and Sep 9, 2011) near the European sovereign debt crisis. The cross-correlations possess asymmetry with
respect to zero lag (t~0): (a) changes in individual stock risks on average precede changes in the market risk with lag of 14 days; (b) individual stock
risks on average are prone to follow the market risk. Stock and market volatilities are calculated using an SMA with the window T~30 days. The
cross-correlations between them are calculated using an SMA with the window M~250 days. Highlighted ranges with a blue background around
zero lag (+30 days) are further used for the calculation of the susceptibilities depicted in Fig. 4. Grey solid line corresponds to �rr(t) when the
underlying stock returns are randomly shuffled. The corresponding 95% confidence intervals for the mean correlations are denoted with dotted lines.
doi:10.1371/journal.pone.0105874.g001

Figure 2. Historical dynamics of the US stock market volatility sm. It is represented by the SMA standard deviation of returns of the portfolio
consisting of 71 US stocks (Table 1), calculated using windows of T~30 (green line), 90 (blue line) and 180 (red line) days. The distance between two
labeled dates is 500 trading days. Market crashes correspond to abrupt jumps of the volatility. Use of the bigger values of T leads to smoothing of
small crashes, while the biggest ones are still clearly seen. Main financial crises are highlighted with a light green background: (1) Asian and Russian
crisis of 1997–1998, (2) dot-com bubble, (3) US stock market downturn of 2002, (4) US housing bubble, (5) bankruptcy of Lehman Brothers followed
by the global financial crisis, (6) European sovereign debt crisis.
doi:10.1371/journal.pone.0105874.g002
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The simplest example can be given by a force acting on a mass.

The mass cannot move before the interaction and thus the

correlation between the force and displacement is zero before the

time when the force is applied. Although we do not expect to

observe such a trivial behavior in real financial markets,

asymmetries in the empirical functions (Fig. 1) can be interpreted

as an approximation to this ideal model, where the mass and force

are represented by individual stock and collective market volatility

or vice versa, depending on the observed regime. Making use of

this approximation, we restrict ourselves to the qualitative analysis

with aim to reveal historical patterns only.

Methods

Estimating the stock and market risks
Let us first introduce notations used throughout the paper. We

consider N discrete time series of daily closing stock prices Si(t),
i~1, . . . ,N which are converted to log-returns

si(t)~ln½Si(t)=Si(t{1)�, assuming continuous compound interest.

Within the SMA approach, one can calculate a moving average

for a particular discrete time moment t using equally weighted

values of T previous days including the current one

Ssi(t)T :~
1

T

Xt

t’~t{Tz1

si(t’): ð1Þ

In this case, a cross-covariance of two time series might be

defined as

s½si,sj �(t,t) :~Ssi(tzt)sj(t)T{Ssi(tzt)TSsj(t)T, ð2Þ

where t is a time lag. Series variance is a self-covariance at t~0,

s2½si�(t):s½si,si�(t,0), where s denotes the standard deviation or

volatility in finance. This quantity can be used as the simplest risk

measure: Stocks with higher values of s have less stable returns

and, consequently, are less attractive for investment, other things

being equal.

A stock market comprises all stocks available for trade. Although

in the current investigation we consider a limited subset of stocks,

it is chosen to represent the top US companies with the largest

market capitalization. For such a portfolio, consisting of equal

shares of N stocks, total return, m(t), equals to the sum of the

separate stock returns, m(t)~
PN

i~1 si(t). Its variance, in addition

to Eq. (2), can be also expressed as the sum of all elements of the

covariance matrix C(t), an N|N matrix with elements

Cij(t)~s½si,sj �(t,0),

s2½m�(t)~
XN

i~1

XN

j~1

Cij(t): ð3Þ

The square root of this value, sm:s½m�, can be also used as a

portfolio risk measure, which characterizes overall market risk in

the case of large N (Fig. 2). In the remainder of the paper, we will

focus on finding historical dependences and lead-lag relationships

between individual stock risks, si:s½si�, and market risk, sm,

using the formalism presented in the following subsection.

Figure 3. Examples of the cross-correlation functions r between two time series x and y (left column); their Fourier transforms x
(right column). (a) Impulse response function corresponding to the fundamental solution of Eq. (5); (b) impulse response function of the same
equation with the variables x and y being interchanged. A symmetric shape of r results in the zero imaginary part of x (c), while its small shift (d)
results in the qualitatively similar behavior of the imaginary part as for the impulse response. The Fourier transform of the cross-correlation function
which decays to zero with different speed for negative and positive lag values (e) also demonstrates the similar features.
doi:10.1371/journal.pone.0105874.g003

Figure 4. Susceptibilities �xx for the averaged cross-correlation functions depicted in Fig. 1. The peaks of the imaginary parts hint at the
causal relationships between the individual and collective risks: (a) individual stock risks on average tend to influence overall market risk; (b) market
risk tends to influence risks of separate stocks. The susceptibilities are calculated using the discrete Fourier transform for the range of +30 days
around zero lag (61 days in total) which is highlighted with a blue background in Fig. 1.
doi:10.1371/journal.pone.0105874.g004
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Causality analysis
One of the possible ways to estimate dependence between two

time series x(t) and y(t) is to calculate the cross-correlation

function

r½x,y�(t,t)~
s½x,y�(t,t)

s½x�(tzt)s½y�(t) , ð4Þ

which is normalized and ranges from 21 to 1. Its peak value shows

the strength of a linear relationship between x and y (with zero

value corresponding to its absence) when the first series is shifted

by the time lag t. In this section, we assume this peak value to be

positive since the opposite case can be easily recovered via

multiplication of x or y by 21: Noting that

s½{x,y�~s½x,{y�~{s½x,y� and s½{x�~s½x�, one immediate-

ly gets r½{x,y�~r½x,{y�~{r½x,y�. If the dependence between

series is nonlinear, more sophisticated statistical concepts should

be used instead, for instance, cross-entropy [28], copula [29] or the

Spearman’s rank correlation [30]. However, we are aimed to

employ the linear Pearson’s coefficient [Eq. (4)] in the present

study. Given two series are correlated, it is not possible to establish

causal relationships between the variables by this fact itself.

However, the particular shapes of the cross-correlation functions

studied within linear response theory can provide an insight into

this problem.

This theory provides a convenient framework for the study of

related dynamical properties of a physical system. Within this

approach, the cross-correlation function defines the system’s

response to an external action, obeying laws of motion. In this

context, causality implies the absence of any deterministic response

before an action, i.e. the expected value of the cross-correlation

function is zero for a particular lag direction (tw0 or tv0) defined

by the input-output roles of x and y. For example, the response

function of the first-order ordinary differential equation

a _xxzbx~y, ð5Þ

where a and b are some constants and y is the delta function

(impulse force), is depicted in Fig. 3(a). Here, y can be uniquely

identified as an external action because r½x,y� is non-zero only for

tw0, the time direction corresponding to the future values of x
and the past values of y [see Eq. (2)]. This asymmetry of the

response is also graphically reflected in its Fourier transform (we

use its discrete analogue with a unitary norm for the analysis)

known as susceptibility

x(v) :~

ð?
{?

r½x,y�(t)e{ivtdt, ð6Þ

which is a complex-valued function of angular frequency v. Its

real (reactive) part, Rex, being an even function of v, is defined by

the response strength. While the imaginary (dissipative) part, Imx,

is an odd function of v defined by the asymmetric part of r. It is

worth noting that any function r(t) can be written as the sum of

an even function reven({t)~reven(t) and an odd function

rodd({t)~{rodd(t). In this case, Rex is the Fourier transform

of reven while Imx is the Fourier transform of rodd. Regarding the

action-reaction roles of x and y in Eq. 5, Imx has a negative peak

for vw0 [Fig. 3(a)] and a positive peak if the variables are

interchanged [Fig. 3(b)]. Additionally, Rex and Imx should satisfy

the Kramers-Kronig relations, which is a mathematical condition

of a complex function to be analytic and hence the underlying

physical system to be stable [57].

The empirical cross-correlation functions (Fig. 1), which char-

acteristic shapes are schematically depicted in Figs. 3(c)–(e), differ

from the ones studied in linear response theory [Figs. 3(a)–(b)].

Despite this fact, the corresponding susceptibilities display the

similar features of the real and imaginary parts (Fig. 4). Thus, we

consider them as a coarse approximation to the theoretical linear

response functions and utilize the peak of Imx(vw0) as an

indicator of possible causal dependence. If the cross-correlation

function is completely symmetric with respect to the time reversal

operation [Fig. 3(c)], t?{t, no causal relation between x and y
can be established within the linear response formalism given the

cross-correlation function alone: This fact implies that the

interchange of the input-output roles of the underlying variables

produces exactly the same observable behavior of the system as a

whole. However, when the maximum value of r is slightly shifted

[Fig. 3(d)] or the function decays faster for the one lag direction

than for the other [Fig. 3(e)] one might expect that the change of y
tends to cause the reaction of x because of the enhanced response

for the future values of x. In doing so, reversal of the observed

input-output roles corresponds to the change of the sign of the

imaginary part while the real part remains unaffected.

Figure 5. Histograms of correlation coefficients (top) and their Fisher transforms (bottom) observed on Jun 15, 2011 for lags
t~{14 (a) and 80 (b) days, and randomly shuffled returns (c). Stock and market volatilities are calculated using an SMA with the window
T~30 days. The correlations between them are calculated using an SMA with the window M~250 days. The red curves denote fitted normal
distribution. In the case of large correlations, the Fisher transform makes the highly skewed distribution approximately Gaussian (a).
doi:10.1371/journal.pone.0105874.g005
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Finally, fitting of a particular susceptibility model to the

empirical data allows one to determine the differential equation

which governs the observed behavior of the system. However, the

behavior of a real financial market is usually highly nonlinear,

possessing long-term memory effects [58,59] and fractal structure

[60,61], that is obviously beyond the scope of the discussed

method. One of the possible ways to extend the presented

approach might be the application of nonlinear response theory

Figure 6. Average cross-correlation functions and corresponding susceptibilities calculated using different SMA window sizes for
volatility (T ) and cross-correlations (M ): Jun 15, 2011 (a), (d); Sep 9, 2011 (b), (e); randomly shuffled returns (c), (f). The susceptibilities
are calculated using the discrete Fourier transform for the range of +30 days around zero lag (61 days in total) which is highlighted with a blue
background. Bigger values of T=M increase spurious correlations (c) due to smoothing effects.
doi:10.1371/journal.pone.0105874.g006

Figure 7. Historical dynamics of the (top-bottom) market volatility sm, maximum value of the average cross-correlation �rrmax, peak
value of the real and imaginary parts of the average susceptibility �xx(vw0). The historical dynamics is calculated for the different SMA
windows: T~30, M~250,500,1000 (a) and M~250, T~30,90,180 (b) days. Filled areas under the �rrmax panel mark the periods where it is not
significantly bigger than 0.5. The distance between two labeled dates is 500 trading days and the highlighted periods correspond to the major
financial crises described in Fig. 2.
doi:10.1371/journal.pone.0105874.g007
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[62] although this case is not considered in our paper. We restrict

ourselves to the basic linear qualitative analysis which only hints at

the direction of influence between the variables in question.

Results

We are now in position to determine causal relations between

the individual stock and total market risk, applying the formalism

from the previous section. With this aim, we analyze N~71
historical stock prices [63] of the largest US companies in terms of

market capitalization, members of the S&P 500 (Table 1). The

historical period considered is between 1994 and 2013, roughly

corresponding to 4600 trading days. Being interested in the

average market dynamics, we consider a mean value of r½si,sm�.
However, there is a problem of averaging correlation coefficients

since their distribution is highly skewed when the value of �rr is close

to 1 [top panel in Fig. 5(a)], what makes them nonadditive

quantities. In this regard, a number of methods has been proposed

to tackle this issue [64,65]. The simplest one is the Fisher

transform [66]

z rf g~ 1

2
ln

1zr

1{r

� �
:~ tanh{1 rð Þ,

z{1 rf g~tanh rð Þ,
ð7Þ

which makes the distribution of correlation coefficients approxi-

mately normal [bottom panel in Fig. 5(a)]. In this case, the average

correlation might be estimated as

�rr½fsig,sm�(t,t)~z{1 1

N

XN

i~1

z r½si,sm�(t,t)f g
( )

ð8Þ

with a confidence interval (CI)

z{1 z �rrf g+ ztableffiffiffiffiffiffiffiffiffiffiffiffi
N{3
p

� �
, ð9Þ

where ztable~1:96 corresponding to the 95% confidence level is

further used. When �rr is small, the distribution is not skewed and

the Fisher transform does not affect it (z rf g&r for small r)

[Fig. 5(b),(c)]. This average function is subsequently Fourier

transformed to obtain the average susceptibility, �xx, using the

discrete analogue of Eq. 6 with a unitary norm for the interval

t[½{tmax,tmax�. It is also worth noting that the use of an SMA for

the calculation of volatilities (si and sm) imposes smoothing on the

corresponding time series. Thus, a bigger window of size MwT
for the calculation of r in Eq. (4) should be used to avoid spurious

correlations [Fig. 6(c),(f)]. Additionally, Fig. 5(c) suggests that the

averaging over a big number of stocks effectively reduces related

undesirable effects.

The task at hand requires the series in question to be correlated.

For this purpose, we calculate the maximum value of the

correlation between the market risk and individual stock risk,

�rrmax, within the considered range of lag +tmax. The historical

dynamics of this maximum value (second panel in Fig. 7) suggests

that it becomes significantly bigger than 0.5 near major financial

crashes, while in other times the series seem to be weakly

correlated. In this respect, one can highlight the US market

downturn of 2002 and approximately the 5-year period from the

US housing bubble in 2007 until 2013, when almost the linear

relationship was observed. For such highly correlated risks, it is

feasible to perform causal analysis within the linear response

approximation.

As was mentioned before, typical shapes of �rr and �xx are depicted

in Fig. 1 and Fig. 4 respectively. For instance, causality analysis of

these two dates near European sovereign debt crisis reveals that on

Jun 15, 2011 [Fig. 1(a)] the maximum value of the cross-

correlation function is shifted left with respect to zero lag, which

is reflected as a negative peak of the imaginary part of the

susceptibility for positive frequencies [Fig. 4(a)]. Following the

discussion from the previous section, this feature corresponds to

the leading influence of individual stock risks on the total market

risk. While the opposite situation is observed on Sep 9, 2011

[Fig. 1(b) and Fig. 4(a)]. The historical analysis of the average

susceptibility dynamics (two bottom panels in Fig. 7) for the

periods with high value of �rrmax reveals two peculiarities. The first

one is related to the fact that individual stock risks follow market

risk after big crashes. This feature can be viewed as a consequence

of herding behavior, when stock risks are trying to reach new

equilibrium with overall market risk as a benchmark. This fact is

also in agreement with the studies on asymmetric phenomena

[14,15,27], which have shown an increase of volatility and

correlations in a bear market. The second peculiarity can be

observed, for example, before the Lehman Brothers collapse in

2008 and the European sovereign debt crisis in 2012, when

individual stock risks on average start to influence market risk

shortly before a crash, while at the crash the direction of influence

is reversed. Finally, Fig. 8 shows that this behavior is observed for

different window sizes T and M, however, use of bigger values of

M smooths described effects.

Discussion

We have studied average lead-lag relationships between

individual stock and collective market risk in the US stock market

using cross-correlation analysis. Our calculations have shown that

stock and market volatility are tightly correlated during the periods

of financial instability. Furthermore, the correlation functions

often possess asymmetries with respect to zero lag, which is a

potential sign of a causal dependence between the risks within the

linear response approximation. Having analyzed historical data for

1994–2013, we have found similar patterns near the last major

crashes. Firstly, after a financial crash individual stock risks tend to

follow collective market behavior. Secondly, the opposite influ-

ence, when stock risks on average start to influence market risk, is

observed before particular crashes, for instance, the Lehman

Brothers collapse in 2008 or the European sovereign debt crisis in

2012. Eventual market adjustment after the crash leads to the

restoration of a symmetric shape of the average cross-correlation

function and decrease of its maximum value. This is also reflected

in the Fourier transform of the cross-correlation known as

susceptibility. For this complex function, reversal of the causal

dependence corresponds to the change of the sign of its imaginary

part, while the real part remains unaffected, and the absence of the

dependence results in zero value of the imaginary part. We suggest

that the observed patterns might be interpreted as a manifestation

Figure 8. Part of Fig. 7 enlarged for the historical period of the high correlation between individual and systemic risk for different
SMA window sizes used for calculation of the volatilities T (a), cross-correlations M (b) and the range of the Fourier transform tmax

used for calculation of the average susceptibility (c).
doi:10.1371/journal.pone.0105874.g008
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of herding behavior, when economic performance of separate

companies systematically does not meet expectations of investors,

creating the panic across the market. Wherein after the crash,

financial risks of separate companies adapt to a new reality with

overall market performance as a psychological benchmark.
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