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Abstract

Background: In sharp contrast to humans and great apes, the expanded Mhc-B region of rhesus
and cynomolgus macaques is characterized by the presence of differential numbers and unique
combinations of polymorphic class | B genes per haplotype. The MIB microsatellite is closely linked
to the single class | B gene in human and in some great apes studied. The physical map of the Mhc
of a heterozygous rhesus monkey provides unique material to analyze MIB and Mamu-B copy
number variation and then allows one to decipher the compound evolutionary history of this
region in primate species.

Results: In silico research pinpointed 12 MIB copies (duplicons), most of which are associated with
expressed B-genes that cluster in a separate clade in the phylogenetic tree. Generic primers tested
on homozygous rhesus and pedigreed cynomolgus macaques allowed the identification of eight to
eleven MIB copies per individual. The number of MIB copies present per haplotype varies from a
minimum of three to six in cynomolgus macaques and from five to eight copies in rhesus macaques.
Phylogenetic analyses highlight a strong transpecific sharing of MIB duplicons. Using the physical
map, we observed that, similar to MIB duplicons, highly divergent Mamu-B genes can be present on
the same haplotype. Haplotype variation as reflected by the copy number variation of class | B loci
is best explained by recombination events, which are found to occur between MIBs and Mamu-B.

Conclusion: The data suggest the existence of highly divergent MIB and Mamu-B lineages on a
given haplotype, as well as variable MIB and B copy numbers and configurations, at least in rhesus
macaque. Recombination seems to occur between MIB and Mamu-B loci, and the resulting
haplotypic plasticity at the individual level may be a strategy to better cope with pathogens.
Therefore, evolutionary inferences based on the multiplicated MIB loci but also other markers
close to B-genes appear to be promising for the study of B-region organization and evolution in
primates.
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Background

The major histocompatibility complex (Mhc) represents a
multigene family that plays a crucial role in the generation
of adaptive immune responses in vertebrate species. A key
feature of the system is that most of its genes display abun-
dant polymorphism at the population level. In addition,
the number of Mhc class I or II genes may differ signifi-
cantly between species as well as between individuals of a
species [1]. Mhc polymorphisms have a profound impact
on several features such as disease susceptibility, organ
transplantation, and reproductive success [2-6]. In pri-
mates, considerable research has been conducted on the
Mhc  of rhesus (Macaca mulatta) and cynomolgus
macaques (Macaca fascicularis), since these species are
widely used as models for human diseases and biology.
Simian immunodeficiency virus infection of macaques,
for instance, is an important model for the study of AIDS
[4,7]

The organization of the Mhc class I region of rhesus
macaque - and probably most of the Old World Monkeys
(OWM) - seems to be more complex than in humans and
great apes. The Mhc-A and -B genes are shared between
humans, great apes, and OWM, but OWM lack the Mhc-C
gene, which arose by duplication in the Hominoid lineage
[8]. OWM, however, possess many Mhc-B genes instead.
In fact, Mamu- as well as Mafa-A and -B genes have been
subjected to several rounds of duplication [9,10], as was
confirmed recently by genomic sequencing [11-14]. Anal-
ysis of an expanded panel of thesus macaques, originating
from the Indian subcontinent as well as from China,
revealed that the number and combination of Mamu-A
and -B genes that are expressed per haplotype may differ
extensively [15,16]. In addition, marked differences in
expression levels were also observed for these class I genes.
More recently, the study of Mamu-A and Mafa-A region
configurations in Chinese rhesus macaques and pedigreed
cynomolgus macaques, respectively, demonstrated that
most A region configurations are old entities predating
macaque speciation, whereas most allelic variation (>
95%) originated more recently [17]. Such results corrobo-
rate comparative studies illustrating that many Mhc loci
and lineages predate speciation events but that the sharing
of Mhc alleles between two primate species seems to be
rare. Only a few cases of allele sharing have been docu-
mented [18,19]. In contrast, thesus and cynomolgus
macaques share a high number of Mhc class 1I alleles, as
was determined by exon 2 DRB sequencing [20,21].

Mhc class T and class II gene families have been shown to
evolve according to the birth-and-death process, rather
than under concerted evolution [22-24]. In the birth-and-
death process, new genes are created by repeated gene
duplications, and some genes may later become pseudo-
genes or even be deleted from the genome. As a result,
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class I and IT genes consist of a mixture of divergent genes,
some of which have remained in the genome for a long
period, together with a large number of closely related
genes or pseudogenes. It appears that class I loci experi-
ence a much faster rate of birth-and-death evolution than
do class II loci. Therefore, there seem to be no, or few,
orthologous relationships of various class I loci among
different mammalian suborders [25,26].

The class I B genes experienced a complex process of
duplication during the evolution of macaques [11-15],
which seems to have started 23-31 Mya ago [27]. Dupli-
cated class I B genes, as well as other genes in the Mhc
region, are exposed to selective pressures — mostly balanc-
ing selection - due to their role in antigen presentation,
resulting in transpecific lineage sharing [28-30]. In addi-
tion, their haplotypic organization and their expression
are likely the product of recombinational and mutational
mechanisms promoted by these selective pressures. Nev-
ertheless, relatively little is known about the haplotypic
organization of duplicated class I B loci in macaques. In
particular, it is important to have an insight into the
number of class I B loci within a species and their distri-
bution and position on haplotypes, as well as information
about the level of gene expression and genetic divergence
of B loci within haplotypes. These analyses are supported
by the study of their proximate genomic environment
using other genetic markers such as MIB.

In BAC clones from Pan troglodytes, Gorilla gorilla, and
Homo sapiens, the microsatellite marker MIB (D652810) is
physically close (~25 Kb) to the single class I B gene [31-
33]. To enhance our knowledge of the organization and
evolution of the class I B region in macaques, in this com-
munication we further characterized the class I B region by
studying MIB sequences (hereafter referred to as MIBs,
MIB copies, or MIB loci), in addition to published Mamu-
B gene sequences mapped onto haplotypes. First, we per-
formed an in silico research of MIB loci by means of the
published physical map of the rhesus macaque to identify
their copy number, position, and association with Mamu-
B genes and pseudogenes. Second, we designed generic
primers in order to isolate MIB copies of selected rhesus
and cynomogus macaque individuals and to describe
their haplotypic distribution. We then investigated the
phylogenetic relationships of (i) the identified MIB copies
in these two species, and of (ii) the published Mamu-B
sequences associated or not with MIB copies in the pub-
lished material [11]. Our goal was to assess the genetic
divergence of class I loci within species and within haplo-
types, as well as their degree of orthology between species.
In addition, we sought to determine whether duplicated
MIB and Mamu-B loci are actually genetically linked, and
to what extent patterns of linkage explain the haplotypic
organization of the class I B region in macaques. We dis-
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cuss the plastic organization of duplicated class I loci in
the light of recombination and the birth-and-death proc-
ess of evolution with gene duplication.

Results

In silico study of MIB and B loci on the rhesus macaque
Mhc physical map

The published physical map was used to identify Mamu-B
genes and MIB copies in silico on both chromosomes
(haplotypes 1 and 2) of the heterozygous animal studied
[11]. On haplotype 1 (blue, Mamu-h1), the BAC clones
analyzed covered the complete Mhc class I B, class 11, and
class Il regions, while on haplotype 2 (red, Mamu-h2) the
class I B region was only partially sequenced (Figure 1). In
contrast to humans and great apes, the research deter-
mined 12 MIBs sequences located on the two rhesus hap-
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lotypes, all with the same orientation on the
chromosomes (for exact location, see Additional file 1).
Seven MIB copies, named MIB1 to MIB7, are located on
haplotype 1, while five are on haplotype 2 (MIB5(8) to
MIB12). Only one MIB copy is shared between the two
haplotypes, and it was given the label MIB5(8). Nineteen
Mamu-B genes were defined on the completely sequenced
haplotype 1, of which the eight telomerically oriented
Mamu-B loci are associated with one MIB copy each except
for Mamu-B04 (Figure 1). The eleven other B genes, how-
ever, are not associated with MIB microsatellites. Mamu-B
genes of haplotype 1, corresponding to serotype Blla,
were shown to represent loci with different expression lev-
els [15,16]. The names of the Mamu-B01 to -B19 genes of
haplotype 1 and Mamu-B02 to -B7 and -B17 to -B19 genes
of haplotype 2 - labelled as such by Daza-Vamenta and
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l 326H24 | l 125A15 |
l 244P03 Il 274113 | l 192G09 | l 297107 | [[2an14
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Figure |

Location of MIB copies and B genes on the physical map of rhesus macaque Mhc. Blank and filled arrows indicate
MIB and Mamu-B gene copies, respectively. BAC clones, from which MIBs and Mamu-B genes were retrieved, are positioned at
the top of the figure. The names of the Mamu-BOI to -B19 genes — labelled as such by Daza-Vamenta and colleagues [1 1] and
also annotated differently by Shiina and colleagues [42] — have been replaced by the latest Mamu-B loci/lineage names (B¥)
whenever possible; these represent "major" or "minor" expressed Mamu-B loci [15,16]. Green arrow indicates transcription

direction.
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colleagues [11] - have been replaced by the latest Mamu-
B loci/lineage names (B*) whenever possible [15,16].
These represent "major" or "minor" expressed Mamu-B
loci [15,16]. Six out of the seven MIBs present on haplo-
type 1 are associated with expressed Mamu-B genes; the
exception is MIB7 which is associated with the Mamu-B0O1
pseudogene. On haplotype 2, three out of the five MIBs
present are associated with expressed Mamu-B genes.

MIB analysis of the selected rhesus and cynomolgus
macaques

To amplify MIB copies in selected macaques, generic
primers have been designed by means of a highly con-
served portion of the flanking sequences of MIB copies
from the GenBank individual [11]. Based on subsequent
cloning and sequencing, the Mhc homozygous rhesus
macaques 3C, serotyped B11b, and 2B, serotyped B29,
possess eight different MIBs each, and they share none.
Monkey 3C has six MIB copies in common with the pub-
lished haplotype 1 (MIB1 and MIB3 to 7; Figures 1 and 2).

In the three cynomolgus macaques, Bufo (B), Kraa (K),
and Gayo (G), nine, nine, and eleven distinct Mafa MIB
copies were isolated, respectively. The phylogenetic tree of
all distinct MIB copies found in M. mulatta, M. fascicularis,
Homo sapiens, Pan troglodytes, and Gorilla gorilla, excluding
the microsatellite repeat array, is shown in Figure 2. Iden-
tical sequences within a species represent "alleles" of a
copy in terms of repeat units, and identical - or nearly
identical - sequences across species represent orthologous
copies. Six MIB copies are identical between animals K
and G, thus most probably being present on the shared
haplotype b (see methods section). Therefore, the second
haplotype of animals K and G must comprise the three
and five other MIB copies, respectively. Interestingly, ani-
mal B with nine MIBs shares no MIB copy with K and G
but contains two MIB duplicons - Mafa-B-gen3 and 4 -
that seem to represent alleles of a given locus, because
they show the same flanking sequence but a different mic-
rosatellite repeat length. However, thus far it is not known
whether these MIBs are located on different haplotypes in
trans orientation or in cis as replicons on the same chro-
mosome. The number of MIB copies present per haplo-
type varies from a minimum of three to six in cynomolgus
macaques and from five to eight copies in rhesus
macaques.

In contrast, the two different macaque species studied
show an extensive sharing of MIB copies (Figure 2). The
haplotype of the homozygous animal 3C shares three MIB
copies with cynomolgus macaque K (MIB1, MIB3,
MIB5(8)), one with cynomolgus macaque B (MIB7) and
one with cynomolgus macaque G (MIB3) (Figure 1, 2).
Moreover, cynomolgus macaque B shares one MIB copy,
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MIB12, with the published rhesus macaque haplotype 2
(Figure 1, 2).

Mutations in the MIB sequence, excluding the microsatel-
lite repeat array, consist mainly of substitutions and some
indel events (for variable sites alignment, see Additional
file 2). Table 1 shows the genetic diversity parameters (N,
S, k, ) of MIB sequences (270 bp) found within individ-
uals as well as within and between species. The average
genetic divergence between MIB copies is nearly identical
at the individual and species level. For example, the nucle-
otide diversity ™ = 0.034 to 0.056 in rhesus macaque indi-
viduals, while © = 0.036 in the overall rhesus species; 7 =
0.032 to 0.042 in cynomolgus individuals, while © =
0.037 in the overall species, and © = 0.035 in the rhesus/
cynomolgus taxon. This suggests that most of the genetic
divergence of MIB copies is captured at the individual
level. Twenty-six out of 56 and 44 substitutions of MIB
sequences of thesus and cynomolgus macaques, respec-
tively, segregate in both species; 30 substitutions segregate
in rhesus, and only 18 in cynomolgus macaques.

Phylogenetic analysis of MIB and Mamu-B loci

The phylogenetic tree of MIBs of humans, great apes, and
macaques depicts the high level of divergence of eight
well-defined lineages of MIB copies in macaques, which
are well supported by posterior probability values (PPV)
(0.63 to 1) (Figure 2, marked by star). Rhesus and
cynomolgus macaques share copies belonging to seven of
these eight lineages, the exception being a lineage sup-
ported by a 0.84 PPV that is composed of MIB copies only
present in M. fascicularis. This pattern of lineage sharing
suggests that species-specific lineages are rare, and to be
determined, more animals would need to be examined.
Phylogenetic relationships are, however, not resolved for
eleven distinct MIB copies (Figure 2, not marked by star).
Among them, the closely related copies MIB5(8) and
MIB10 - and related Mamu-2B-gen5, Mamu-2B-gen8,
Mafa-B-gen9, and Mamu-3C-gen-MIB4 - show a slower
evolutionary rate: namely, a shorter branch length in com-
parison to others.

The phylogeny of Mamu-B loci present on haplotype 1
and 2 is shown in Figure 3, and adjacent MIB loci are
superimposed. Two major clades of Mamu-B loci, each
supported by a PPV of 1, diverged deep in the past. Clade
1 contains all but one expressed B-gene, while clade 2 is
mainly composed of unexpressed genes or pseudogenes.
All MIB copies are associated with B-genes of a sub-clade
of clade 1 (Figure 3, asterisk). On the one hand, 73% (11/
15) of B-genes of this sub-clade are expressed B-genes. On
the other hand, 69% (11/16) of Mamu-B genes not asso-
ciated with MIBs are pseudogenes. Additionally, Mamu-B
genes of both haplotypes 1 and 2 belong to the different
well-supported sub-clades (PPV from 0.93 to 1).
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Figure 2

Bayesian phylogenetic tree of flanking sequences of MIB copies in human, great apes, M. mulatta, and M. fas-
cicularis. Numbers at nodes are posterior probability values for node support. Braces identify strictly identical sequences dif-
fering only by the microsatellite repeat number, indicating an orthologous relationship between species, as well as allelic
(microsatellite) polymorphism within a species and sometimes within the same individual. Brackets identify the shared indels.
Stars pinpoint eight different well supported lineages. M. mulatta sequences are represented in green (light = individual 2B,
semi-dark = 3C, dark = GenBank individual), M. fascicularis sequences are orange (individual K), pink (individual G) and purple

(individual B). Hsa, Ptr, and Gor represent human

, chimpanzee, and gorilla MIB sequences, respectively. Note that the two

MIB5(8) copies show identical flanking sequences but a slightly different microsatellite repeat length.
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Table I: Genetic diversity parameters of MIB sequences,
excluding the microsatellite repeat array

individual/species N S k m
Mamu (GenBank) 11 37 844 0.034
Mamu-3C 8 31 925 0.037
Mamu-2B 8 38 1196 0.056
Mamu-(GenBank,2B,3C) 21 56 8.74 0.036
Mafa-B 8 21 85 0.032
Mafa-K 9 32 9.64 0.040
Mafa-G I 39 1067 0.042
Mafa-(B, K, G) 22 44 8.80 0.037
Mafa-Mamu 36 69 8.26 0.035
Hominidae 3 9 4.00 0.15

N = number of distinct MIB copies, S = number of segregating sites, k
= average number of nucleotide differences, m = nucleotide diversity
(i.e heterozygosity at the nucleotide level, [46]).

However, Figure 3 illustrates that any two closely related
Mamu-B genes are not necessarily associated with two
highly related MIB loci. In fact, the only phylogenetic con-
gruence between Mamu-B and MIB occurs for the (non-
classical) Mamu-I (B-like) gene, present on both haplo-
types (Figure 3, highlighted in orange) and for the associ-
ated MIB5(8) and MIB10 sequences. In general, there
seems to be no association between MIBs and Mamu-B
(pseudo) genes along the class I B region.

Discussion

Highly plastic haplotypic organization of the class | B
region in macaques

Phylogenetic analyses indicated that the ancestral MIB
and B-linked loci started to duplicate in tandem in OWM
after the OWM/Hominoid split, probably around 23-31
Mya ago [27]. Despite a tight linkage between MIB and the
B gene in humans and some great apes, almost half the
duplicated B genes are not linked to MIB loci in
macaques. Moreover, these analyses pinpoint a deep split
in the history of the duplications: the class I B region of
macaques comprises a telomeric region where B genes are
mostly expressed and associated with MIBs as well as a
centromeric region where B genes are mostly pseudogenes
and not associated with MIBs. A more precise historical
duplication scheme would, however, require studying
more genetic markers close to B genes.

The high number of MIB copies (from eight to eleven in
homozygous and pedigreed individuals) and lineages (at
least eight) in macaques indicate that several tandem
duplication rounds occurred in the class I B region during
OWM evolution, probably as an adaptive process. The
number of MIB copies present per haplotype varies from
a minimum of three to six in cynomolgus macaques and
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from five to eight copies in rhesus macaques, and may
even be underestimated due to possible primer inconsist-
encies. The number of expressed Mamu and Mafa-B loci
may vary accordingly. A high level of structural complex-
ity has already been pointed out for the number and com-
bination of transcribed B genes present per chromosome
in rhesus macaques [15,16].

High genetic diversity of duplicated class I loci
Phylogenetic and nucleotide diversity analyses show a
high degree of orthology for the MIB copies present in
both macaque species, which thus represents a transpe-
cific sharing of MIB duplicons. This phenomenon is com-
parable to transpecific sharing of lineages and even alleles,
which is frequently observed for Mhc loci of closely
related species [28-30]. In addition, we observe that
deeply divergent Mamu-B genes that coexist in the same
species can also be present on the same haplotype, similar
to MIB duplicons (Figure 3).

The variation of the average genetic divergence between
any two MIB and B-gene copies may be directly related to
the birth-and-death process that occurs with class I genes
[22-24]. Here, we found that new MIB copies were created
by repeated gene duplications, leading to clusters of simi-
lar copies, while other MIBs are old entities and therefore
greatly divergent. The same seems to occur at Mamu-B
loci, consistent with a mixture of divergent genes, some of
which have remained in the genome for a long period,
together with a large number of closely related genes or
pseudogenes [22-24]. The birth-and-death process has
been hypothesized to have a high turnover rate for class I
B genes in mammals [25,26], leading to a lack of orthol-
ogy when comparing distant species. However, a substan-
tial level of orthology among rhesus and cynomolgus
macaques was expected to be present and has thus been
confirmed, since both species belong to the same genus.

Recombination promotes plasticity and genetic diversity
within class | haplotypes

The occurrence of recombination-like processes appears
to be the most plausible explanation for the phylogenetic
incongruence between Mamu-B and MIB loci. Recombina-
tion would explain the localization of a given Mamu-B
locus next to a particular MIB on a given haplotype as well
as its association with a different MIB on another haplo-
type. For instance, one allele of the B*57 locus is associ-
ated with MIB3 on haplotype 1 but with MIB9 on
haplotype 2 (Figure 3). MIB3 and MIB9, however, are
phylogenetically distant (Figure 2). Similarly, unequal
crossing-over events may lead to the association of a given
Mamu-B locus with a MIB on a given haplotype but with
no MIB on another haplotype. For instance, while B*30 is
associated with MIB4 on haplotype 1, it is not associated
with a MIB on haplotype 2. More generally, frequent rear-
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Figure 3

Bayesian phylogenetic tree of Mamu-B gene (exons and introns) in human and M. mulatta. Numbers at nodes are
posterior probability values for node support. Blue and red circles indicate Mamu-B loci present on haplotype | and 2, respec-
tively, of the published material [11]. Green rectangles indicate pseudogenes or low expressed genes. Mamu-B loci with a "B*"
name are expressed genes. Next to Mamu-B loci are shown associated MIBs. Mamu-B loci with the same colour indicate phyl-
ogenetic relatedness, the same annotation was made for MIB loci. The figure do shows that only the locus I presents close link-
age to MIB. The asterisk indicates the sub-clade (PPV = 0.95) within clade I, which B-genes are associated with MIBs.

rangements by non-homologous recombination could
explain the presence of differential numbers of Mamu-B
and MIB loci across haplotypes (plasticity) but also of
highly divergent Mamu-B and MIB loci on a given haplo-
type (genetic diversity within haplotype).

Relationship between recombination and selective
pressures occurring in the class | region

MIB duplicons with a slow evolutionary rate may shed
light on a putative relationship between recombination
and selective pressures occurring in the class I B region.
For instance, the MIB5(8) and MIB10 copies, which are
present on two divergent Mhc haplotypes in the rhesus
macaque [11], are closely related and show very short
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branch lengths (Figure 2). Interestingly, MIB5(8) and
MIB10 are associated with the non-classical I (B-like)
locus on the two different haplotypes. According to the
present data, this is the only Mamu-B/MIB combination
that seems not to recombine. Although MIB5(8) and
MIB10 are not coding sequences, their genetic linkage to
the I locus may in principle allow the inference of evolu-
tionary patterns involving this gene. In particular, genetic
divergence of these MIB duplicons may be shaped by
selective processes occurring at the I locus, via subsequent
genetic hitch-hiking, which also slows the effect of recom-
bination. The observations that some MIB duplicons,
mostly associated with expressed B genes, are highly con-
served would be in agreement with the preservation of a
(ancestral) biological function by purifying selection
directly on the coding gene or with the conservation of
sequences involved in gene expression, in the vicinity of
the coding gene. By contrast, positive (balancing) selec-
tion or relaxation of purifying selection (or both) may
shape the diversification of duplicated copies [34-37] as
part of the birth-and-death process, and may permit a
reduction in the genetic linkage between loci by frequent
recombination. Particularly in the Mhc region involved in
host-pathogen interaction as part of immune defense
reactions, recombination of class I loci may allow the
build-up of new haplotypic combinations, resulting in a
potential beneficial effect on the fitness of the organism
with regard to pathogens.

Conclusion

In conclusion, in addition to a high and uneven number
of MIB and B-gene copies among Mhc haplotypes (plastic-
ity), the data suggest the coexistence of highly divergent
MIB and B-gene lineages on a given haplotype, in both
rhesus and cynomolgus macaques. Such a high degree of
plasticity and genetic diversity for B genes within haplo-
types is the result of the diversification of the Mhc class I
region, by the interaction of recombination with a birth-
and-death (selective) process of evolution with gene
duplication, probably as a strategy to better cope with
pathogens. For comprehensive evolutionary inferences,
future studies should investigate the constitution and
genetic linkage for B-genes, MIBs, and other markers as
well as the genomic environment of B genes on more hap-
lotypes. In this way, a better insight into the complexity
and the evolution of the Mhc class I B region in primates
in relation to its biological function can be obtained.

Methods

In silico study of MIB on the rhesus macaque Mhc physical
map

The 5' flanking sequence of human MIB clones obtained
from previous studies [31-33] were blasted against BAC
clones of the entire Mhc of one M. mulatta individual in

http://www.biomedcentral.com/1471-2164/9/514

GenBank [AC148659-AC148717] to obtain the different
MIB copies of the published rhesus macaque Mhc [11].

Selection of rhesus and cynomolgus macaques for MIB
study

To define copy numbers and diversity of MIBs in macaque
species, two consanguineous Mhc homozygous rhesus
macaques were chosen for further analysis. Both animals
had been thoroughly typed for their Mamu-A, -B, and -DR
antigens by serotyping [38] as well as by molecular typing
[15,39]. Monkey 2B is characterized by the B29 serotype
that encodes at least two highly expressed B loci, B*44 and
B*40, and most probably other B genes or pseudogenes
with lower expression levels. The B region of the second
rhesus macaque, 3C, is nearly identical to haplotype 1 of
the Mhc Mamu published [11], encoding the serotype
B11b that is characterized by three highly expressed B
genes, B*12, B*30, and B*22, and by three B genes with
lower expression levels, B*53, B*49, and B*70 [15,16].
Serotyping is not feasible in cynomolgus macaques, and
molecular typing of the Macaca fascicularis B region (Mafa-
B) has not yet been completed. However, molecular Mafa-
A and -DR typing has been performed on a pedigreed
cynomolgus family of four generations, and Mhc haplo-
types could be determined by segregation analysis [17].
Therefore, three Mhc heterozygous animals of this family
have been chosen, two of which, Kraa (K) and Gayo (G),
share one Mhc haplotype (haplotype b), whereas the sec-
ond haplotype differs. The third animal, Bufo (B), has no
haplotype in common with the other two animals. These
cynomolgus macaques are of Indonesian origin.

Amplification of MIB copies in cynomolgus and rhesus
macaques using generic primers

The generic primers MIBMamuF (5'-CCACTCITCATAC-
CACAGTCTC-3') and MIBMamuR (5'-ACCATGAC-
CCCCTTCCCCAT-3") were designed in a conserved region
identified on the alignment of the different rhesus
macaque MIB sequences retrieved from GenBank,
upstream and downstream of the previous human primer
binding sites. PCR reactions were performed with 0.3 uM
of each primer, and using the following cycling program:
94° for 5 min (denaturation step), 5 cycles at 94° for 1
min, 58° for 45 s, and 72° for 45 s, followed by 25 cycles
of 94° for 45 s, 58° for 30 s, and 72° for 45 s. The final
elongation step was extended to 30 min to generate a 3'dA
overhang. PCR products were purified using the QIAGEN
PCR purification Kit and cloned into the pDrive cloning
vector using the QIAGEN cloning kit. Two independent
PCRs were performed for each individual studied. After
transformation using E. coli XLblue, 32 colonies were
picked per PCR for plasmid isolation. The 64 isolated
plasmids were sequenced using the BigDye terminator
cycle sequencing kit. The samples were run on an auto-
mated capillary sequencing system (Applied Biosystems
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Genetic analyzer ABI3130XL and ABI3100) using the M13
forward primer. Sequences were analyzed using the seq-
man program (DNASTAR, Lasergene). Sequences were
validated if detected at least twice in two independent
PCR reactions. Distinct new MIB sequences (microsatel-
lite repeat array and flanking sequence) were deposited in
GenBank under the accession numbers FM177720-
EM177743 for M. fascicularis and FM177744-FM177753
for M. mulatta. MIB sequences that were found to be iden-
tical in both M. fascicularis and M. mulatta have their own
names and accession numbers. The correspondence
between sequence names defined in the present study and
accession numbers is shown in Additional file 3.

To obtain in humans and great apes the homologous
sequence of the region amplified by the generic primers in
macaques, we blasted the sequences obtained on Pan trog-
lodytes, Gorilla gorilla, and Homo sapiens BAC clones (Gen-
Bank AB054536, CU104654, NT 113891).

Data analysis

MIB sequences of M. fascicularis and M. mulatta were
edited using the Sequencher 4.7 software (Gene Codes
Corporation) and aligned using MEGA3 [40]. Genetic
diversity parameters were calculated using the software
DnasP 4.10 [41]. Mamu-B sequences were retrieved from
Genbank ([11]s; see also accession number AB128049,
from Shiina and colleagues [42]), and aligned using
MEGA3 [40]. Phylogenetic analyses were conducted, based
upon 270 bp of the MIB copies flanking sequence and
upon 1080 bp of exonic and 1710 bp of intronic Mamu-B
gene sequences, using a Bayesian phylogenetic analysis.
The most likely substitution model was first inferred using
a likelihood framework implemented in the software
MODELTEST 3.7 [43]. This software tests 56 different substi-
tution models and estimates the most likely one using the
AIC criterium. The best model was HKY+G for MIB
sequences, TIM+G for intronic sequences, and HKY+I+G,
K81uf+I+G and TVM+I+G for the first, second, and third
base of codons, respectively. Bayesian analyses were per-
formed with MIB sequences and with a concatenation of
exonic and intronic Mamu-B sequences, with their own
substitution models, using the software MRBAYES[44],
where two Markov Chains were run on 10 x 10° genera-
tions with a sampling each 100 generations. A run of this
length allowed the standard deviation of allelic frequen-
cies to pass below 0.01 and the potential scale reduction
factor (PSRF) to reach a value of 1, as suggested by the
authors. The first 25,000 trees (25%) were discarded from
the analysis as a burn-in. The Bayesian phylogenetic anal-
ysis was subjected to indel coding to make the indel phy-
logenetically informative: indels of one base pair (bp) as
well as more than one 1 bp were considered as a single
character, and the different indels were coded as inde-
pendent characters (or events). According to Saitou and

http://www.biomedcentral.com/1471-2164/9/514

Ueda [45], who showed that in primates the rate of nucle-
otide substitution was about 10 times higher than the rate
of insertion and deletion for both nuclear and mitochon-
drial DNA, we weighted the indel events by a factor of 10
compared to the substitution events.
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macaque BAC clones scanned for MIB copies and B genes, the location of
the MIB copies and B genes on each BAC clone (in bp), and the distance
between successive B genes and MIB copies (in bp).

Click here for file
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Additional file 2

Alignment of the variable sites of the MIB flanking sequence. Descrip-
tion: This pdf file shows the alignment and positions of the different vari-
able sites of the MIB flanking sequence. These variable sites consist mainly
in substitutions but indels can also occur at those sites. Other sites where
only indels occur are not shown but the whole MIB sequences are available
in Genbank (see Additional file 3).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 3

Correspondence between sequence names in the present study, and
clones and accession numbers in the EMBL/GenBank/DDBJ data-
bases. This excel file indicates the sequence name, clone name and acces-
sion number for each new MIB sequence isolated in the present study. In
addition, the name and accession number of each BAC clone of the heter-
ozygous published rhesus macaque Mhc [11], from which MIB copies
have been retrieved are also given. Note that the two accession numbers
labelled with a star describe in fact the same MIB sequence (error when
submitting the sequences). The microsatellite repeats number of each MIB
sequence is also given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
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