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A B S T R A C T   

The structural size of space exploration and unmanned aerial vehicle manipulator is required to 
be as small as possible, and the weight must be as light as possible. However, the existing reducers 
have difficulties in achieving lightweight robot joint drive systems. For it, this paper proposes a 
single tooth difference continuous sine tooth profile K–H–V type planetary reducer in which pin 
type equi-speed output mechanism is used. Concerning the reducer, its structural composition and 
meshing characteristics are analyzed. Based on the findings, the meshing pair’s force, the friction 
coefficient, and the meshing efficiency are investigated. The force and bearing efficiency of the 
planetary gear are studied, and the efficiency of the equi-speed output mechanism in addition to 
the total efficiency of the reducer are determined. Moreover, the efficiency of the reducer pro
totype is measured and compared to the calculated efficiencies. The results show that the gear 
modulus, the input speed, the surface roughness, and the lubricating oil viscosity have a signif
icant effect on the meshing efficiency. Furthermore, the efficiency of the eccentric bearings is 
significantly lower than that of the non-eccentric bearings. Therefore, it can be increased by 
tuning the pressure angle, the tooth number of planetary gear, the tooth height, and the distri
bution circle radius of the pinhole. In addition, the power loss of the output mechanism has the 
greatest effect on transmission efficiency. Reducing the center distance, the inner diameter of the 
rotating arm bearing, and the tooth number of planetary gear, as well as increasing the outer 
diameter of the pin shaft can reduce the power loss of the output mechanism. The experimental 
efficiency of the reducer prototype is 82.47%, its computational efficiency is 83.72%, and its error 
is 1.25%, verifying the correctness of the efficiency calculation method.   

1. Introduction 

Due to the characteristics of launch, flight, and polar environment work, the structural size of space exploration and unmanned 
aerial vehicles (UAV) manipulator is required to be as small as possible, and the weight must be as light as possible [1–4]. The 
University of Illinois in the United States designed a small quad-rotor prototype with a light mechanical arm having two 
Degrees-Of-Freedom (2-DOF) and carried out its motion control experiments in a two-dimensional plane [5]. Moreover, the University 
of Sevilla in Spain designed an aerial work robot system, based on UAV, having two 3-DOF robotic arms, and conducted experiments on 
target detection, attitude estimation, and object grasping during flight [6]. In addition, the Shenyang Institute of Automation, Chinese 
Academy of Sciences, developed an aerial operation robot with a 5-DOF manipulator and conducted an outdoor flight test [7]. As for 
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the Shenzhen Research Institute of Harbin Institute of Technology in China, they studied an 8-rotor aircraft with a 4-DOF manipulator 
and conducted motion planning experiments based on visual servo [8]. Finally, the state key laboratory of mechanical systems and 
vibration of Shanghai Jiaotong University in China developed a 6-DOF aerial operation robot, carried out wind turbine blade coating 
repair experiments, and demonstrated its potential to complete complex aerial operations [9]. 

Currently, aerial robots are mainly developing through the combination of flight platforms and multi-degree-of-freedom robotic 
arms, making, therefore, the robot posture more flexible and expanding the range of operation space. However, the operational 
capability of the aerial robots is limited by the load and mass they can carry. Due to the large proportion of robotic arm mass, its further 
lightweight becomes the key to ensuring and improving the operational capability of such aerial robots [10–13]. 

The University of Toulouse in France used carbon fiber to make lightweight robotic arms, which reduced the mass of the robotic 
arm while ensuring greater stiffness [14]. The University of Sevilla in Spain developed a 4-DOF lightweight flight humanoid robotic 
arm with dual arms using an aluminum alloy frame structure [15]. Moreover, the Robotics Research Center of Ritsumeikan University 
in Japan designed a lightweight three-arm flying robot, with each robotic arm having 2-DOF and the arm body made of thin aluminum 
tubes [16]. In addition, a dual-arm flying robot was jointly developed by Nanyang Polytechnic University in Singapore and the 
University of Texas in the United States. Each robotic arm had 6-DOF, was made of carbon fiber composite material, and was designed 
with a gravity center balance mechanism, yielding to an effective reduction of the mass and inertia of the robotic arm [17]. 
Furthermore, the Royal Airlines Air Robotics Laboratory conducted lightweight design and developed joint drive systems for flight 
robotic arms using servo actuators with integrated motors, transmissions, and electronic control components produced by Herkulex or 
Dynamixel Company [18–22]. 

In summary, the lightweight research of flight robotic arms includes the use of lightweight material for the robotic arm as well as 
structural lightweight and joint drive system lightweight. In more detail, the lightweight of the joint drive system is mainly achieved by 
using servo actuators as they have a small size and are lightweight; however, the motion control accuracy and their load-bearing 
capacity are still low. To improve both factors of the joint drive system of flight robotic arms, the drive scheme of the electric mo
tors, as well as the precision reducers, is considered important development directions [23]. 

The robot joint drive mainly uses harmonic gear reducers, RV reducers, and planetary gear reducers. The single-stage reduction 
ratio of the planetary gear reducers is small, requiring multi-step reduction. As a result, the volume and weight of the reducer increase; 
thus, it is generally used for the joint drive of large robotic arms, such as extravehicular robotic arms of the space station. As for the RV 
reducers, they have high stiffness and rotational accuracy. However, their structural composition is relatively complex, making it 
difficult to achieve miniaturization; moreover, it is applied to heavy load situations, such as mounts, arms, and shoulders of the 
general-size robot [24–26]. Finally, Harmonic reducers have the advantages of a large transmission ratio, small size, and lightweight, 
and they are mainly used for small arms, wrists, or hands of general-size robots. 

At present, robotic arms mainly use small harmonic reducers to achieve lightweight joint drive [27–29]. Under load, the flexible 
wheel of the small-sized harmonic reducer undergoes significant elastic deformation, decreasing the load-bearing capacity and 
affecting the positioning accuracy and the dynamic characteristics of the robot’s end. Thus, the existing reducers still have difficulties 
in achieving lightweight robot joint drive systems, which has become a technical bottleneck that restricts the development of further 
lightweight robotic arms. 

For it, various actuators based on functional materials have been developed, including memory alloy actuators [30,31], piezo
electric actuators [32,33], and dielectric elastomer actuators [34], greatly simplifying the driver structure and reducing the driver size. 
However, this type of driver has relatively small driving capacity and is mainly used in micro robots and micro electromechanical 
systems. 

Therefore, the paper proposes a continuous sine tooth profile reducer. Using the zero-position line of the sine curve as the gear pitch 
line, one cycle of the curve as the pitch of the sine gear, and the amplitude a of the sine curve as the tooth height of the gear. 

The tooth profile of the sine gear reducer is continuous, and the tooth width rapidly decreases from the root to the top of the tooth. 
It is not easy to interfere when meshing within one tooth difference, making it suitable for single tooth difference planetary gear 
transmission. This sine profile gear pairs has a relatively small sliding coefficient, low meshing friction loss, and high transmission 
efficiency. When the gears engage with each other, the entire process is engaged with convex and concave teeth, with low contact 
stress, and high load-bearing capacity per unit volume. Due to its easy implementation of a single tooth difference structure and large 
transmission ratio, it is very suitable for lightweight applications in robotic arm drive systems. 

Compared to harmonic reducers, the reducers have several advantages such as the large load-bearing capacity, large transmission 
ratio, the high transmission efficiency, the simple and compact structure, the low meshing impact, and the high stiffness. This makes 
the reducers avoid decrease of the load-bearing capacity and the rotation accuracy under load. As transmission efficiency is an 
important factor for evaluating the performance of reducers, this article mainly studies the various power losses and transmission 
efficiency of this new type of reducer. 

In this paper, the single tooth difference continuous sine tooth profile planetary reducer’s structural makeup and meshing features 
are examined. Based on this, the meshing pair’s force, the friction coefficient, and the meshing efficiency are studied. Meanwhile, the 
force and the bearing efficiency of the planetary gear are investigated, and the efficiency of the equi-speed output mechanism plus the 
total efficiency of the reducer are determined. The efficiency of the reducer prototype is measured and compared to the calculated 
efficiencies, verifying the correctness of the efficiency calculation method. 

The paper includes six parts: (1) structure and meshing characteristic equation of the new reducer; (2) meshing force and meshing 
efficiency of sine gear pairs; (3) forces and bearing efficiency on planetary gears; (4) other power losses and overall efficiency of the 
reducer; (5) results and discussion; (6) conclusion. 
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2. Structure and meshing characteristics 

The continuous sine one tooth difference planetary gear reducer consists mainly of a pair of internal and external sine tooth profile 
gears with one tooth difference and an equi-speed output mechanism (see Fig. 1), mainly composed of the following three parts:  

(1) Input part: it contains rolling bearings on the input shaft and its eccentric shaft supports the planetary gear;  
(2) Transmission part: it consists of a central wheel and a planetary wheel. The planetary gear is installed on the rolling bearing on 

an eccentric shaft and meshed with the sinusoidal tooth profile of the central wheel;  
(3) Equi-speed output part: it includes evenly distributed pin holes on the planetary gears, the pin shafts, the pin sleeves, the discs, 

and the cross-roller bearings. The pin shafts are fixed on the disc, and the pin sleeve can rotate on the pin shafts. 

When the sinusoidal one-tooth difference reducer operates, the motor is connected to the input shaft, and the eccentric shaft section 
of the input shaft drives the planetary gear to rotate and engages with the central wheel. Moreover, when the eccentric axis rotates, the 
planetary gear rotates around the eccentric axis while rotating itself. The planetary gear moves one tooth distance relative to the center 
wheel while it rotates one circle. Thus, a power with a large reduction ratio is obtained and it is delivered by the cross roller bearing of 
the equi-speed output part. 

Using the zero-position line of the sine curve as the gear pitch line, one cycle of the curve as the pitch of the sine gear, and the 
amplitude a of the sine curve as the tooth height of the gear. In the Cartesian coordinate system, the equation of any point on the sine 
tooth profile is expressed as follows [35]: 

{ x1 =

(

a cos(z1φ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r1
2 − a2 sin2(z1φ)

√ )

sin φ

y1 =

(

a cos(z1φ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r1
2 − a2 sin2(z1φ)

√ )

cos φ
(1)  

where a is the tooth height coefficient, z1 represents the tooth number of the planet gear, φ indicates the position coordinate of any 
point on the sine tooth profile, and r1 is the radius of the pitch circle of the planet gear. 

According to the meshing principle and under the condition of internal meshing, in the Cartesian coordinate system, the equation of 
the tooth profile curve of the internal gear 2 meshing with gear 1 is expressed as follows [35]: 

{
x2 = x1 cos(φ1-φ2)-y1 sin(φ1-φ2) + a0 sin φ2
y2 = x1 sin(φ1-φ2) + y1 cos(φ1-φ2) + a0 cos φ2

(2)  

where a0 is the center distance, φ1 is the rotating angle of the planet gear, φ2 is the rotating angle of the center ring; moreover, φ2 = φ1/ 
i, i = z2/z1, that is the speed ratio of the fixed shaft transmission between the two gears. In addition, z2 is the tooth number of the central 
ring. 

According to the principle of gear meshing, the tooth profile, presented in Eq. (1), is substituted into the meshing equation to obtain 
the relative velocity vector as follows [36]: 

v→12 = [ω2(y1 + a0 cos φ1) − ω1y1] i→1 + [ω1x1 − ω2(a0 sin φ1 + x1)] j→1 (3)  

where ω1 and ω2 are the angular speeds of the planetary gear and the center ring, respectively. 
From Eq. (3), the relative velocity components in the directions x and y could be given by: 
{

vx
12 = ω2(y1 + a0 cos φ1) − ω1y1

vy
12 = ω1x1 − ω2(a0 sin φ1 + x1)

(4) 

Fig. 1. Sinusoidal one tooth difference planet reducer.  
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According to the definition of the entrainment speed that is equal to the average value of the speed of a pair of gears, the 
entrainment speed vector U12 of the central wheel and planetary gear can be obtained as follows [36]: 

U12
̅→

=
1
2

[

(ω1x1 +ω2(x1 + a0 sin φ1)) j→1 − (ω1y1 +ω2(y1 + a0 cos φ1)) i→1

]

(5) 

Moreover, the curvature is defined as the rate of rotation of the tangent direction of a point on the curve relative to the arc length. 
According to differential geometry, the equation modelling the curve curvature is [36]: 

K=
x′y″-x″y′

(x′2 + y′2)
3
2

(6)  

where x′ and y′ are the first derivative of the sine tooth profile position x and y versus the tooth profile angle φ, respectively. 
Furthermore, x″ and y″ represent the second derivatives of the sine tooth profile position x and y versus the tooth profile angle φ, 
respectively. 

Therefore, substituting Eq. (1) into (6) generates the curvature K1 of the sinusoidal tooth profile 1. Its mathematical equation is as 
follows: 

K1 = −
A B + a b2 z1

2 D

A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B C − b2 (2 a2 − r1
2) + 3 a2 b2 D2 + a4 E2 (z1

2 − 1)
(
D2 − E2

)
+ a2 b2 z1

2E2
√ (7)  

where A = (zk
2 − 1) a2 sin ( zkφ2)

2
+ b2, B =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r12 − a2 sin (z1φ)2
√

, D = cos(z1φ), E = sin( z1φ), and C =

2 a r1
2 cos( z1φ) − 2 a3 cos( z1φ)sin2( z1φ)+ 2 a3 z1

2 cos( z1φ)sin2( z1φ). 
Similarly, by substituting Eq. (2) into (6), the curvature K2 of the conjugate tooth profile can also be obtained. 
The pressure angle is the key parameter to evaluate the transmission performance of the reducer. This gear angle is the acute angle 

between the speed v and the force F (see Fig. 2) where o1 and o2 are the centers of gears 1 and 2, respectively. 
Assume that the slope of the straight line along the velocity v direction is kv, the slope of the straight line along the normal force F 

direction is kn, the pressure angle αk1 of the meshing point is expressed as follows (see Fig. 2): 

αk1 = atan
⃒
⃒
⃒
⃒

kn − kv

1 + knkv

⃒
⃒
⃒
⃒ (8) 

Moreover, the meshing point K represents any point on the tooth profile c1 of gear 1. The coordinates of K in the coordinate system 
Σ1(x1, o1, y1) are (xk1,yk1). Thus, the slope of the straight line kv along the velocity v direction is as follows: 

kv = −
xk1

yk1
(9) 

Furthermore, the slope of the straight line along the normal force F direction is as follows: 

Fig. 2. Pressure angles of the internal meshing sine gear pair.  
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kn = −
dxk1

dyk1
(10) 

Substituting Eqs. (8) and (9) into (10), the slope of the straight line along the normal force F direction can be determined. 
In addition, the coordinates of the point K in the coordinate system Σ2(x2, o2, y2) are (xk2,yk2). Thus, 

rk1 = a cos(z1φ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
1 − a2 sin(z1φ)

√

(11)  

rk2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
k2 + y2

k2

√

(12) 

Considering ζ the angle between lines o1K and o2K, then: 

ζ= a cos
[(

r2
k1 + r2

k2 − a2
0

) /
2rk1rk2

]
(13) 

Referring to Fig. 2, the pressure angle αk2 of gear 2 at meshing point K is determined as follows: 

αk2 = αk1 − ζ (14) 

Substituting Eqs. (11)–(13) into (14), the pressure angle αk2 can be determined. 

3. Forces on meshing pair and meshing efficiency 

Fig. 3 presents a force model of a sine tooth profile gear where Fni is the normal force applied to any tooth. Thus, the normal force W, 
per unit length, can be calculated as follows: 

W =
Fni

L
(15)  

where L represents the length of the contact line. 
According to the torque balance conditions of the multi-tooth meshing, one can write: 

T2 =Σ zs
i=1Fni cos αiri (16)  

where T2 is the load torque, zs presents the tooth number in mesh, αi indicates the pressure angle of the tooth i, and ri is the distance 
between the meshing point of the tooth i and the circle center. 

According to the deformation coordination conditions, the equation to calculate the force on any pair of teeth is defined as follows: 

Fni =F0 cos αi (17)  

where F0 is the maximum common divisor of forces applied to the teeth under multi-tooth meshing. 

Fig. 3. Forces on the sine gear tooth.  
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Substituting Eq. (17) into (16) yields in the following: 

F0 =
T2

Σ zs i=1cos2αiri
(18) 

Moreover, by substituting Eq. (18) into (17), the normal force Fni can be obtained: 

Fni =
T2 cos αi

Σ zs i=1cos2αiri
(19) 

Finally, by substituting Eq. (19) into (15), the normal force W, per unit length, when the central wheel and the planetary gear mesh 
can be obtained as follows: 

W =
T2 cos α

LΣ zs i=1cos2αiri
(20) 

When both gears mesh each other, due to the speeds at the contact point of the two gears that are different, the relative sliding 
between these gears occurs which causes the relative sliding friction loss between the tooth surfaces. The equation modelling the 
sliding friction power loss of meshing pair of the sine gear reducer is expressed as follows: 

Ps = fs ·Fni · v12 × 10− 3 (21)  

where Ps is the sliding friction power loss, fs represents the sliding friction coefficient, and v12 indicates the relative sliding speed at the 
meshing point of the two gears. 

Gear meshing friction power loss includes rolling friction and sliding friction power loss. Studies show that the rolling friction 
power loss is much smaller than sliding friction power loss. Due to space limitations, only the sliding friction power loss is considered 
here. 

Currently, there have been many theoretical and experimental studies regarding the friction coefficient of the gear tooth surfaces. 
The commonly used friction coefficient calculation methods have certain limitations in practical uses. Therefore, this paper compares 
two friction coefficient calculation models and selects a model suitable for the sine gear meshing.  

(1) Benedict & Kelley model 

The friction coefficient can be calculated as follows [37]: 

fs = 0.0127 lg
⃒
⃒
⃒
⃒
29.66 × 109W

η0vU2

⃒
⃒
⃒
⃒ (22)  

where η0 is the dynamic viscosity of the lubricating oil, here the normal force W per unit length can be calculated by Eq. (20).  

(2) EHL model 

The friction coefficient can be calculated as follows [38]: 

fs = ef(SR,Ph ,η0 ,Savg)Pb2
h |SR|b3Ub7ηb7

0 Rb8 (23)  

where f(SR,Ph, η0, SRa ) can be obtained from the below equation: 

f (SR,Ph, η0, SRa )= b1 + b4|SR|Ph log10(η0)+ b5e− |SR|ph log10(η0) + b9eRa (24)  

where Ph is the contact stress (expressed in Hertz), Ph =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Fni
πL ·

1
ρ1
− 1

ρ2
1− μ2

1
E1

+
1− μ2

2
E2

√

=

̅̅̅̅̅̅̅̅
W ·E
2πR

√

, and E is the equivalent elastic modulus of the two gears; 

moreover, SR is the slip roll ratio of the two contact tooth surfaces and it is expressed as follows: SR = v12/U12 (v12 and U12 can be 
calculated by Eqs. (4) and (5)). As for Ra, it represents the surface roughness factor, R is the equivalent curvature radius in meshing 
point of the two gears, it equal to reciprocal of comprehensive curvature (see Eq. (7)), e indicates the exponential function, and, finally, 
b1,b2, …,b9 are the coefficients (refer to Table 1). Eqs. (4), (19) and (22) or (23) plus (24) are substituted into (21), the sliding friction 
power loss of meshing pair of the sine gear reducer can be determined. 

Based on the above analysis of the frictional power loss of the meshing pair of sine gear reducers, the meshing efficiency η of the sine 
gear reducer can be determined as follows: 

Table 1 
bi parameter values for friction coefficient calculation.  

bi b1 b2 b3 b4 b5 b6 b7 b8 b9 

values 8.916 1.033 1.036 − 0.354 2.812 − 0.101 0.752 − 0.391 0.620  
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η=P − Ps

P
× 100% (25)  

where P represents the input power. 
Substituting Eq. (21) into (25), the meshing efficiency η of the sine gear reducer can be determined. 

4. Forces on the planet gear and bearing efficiency 

In the sine gear reducer, the forces applied to the planet gear are shown in Fig. 4. Here, Fn is the normal force applied from the 
center ring, Qi is the force from the pin i (i = 1, 2,.., n, n being the pin number), and FR1 is the force from rolling bearing on the eccentric 
shaft. Thus, the total force FR1 from the pins can be given as follows: 

∑
Qi =

(
∑n

i=1
Qi

)

m

=
4T2

πRω
(26)  

where Rω is the radius of the pinhole center circle. 
Referring to Fig. 4, the force FR1 from the rolling bearing can be calculated as follows: 

FR1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
ti +

[
Fri +

(∑
Qi

)

m

]2
√

(27) 

Moreover, the total force FR1 can be expressed as the product of a coefficient δ and the force F3. Here, F3 is the force from the rolling 
bearing when the eccentric is absent. Thus, 

FR1 = δ ·F3 (28)  

where F3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
ri + F2

ti

√

= Fni and δ is called the load proportion coefficient of the bearing on the eccentric shaft. 
From Eqs. (27) and (28), it could be known: 

δ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
ti +

[
Fri + (

∑
Qi)m

]2
√

Fni
(29) 

Substituting Eqs. (26) and (27) into (29) yields in: 

δ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

8 sin αiψ
∑z

i=1
cos2αi

π cos αi
+

16ψ2
∑z

i=1
cos4αi

π2 cos2αi

√
√
√
√
√

(30)  

where 

Fig. 4. Forces applied to the planet gear.  
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ψ =
ri

Rω
=

r1

Rω

⎡

⎣a
r1

cos(z1φ)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
a
r1

)2

sin2(z1φ)

√ ⎤

⎦ (31) 

Furthermore, the planetary gear is mounted on the eccentric shaft through a rolling bearing. During the transmission process, due 
to the eccentricity effect, the friction power loss increases compared to the ordinary bearings. The friction power loss of the rolling 
bearing on the eccentric shaft is equal to: 

Pb = 2πrpfn1 ·FR1 (32)  

where rp is the inner radius of the eccentric rotating rolling bearing, f is the friction coefficient of the rolling bearing, and n1 is the speed 
of the eccentric shaft. 

Thus, the bearing efficiency on the eccentric shaft is expressed as follows: 

ηr = 1 −
Pb

P
= 1 −

rpf ·FR1

T1
(33)  

where the input power P = 2πn1T1, T1 is the input torque, Pb is determined by Eq. (32). 
The friction power loss P1 of the rolling bearing on the non-eccentric shaft section is expressed as follows: 

P1 = 1.05 × 10− 4n1Mf (34)  

where Mf represents the friction torque of the rolling bearing on the non-eccentric shaft section. 
In addition, the bearing efficiency on the non-eccentric shaft section is equal to: 

η′
b =

P − P1

P
(35)  

where P1 is determined by Eq. (34). 
Based on Eqs. (33) and (35), the total rolling bearing efficiency of the reducer can be given by: 

ηb = ηr · η′
b (36)  

5. Other power loss and reducer efficiency 

In the equi-speed output mechanism, the sliding friction power loss occurs between the pins and pin sleeves. When the input 
eccentric shaft rotates one turn, the sliding curve length of the pin sleeve across the pin is equal to: 

Ls= 2π(2rx + 2a0)-2π(2rx)= 4πa0 (37)  

where rx is the radius of the pin. 
From Eq. (37), the relative sliding velocity between the pin and pin sleeve is represented as follows: 

vs =Lsn1/60 = πa0 n1/15 (38) 

From Eq. (38), the sliding friction power loss in the equi-speed output mechanism can be given by: 

PK =

(
∑n

i=1
Qi

)

m

fKvs =
πn1a0fK

15

(
∑n

i=1
Qi

)

m

(39)  

where fk represents the friction coefficient between the pin and its sleeve. 
From Eq. (39), the efficiency of the equi-speed output mechanism can be modelled as follows: 

ηK = 1 −
PK

2πn1T1
= 1 −

2fKa0i12

15πRω
(40) 

The power loss related to the load in the reducer includes the meshing power loss, the bearing power loss, and the power loss in the 
equi-speed output mechanism; the corresponding efficiency is expressed as follows: 

ηІ = η · ηb · ηK (41) 

Substituting Eqs. (25), (36) and (40) into (41), the efficiency related to the load can be determined. 
Other power losses, P0, include oil agitation and splashing loss, as well as seal friction loss, and it is not related to the load; it can be 

calculated using the below equation [39]. 

P0 = 10− 7a0(n1/60)
4
3

(

750
n1

)0.1

(γ50 + 90) (42) 
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where γ50 is the viscosity of lubricating oil. 
Thus, the transmission efficiency of the sinusoidal planetary reducer, having one tooth difference, can be calculated by: 

ηH =
ηІ(P − P0)

P
= ηІ

(

1 −
P0

P

)

(43) 

As for the input power, it is expressed as follows: 

P=
T2πn1

30i12ηH
(44) 

Substituting Eq. (44) into (43) yields in: 

ηH =
η1

1 + Kn
P0
T2

η1
(45)  

where Kn = 30i12/n1π and i12 is the speed ratio of the reducer (it is equal to i12 = z1/(z1-z2)). 
Substituting Eqs. (41) and (42) into (45), the transmission efficiency of the sinusoidal planetary reducer can be determined. 

6. Results and discussion 

6.1. Friction coefficient 

Using Eqs. (22) and (23), the friction coefficients, expressed as the function of the meshing position angles, are calculated (refer to 
Fig. 5a). The parameters of the example reducer are shown in Table 2. Other parameters are given in Table 3. Referring to Fig. 5a, one 
can identify the following:  

(1) the Benedict & Kelley model shows that the friction coefficients increase first with the meshing position angle, reach the 
maximum at the pitch point, and then decrease with the meshing position angle. The friction coefficient is the minimum at the 
top and root of the teeth;  

(2) the EHL model shows that the friction coefficients decrease first with the meshing position angle, gets to zero at the pitch point, 
and then increase with the meshing position angle. The friction coefficient value is the minimum at the pitch point; Substituting 
Eqs. (22) and (23) into (21), the friction power loss, considered as the function of the meshing position angles, are given (see 
Fig. 5b). Therefore, Fig. 5b shows:  

(1) the Benedict & Kelley model shows that the sliding friction power loss of the sine tooth profile reducer presents a parabolic 
shape, which first increases and then decreases, and the maximum sliding friction power loss occurs at the pitch point;  

(2) the EHL model shows that the sliding friction power loss of the sine tooth profile reducer increases first and then decreases with 
the meshing position angle. The sliding friction power loss is zero at the tooth root and the pitch point, and it is the maximum at 
a 1/4 position angle. Referring to the pitch point to the tooth top, the sliding friction power loss first increases and then de
creases with the meshing position angle again. The sliding friction power loss is zero at the tooth top, and it is the maximum at a 
3/4 position angle again. 

Fig. 5. Friction coefficient and friction power loss.  
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Moreover, the sliding friction coefficient, calculated by Benedict & Kelley model, has a sharp point at the pitch point. This is due to 
the relative sliding speed at the zero point where the calculated friction coefficient has a sudden change and tends to infinity, which is 
inconsistent with the real situation. 

However, the friction coefficient and friction power loss, calculated by the EHL model, are zero at the pitch point, which is 
consistent with the real situation; thus, the EHL model is used to calculate the friction coefficient and the sliding friction power loss in 
this paper. 

6.2. Meshing efficiency 

Using Eqs. (23)–(27), changes in the meshing efficiency with the related parameters are investigated (see Fig. 6). When one 
parameter is altered, the other parameters of the reducer are constant (see Tables 2 and 3). Therefore, Fig. 6 shows: 

(1) The meshing efficiency of the sine tooth reducer varies periodically with the meshing position angle, and the period is deter
mined by the number z1 of planetary gear teeth, as it is equal toπ/z1. This is determined by the periodicity of the friction co
efficient and the force acting on the meshing pair. As for the meshing efficiency of the sine tooth reducer, it has the highest value 
near the pitch point, the tooth root, and the tooth top, with a maximum value of 99.37% whereas it has the lowest value at the 
one-quarter and three-quarter tooth profile angles, with a minimum value of 96.58%. The average meshing efficiency is 
97.96%;  

(2) When the gear modulus m changes, without varying the period of change in the meshing efficiency concerning the meshing 
position angle, the meshing efficiency at the pitch point, the tooth root, and the tooth top remains unchanged. The meshing 
efficiency at other points increases with the modulus m. The meshing efficiency changes significantly with modulus m near one- 
quarter and three-quarters tooth profile angles. This is due to the increase of the module m that causes the relative sliding 
friction coefficient of the gear to decrease, resulting in the decrease of friction power loss (see Fig. 6a);  

(3) When the tooth height coefficient changes, the variation period of the meshing efficiency remains constant as well as the 
meshing efficiency at the pitch point, the tooth root, and the tooth top. The meshing efficiency of other points slightly decreases 
with the increase of tooth height coefficient a. This is mainly due to the increase of tooth height coefficient a that rises the 
relative sliding speed, which grows sliding friction coefficient and friction power loss (see Fig. 6b);  

(4) When the number of planetary gear teeth z1 changes, the meshing efficiency period changes as well. As the number of planetary 
gear teeth increases, the period decreases. Meanwhile, the meshing efficiency increases with the number of teeth. This is due to 
the increase of the number of planetary gear teeth z1, resulting in the reduction of the relative sliding speed, which reduces the 
sliding friction coefficient and the sliding friction power loss (see Fig. 6c);  

(5) When the input speed n1 changes, the variation period of meshing efficiency remains constant. Moreover, the meshing efficiency 
of each point decreases with the increase of the input speed n1. The reduction in the meshing efficiency at the tooth top, the pitch 
point, and the tooth root is not obvious. The reduction in the meshing efficiency is due to the increase of the input speed n1 that 
leads to the increase of the sliding friction power loss (see Fig. 6d);  

(6) When the surface roughness Ra changes, the meshing efficiency at the pitch point, the tooth root, and the tooth top also remain 
constant. The meshing efficiency of the other points decreases with the increase of surface roughness Ra. This is due to the 
increase of surface roughness Ra that leads to the increase of sliding friction coefficient and the increase of sliding friction power 
loss (see Fig. 6e);  

(7) When the lubricating oil dynamic viscosity η0 changes, the meshing efficiency at the pitch point, the tooth root, and the tooth 
top remains unchanged. The meshing efficiency of the other points decreases with the increase of the lubricating oil η0 dynamic 
viscosity. This is due to the dynamic viscosity increase causing the rise of the sliding friction coefficient and the sliding friction 
power loss (see Fig. 6f). 

To sum up, increasing the modulus m and the tooth number z1, or reducing the tooth height coefficient a, the surface roughness Ra, 
the input speed n1, and the lubricating oil dynamic viscosity η0 could increase the meshing efficiency of the sine tooth profile reducer. 
Among them, m, n1, Ra, and η0 have significant effects on the meshing efficiency, while a and z1 have a smaller impact on the meshing 
efficiency. 

Table 2 
Parameters of sine tooth profile reducer.  

i12 a/mm a0/mm z1 z2 m/mm L/mm E1/Pa E2/Pa μ1 μ2 

79 0.4 0.45 79 80 0.9 8 2.12 × 1011 2.12 × 1011 0.28 0.28  

Table 3 
Other parameters.  

n1/rpm T1/N⋅mm η0/MPa⋅s Ra/μm 

300 400 2 × 10− 8 0.4  
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6.3. Bearing efficiency 

Referring to Eqs. (30) and (31), the load proportion coefficient δ of the bearing on the eccentric shaft is related to the pressure angle 
α1, tooth number z1, and the ratios a/r1 and r1/Rω. Using both listed equations, the load proportion coefficient δ as the function of these 

Fig. 6. Changes in meshing efficiency with related parameters.  
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parameters is investigated (see Fig. 7). When one parameter changes, the other parameters of the reducer remain constant (refer to 
Tables 2 and 3). Moreover, the parameters of the bearings are shown in Table 4. As for the results, Fig. 7 shows the following: 

(1)When the pressure angle α1 of the sine gear changes from 10◦ to 70◦, the load proportion coefficient δ increases. When the 
pressure angle α1 is smaller than 50◦, the δ increases slowly with α1. However, when α1 is above 50◦, δ increases rapidly. When α1 is at 
10◦ and 50◦, the load proportion coefficient difference of the bearing is 1.62 times and when α 1 is at 50◦ and 70◦, the load proportion 
coefficient difference of the bearing is 1.58 times. Therefore, to reduce δ, α1 of the sine gear should have a small value (see Fig. 7a);  

(2) When the planet tooth number z1 of the sine reducer changes from 39 to 79 (here, α1 = 20◦), the load proportion coefficient δ 
increases. This means that a smaller value of z1 could cause a decrease in δ (see Fig. 7b);  

(3) When the ratio a/r1 changes from 0.01 to 0.04 (α1 = 20◦, constant), the load proportion coefficient δ increases with the ratio a/ 
r1. So, decreasing the ratio a/r1 could reduce the value of δ. Therefore, when the radius r1 of the planet gear is given, decreasing 
the tooth height coefficient a could decrease the load proportion coefficient δ (see Fig. 7c).  

(4) When the ratio r1/Rω changes from 1.2 to 1.6 (also α1 = 20◦), the load proportion coefficient δ increases. So, decreasing the ratio 
r1/Rω could reduce the value of δ. When the radius r1 of the planet gear is given, increasing the radius Rω of the pinhole circle 
would decrease δ (see Fig. 7d). 

To sum up, reducing the pressure angle α1, the tooth number z1, and the ratios a/r1 and r1/Rω could decrease the load proportion 
coefficient δ. Among them, α1 has the greatest effect on the value of δ. 

Using Eq. (36), the efficiency of the eccentric bearing of the reducer is calculated (refer to Fig. 8). When one parameter changes, the 
other parameters of the reducer are constant (see Tables 2 and 3). Moreover, the parameters of the bearings are shown in Table 4. 
Referring to Fig. 8, one can conclude the following: 

Fig. 7. Changes of load proportion coefficient δ of the bearing with parameters.  
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(1) The efficiency ηr of the eccentric bearing decreases with increasing the pressure angle α1. It is because the load proportion 
coefficient δ of the bearing increases with α1. It should be noted that the normal force F3 decreases while α1 increases for 
pressure angles above 50◦. This may yield in the decrease of the efficiency ηr with the pressure angle as it becomes slower and 
the efficiency ηr begins to increase with the pressure angle when this latter is above 65◦(see Fig. 8a);  

(2) Although the load proportion coefficient of the eccentric bearing increases with the tooth number z1 of the planetary gear, the 
efficiency ηr increase as well with z1. It is due to the normal force F3 that decreases when z1 increases. In this case, the normal 
force F3 has a greater effect on the efficiency ηr of the eccentric bearing than the load proportion coefficient δ (see Fig. 8b);  

(3) The efficiency ηr decreases while the ratio a/r1 or r1/Rω increases. It is because the load proportion coefficient δ of the eccentric 
bearing increases with the ratio a/r1 or r1/Rω. When the radius r1 of the planet gear is constant, decreasing the tooth height 
coefficient a or increasing the radius Rω of the pinhole circle could decrease the value of δ to increase the efficiency ηr (see Fig. 8c 
and d). 

To sum up, to increase the efficiency ηr of the eccentric bearing, the pressure angle α1 and the ratio a/r1 or r1/Rω should have small 
values whereas the tooth number z1 of the planet should have a large value. Here, the pressure angle α1 is the most effective control 
parameter of the efficiency ηr of the eccentric bearing. 

Referring to Eq. (36), the total bearing efficiency of the reducer is investigated (see Fig. 9). In this case, ηb1 is the bearing efficiency 

Table 4 
Parameters of bearings.  

Rω/mm rp/mm rx/mm f fk 

26.2 10 6 0.001 0.03  

Fig. 8. Changes of efficiency ηr of the bearing on an eccentric shaft with parameters.  
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without eccentricity (here, a = 0.4 mm, z1 = 79, r1 = 35.55 mm, and Rω = 26.2 mm), and ηb2 is the bearing efficiency with eccentricity 
(where a = 0.5 mm, z1 = 39, r1 = 35.55 mm, and Rω = 22.22 mm). The results show that the bearing efficiency with eccentricity is 
about 92.58% whereas the bearing efficiency without eccentricity is about 98.73%. The difference between both bearing efficiencies is 
about 6.15%. Therefore, it is necessary to choose relevant parameters reasonably in the design of the eccentric bearing of the reducer to 
avoid large bearing friction power loss in the eccentric shaft. 

6.4. Total efficiency of reducer 

Based on the parameters given in Table 2, a model machine of the sine tooth profile reducer is produced (see Fig. 10a). Using the 
efficiency testing platform shown in Fig. 10b and c, the transmission efficiency of this model machine is measured. The efficiency 

Fig. 9. Bearing efficiencies with and without eccentricity.  

Fig. 10. Testing platform and comparison of calculative and testing efficiencies.  
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testing platform mainly includes: motor, coupling, torque sensor, tested reducer, and loading device (see Fig. 10b and c). The range of 
the input torque sensor is 10 Nm, with an accuracy of 0.1%. The output end torque sensor has a range of 100 Nm and an accuracy of 
0.2%. It can be used for the measurement of torque at the output and input ends, and based on this, the transmission efficiency of the 
reducer can be determined. 

The input speed n1 is taken to be 500 rpm whereas γ50 = 400 mm2/s. The comparison between the measured and calculative 
efficiencies is given in Fig. 10d. The findings can yield in the following conclusions:  

(1) When the load torque T2 is below 10 Nm, the transmission efficiency of the reducer increases rapidly with T2. However, when T2 
is above 10 Nm, the transmission efficiency of the reducer increases slowly with T2. Finally, when the load torque is equal to 28 
Nm, the transmission efficiency of the reducer reaches 82.47%;  

(2) The calculated and the experimental efficiency changes along with the load torque are basically the same. However, there are 
still some differences, and the calculated efficiency under low load is relatively high. When the torque is above 10 Nm, there is a 
better consistency between the calculated and the experimental efficiencies. Meanwhile, when the output torque is 28 Nm, the 
calculated efficiency is 83.72% whereas the measured efficiency is 82.47%, with a difference of 1.25%.  

(3) The reducer efficiency is 83.72%, and the total power loss is 16.28%. In this case, the meshing power loss is 3.55%, the bearing 
friction power loss is 2.27%, the power loss in the equi-speed output mechanism is 8.61%, and the oil agitation and splashing 
loss is 1.85%. This implies that the power loss in the equi-speed output mechanism has the greatest effect on the reducer 
efficiency. 

Therefore, in the design of the sine reducer, to ensure high efficiency, special attention should be paid to reducing the power loss of 
the output mechanism. 

7. Conclusions 

In this paper, a sine one-tooth difference planetary reducer is proposed. The meshing pair forces, the friction coefficient, the 
meshing efficiency, the forces on the planetary gear, the bearing efficiency, the efficiency of the equi-speed output mechanism and the 
total reducer efficiency are investigated. A reducer prototype is produced and its efficiency is measured and compared to the calcu
lative one. The results show the following:  

(1) The meshing efficiency of the reducer varies periodically with the meshing position angle. It can be improved by increasing the 
modulus and the tooth number of the gear while reducing the tooth height coefficient, the surface roughness, and the lubri
cating oil dynamic viscosity.  

(2) The bearing efficiency difference with and without the eccentricity could reach 6.15%. To reduce the power loss of the eccentric 
bearing, the pressure angle, the tooth number of planetary gear, the tooth height coefficient, the planetary gear radius, and the 
distribution circle radius of the pinhole should be reasonably selected.  

(3) The reducer meshing power loss is 3.55%, the bearing friction power loss is 2.27%, the power loss in the equi-speed output 
mechanism is 8.61%, and the oil agitation and splashing loss is 1.85%. These results confirm that the power loss in the equi- 
speed output mechanism has the greatest effect on the reducer efficiency.  

(4) The calculated maximum efficiency is 83.72%, and the measured maximum efficiency is 82.47%, with an error of 1.25%. This 
result verifies the correctness of the calculation method. The measured efficiency of 82.47% is higher than 65–72% of harmonic 
gear reducers. 

In the reducer, the flexible ring is removed. Thus, the friction power loss from the flexible ring deformation is avoided and the 
meshing efficiency is increased. Therefore, it is more suitable for lightweight applications of robot robotic arm drive systems. 

The efficiency calculation equation here is only applicable to situations where good oil film lubrication is achieved. In the future, a 
different friction coefficient calculation model should be used to calculate the reducer efficiency under other friction state, and some 
influencing factors and their effects on splashing loss and seal friction power loss should be considered. 
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RV reducers rotating vector reducers 
UAV Unmanned Aerial Vehicles 
a is the tooth height coefficient 
a0 is the center distance 
b1,b2, …,b9 are the coefficients related to friction coefficient 
e is the base of the exponential function 
E is the equivalent elastic modulus of the two gears 
E1 and E2 is the elastic modulus of gear 1 and gear 2 materials, respectively 
f is the friction coefficient of the rolling bearing 
fk is the friction coefficient between the pin and its sleeve 
fs is the sliding friction coefficient between two gears 
f (SR,Ph, η0, SRa) is the intermediate function to determine friction coefficient 
F is the normal force applied to sine tooth profile 
Fni is the normal force applied to any tooth of the sine gear 
Fri is the radial force applied to any tooth of the sine gear 
Fti is the tangent force applied to any tooth of the sine gear 
F0 is the maximum common divisor of forces applied to the teeth under multi-tooth meshing 
F3 is the force from the rolling bearing without eccentricity 
FR1 is the force from rolling bearing on the eccentric shaft 
Fn is the total normal force applied to the planet gear 
Fr is the total radial force applied to the planet gear 
Ft is the total tangent force applied to the planet gear 
i is the speed ratio of the fixed shaft transmission between the two gears, i = z2/z1 
i12 is the speed ratio of the reducer, i12 = z1/(z1-z2) 
kv is the slope of the straight line along the velocity direction 
kn is the slope of the straight line along the normal force direction 
K is the curvature of the tooth profile 
K1 is the curvature of the sinusoidal tooth profile 1 
K2 is the curvature of the tooth profile 2 
Kn is a coefficient, Kn = 30i12/n1π 
L is the length of the contact line, it is equal to the thickness of the gear 
Ls is the sliding curve length of the pin sleeve across the pin 
m is the gear module 
Mf is the friction torque of the rolling bearing on the non-eccentric shaft section 
n1 is the speed of the eccentric input shaft 
P is the input power 
P0 is the power losses, not related to the load 
P1 is the friction power loss of the rolling bearing on the non-eccentric shaft section 
Pb is the friction power loss of the rolling bearing on the eccentric shaft 
Ps is the sliding friction power loss between two gears 
Ph is the contact stress between two gears 
Qi is the force from the pin i (i = 1, 2,.., n, n being the pin number) 
r1 is the radius of the pitch circle of the planet gear 
rp is the inner radius of the eccentric rotating rolling bearing 
rx is the radius of the pin 
rk1 is the position coordinate of any point on the sine tooth profile in pole coordinate system 
R is the equivalent curvature radius in meshing point of the two gears 
Ra is the tooth surface roughness of the gear 
Rω is the radius of the pinhole center circle 
SR is the slip roll ratio of the two contact tooth surfaces, SR = v12/U12 
T1 is the input torque 
T2 is the load torque 
U12 is the entrainment speed at the meshing point between two gears 
v12 is the relative sliding speed at the meshing point of the two gears 
vs is the relative sliding velocity between the pin and pin sleeve 
v→12 is the relative sliding velocity vector between two gears 
vx

12 is the component of the relative sliding velocity between two gears in the x axis 
vy

12 is the component of the relative sliding velocity between two gears in the y axis 
W is the normal force per unit length applied to gear 
x′ and y′ are the first derivative of the sine tooth profile position x and y versus the tooth profile angle φ, respectively 
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x″ and y″ represent the second derivatives of the sine tooth profile position x and y versus the tooth profile angle φ, respectively 
x1 is the position coordinate of any point on the sine tooth profile in x1 axis direction 
y1 is the position coordinate of any point on the sine tooth profile in y1 axis direction 
xk1 and yk1 are the coordinates of meshing point K in the coordinate system Σ1(x1,o1,y1)

xk2 and yk2 are the coordinates of meshing point K in the coordinate system Σ2(x2,o2,y2)

z1 is the tooth number of the planet gear 
z2 is the tooth number of the central ring 
zs is the tooth number in mesh 
αi is the pressure angle of the tooth i when multi-teeth are in mesh 
αk1 is the pressure angle of the gear 1 at the meshing point k 
αk2 is the pressure angle of the gear 2 at the meshing point k 
γ50 is the viscosity of lubricating oil 
δ is the load proportion coefficient of the bearing on the eccentric shaft 
η0 is the dynamic viscosity of the lubricating oil 
ηH is the transmission efficiency of the sinusoidal planetary reducer 
ηr is the bearing efficiency on the eccentric shaft section 
ηK is the efficiency of the equi-speed output mechanism 
η1 is the efficiency related to the load 
ηb is the total rolling bearing efficiency of the reducer 
ηb1 is the total bearing efficiency without eccentricity 
ηb2 is the total bearing efficiency with eccentricity 
η′

b is the bearing efficiency on the non-eccentric shaft section 
μ1 and μ2 is the Poisson’s ratio of gear 1 and gear 2 materials, respectively 
ζ is the angle between lines o1K and o2K 
φ is the angle position coordinate of any point on the sine tooth profile 
φ1 is the rotating angle of the planet gear 
φ2 is the rotating angle of the center ring 
ω1 and ω2 are the angular speeds of the planetary gear and the center ring, respectively 
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