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Abstract

Prior research has shown that representations of retinal surfaces can be learned from the intrinsic structure of visual sensory
data in neural simulations, in robots, as well as by animals. Furthermore, representations of cochlear (frequency) surfaces
can be learned from auditory data in neural simulations. Advances in hardware technology have allowed the development
of artificial skin for robots, realising a new sensory modality which differs in important respects from vision and audition in
its sensorimotor characteristics. This provides an opportunity to further investigate ordered sensory map formation using
computational tools. We show that it is possible to learn representations of non-trivial tactile surfaces, which require
topologically and geometrically involved three-dimensional embeddings. Our method automatically constructs a
somatotopic map corresponding to the configuration of tactile sensors on a rigid body, using only intrinsic properties of
the tactile data. The additional complexities involved in processing the tactile modality require the development of a novel
multi-dimensional scaling algorithm. This algorithm, ANISOMAP, extends previous methods and outperforms them,
producing high-quality reconstructions of tactile surfaces in both simulation and hardware tests. In addition, the
reconstruction turns out to be robust to unanticipated hardware failure.
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Introduction

Spatial projections of various sensory (and motor) surfaces onto

neural structures are common in neuroanatomy, where they are

known as topographic maps. For instance, in the primary visual

cortex (V1), neighbouring cells in the retina activate neighbouring

cortical columns (retinotopy). In the auditory system, similar

frequency components of sound activate neighbouring cells in

the organ of Corti, and project to neighbouring locations on the

cortex (tonotopy).

The developmental mechanisms which allow topographic maps

to form in animals are complex and not completely understood,

but in many animals, the neurological development of sensory

systems are known to depend on both prenatal and antenatal

sensory stimulation. For instance, the development of visual depth

perception in cats depends on active participation in visual

experience [1]. Sensoritopic map formation involves self-organis-

ing processes which are guided by sensory signals: ferrets can

develop retinotopic maps on the auditory cortex, if their visual

afferent nerves are surgically rerouted to their auditory cortex [2];

in mice, spontaneous in utero waves of activation on the retina are

involved in topographic map formation [3]. Simulations of

retinotopic map formation based on self-organising maps have been

claimed to accurately model the visual cortex, including

reproducing features such as ocular dominance maps and visual

after-effects [4]. Self-organising maps have also been used to

model tonotopic features of the auditory cortex in certain bats [5].

The basis for the success of these structural mappings derives

from the fact that signals provided to the brain by the sensory

organs have statistical properties which reflect the structure of

those organs and the environment. In particular, it suggests that

there is sufficient intrinsic information in these sensory signals to

allow the brain to reconstruct a significant part of the organism’s

sensory topology. Our aim in the present paper is to apply this

principle to the development of algorithms for robotics.

An ideal flexible robot ‘brain’ would build a model of its

sensorimotor contingencies ab initio and in situ, with the algorithm

making only minimal assumptions about the robot’s sensors,

actuators and environment. Suitable approaches to robot learning

of sensorimotor contingencies include explicit approaches such as

the uninterpreted sensors and actuators paradigm (introduced in [6]),

dimensionality reduction and estimation [7], the information

structure approach [8] and model-building work such as [9]; the

possibility of implicit (as opposed to explicit) sensorimotor

contingency learning has been explored in work such as [10],

which uses coupled chaotic systems to explore stable sensorimotor

patterns. This perspective, whether the robot learns using an

explicit learning algorithm or using emergent dynamics, is purely

intrinsic to the robot in that it uses only the robot’s sensors in a

very general environment. This stands in contrast to alternative

approaches (see, e.g. [11]) which use a specific externally defined

calibration environment to initialise a robot’s sensory model.

The relevance of intrinsic approaches derives from enactive and

embodied/situated perspectives on cognition. These argue that the

whole process of cognitive perception and action is essentially

driven by the specific constraints determining the sensorimotor

contingencies which can be learned intrinsically by an organism;

see, for instance, [7].

The uninterpreted sensor approach in robotics from [6],

referred to above, has been developed further [12,13]. generalised
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the original approach by using a metric from information theory

(the information distance). This allowed the visual field of an AIBO

robot to be reconstructed using only raw data from the camera

pixels in a ‘‘model-free’’ manner, making no further assumptions

about the robot’s sensors or environment. In another study [14],

described a refined method for sensory reconstruction using

Gaussian process assumptions and a sparse linear algebra

approximation technique. This allowed the reconstruction of a

complex sensor geometry (the Stanford bunny) in simulation and a

visual field in recorded robot data.

This article describes elaboration and application of these

methods to the reconstruction of a surface embedded in 3D from

intrinsic tactile sensor data: a somatotopic map. To the authors’

knowledge, this is the first time such a reconstruction has been

performed on simulated or real hardware data. The simulated

sensor geometry reconstructed in [14] is similar in some ways to

our tactile surfaces (in that it is embedded in 3D), but does not

model a physical tactile surface: sensors were stimulated by

multiple point source pulses, with the response at each sensor

depending on the Euclidean distances of the sensor from the point

sources. In this scenario, the 2D manifold on which they lie lacked

any special meaning in the simulation since there was no simulated

solid body affecting the sensory input; the sensors were more like

radio receivers situated in empty space. Somatotopic maps also

differ from the retinotopic reconstructions studied so far (such as

[13,14]) in two crucial respects. Firstly, the tactile modality

provides far sparser data than the visual modality (most of the

signals essentially vanish most of the time), and involves identifying

quite different features of the world (surfaces directly in contact

with the organism). Secondly, tactile sensory surfaces are harder to

reconstruct than visual ones: locally, the topology of the skin

surface is two-dimensional, but it is much more likely than the

visual field to incorporate topologically more involved features

such as holes, which require a three-dimensional Euclidean

embedding. In this respect, tactile surfaces are quite unlike visual

or auditory surfaces.

To address the particular challenges posed by the sensoritopic

scenario, we introduce introduce a new algorithm ANISOMAP,

constituting a generalisation of the well-known ISOMAP algo-

rithm [15]. This method is based on graph geodesics, first

constructing a mathematical graph of nodes (representing sensors)

connected by weighted edges ( which in our case represent

statistical dissimilarities), then using a well-known algorithm to find

the shortest path lengths between each pair of sensors. The

corresponding graph distances can be used as input to another

well-known algorithm to produce a sensoritopic reconstruction.

The procedure is described in detail in the ‘‘Methods’’ section.

Somatotopic map formation has previously been modelled using

Self- Organising M aps (SOMs) (e.g. [16,17]). Interestingly,

although SOM methods exist for addressing the problems we

have mentioned that arise from non-trivial topologies [18,19], to

our knowledge they have not yet been applied to somatotopic

maps. The SOM approach differs from that used in [13] and

extended in this paper: our method (developed in the context of

robot control) models each individual sensor as a single point in

the map; by contrast, SOMs are maps of holistic sensory vectors,

and are highly un likely to have a one-to-one relation between

sensors and map neurons. Moreover, the space represented by a

SOM map corresponds to a discrete topology on the neurons

themselves; our approach allows for coordinate variables to be

coded directly. While SOMs are probably more biologically

realistic, our approach can reconstruct a three-dimensional tactile

surface using only a relatively small number of reconstruction

points.

Results

We compared the ANISOMAP technique to other methods

(information distance and regular ISOMAP), and to a null

hypothesis, in the reconstruction of tactile surfaces from sensor

data:

N Simulated tactile data from sensors on several differently

shaped rigid bodies (sphere, cylinder, plane and Y-shape) in

two different physical simulation scenarios (one involving

bombardment by small balls; one involving rolling along a

landscape).

N Actual tactile data recorded from a hexagonal patch of

prototype artifical skin in the lab.

Details of the procedures used to generate the data, and of the

reconstruction techniques, are given in the ‘‘Methods’’ section.

Note that one of the sensors in the physical prototype failed

between experimental runs; data from this sensor was nevertheless

included in the input to the reconstruction methods for all

hardware experiments, allowing us to observe the performance of

the algorithms in the face of hardware failure.

In the ideal reconstruction, the distances between each pair of

reconstructed sensor positions would be identical to the original

(simulated or physical) distances between that pair of sensors (up to

a multiplicative constant). Hence, the statistical correlation

between reconstruction distance and original distance (considered

over all pairs of sensors in a particular object) was chosen as a

quantitative measure of reconstruction quality. We refer to this

measure as ‘‘distance-correlation’’. Although data from the failed

hardware sensor was allowed to affect the reconstructions, its

position in the reconstructed geometry was excluded from the

calculation of reconstruction quality.

Note that some care must be taken in interpreting a distance-

correlation value. Although a distance-correlation is a standard

Pearson’s r value ranging between {1 and 1, it will not necessarily

have an expected value of zero in the absence of meaningful

relations between original geometry and reconstructed geometry.

This is because the metric embedding of both original and

reconstructed geometry poses a similar systematic constraint on

the entire matrix of pairwise distances (for instance, the distance

from a point to itself will always be zero). Randomisation of data is

often used to distinguish significant effects from a baseline; see for

instance the robust mutual information measure in [20]. In an

analogous fashion, we compare the algorithms’ performance to a

randomised baseline, to reduce any systematic bias in our

performance measure. The randomised baseline is computed by

taking the reconstructions provided by the algorithms and

randomly permuting the sensor labels attached to points in the

reconstruction. This provides a reasonably conservative estimate

of how much of the distance-correlation score is attributable to

artefacts of non-independence in metric matrices. In this way, we

ask the question: how much of the algorithms’ performance can be

attributed in principle to the ‘‘gross’’ reconstructed geometry they

produce (ignoring where they locate each sensor within that

geometry), and how much can be attributed to the specific map

between sensors and points?

Over all the reconstruction scenarios, the r-ANISOMAP

algorithm was consistently among the best performing according

to our performance measure. Fig. 1 shows typical (randomly

chosen) reconstructions by r-ANISOMAP for the bombardment

scenario. Fig. 2 shows the r-ANISOMAP reconstructions for each

hardware experiment. Note that the faulty sensor 30 is isolated

from the others by the r-ANISOMAP algorithm in Fig. 2. Figures

S1, S2, S3, S4 in supporting information online show typical
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(randomly selected) reconstructions of the sphere, Y-shape, plane

and cylinder geometries for each reconstruction method, and

Figures S5, S6, S7, S8, S9 show all hardware reconstructions.

Fig. 3 shows the performance of the candidate algorithms in

simulation and in hardware, measuring correlations between

reconstructed sensor distances and original sensor distances.

Resampling tests (corresponding to boxplots at the bottom of the

graphs) show unambiguously that all algorithms perform far better

than random guessing when assigning sensors to points in the

reconstructed geometry (in terms of distance correlation).

In applying qualitative judgement to these figures, we suggest

that high quantitative distance correlation corresponds to a

reconstruction which respects the topological and usually geomet-

ric features of the original.

Discussion

We have shown that it is possible to approximately reconstruct

the topology and geometry of skin in 2 or 3 dimensions based only

on intrinsic data from tactile sensors. These reconstructions were

achieved both in simulation and in hardware. We conclude that

tactile sensory data, in the context studied by our experiments,

contains significant implicit information about the sensory

interface between an agent and its environment - enough to allow

the spatial structure of that interface to be retrieved. This

information does not need to be ‘‘engineered in’’; it is a natural

consequence of the agent’s embodiment. In this respect, we extend

previous results in e.g. [6,13] on kinaesthetic and visual data to a

novel sensory modality.

Interestingly, successful reconstruction in 3 dimensions required

a novel algorithmic technique we call ANISOMAP. While the

information distance method used in [13] performed well in 2

dimensions, the algorithm relies heavily on 2D embedding. The

reasons for this have been explored in [21]: essentially, the

information distance method has a tendency to prefer assigning

sensor positions to the surface of a hypersphere. The ratio of

available surface to volume of a 2-sphere is small enough for this

distortion to be relatively minor; however, for a 3-sphere the

distortion is significantly more pronounced. This should not be

seen as a reflection on information-theoretic methods in general;

they still offer better theoretical application to cases where

assumptions of linear correlation do not hold. For instance, if

two sensors measure the same quantity, but one is linear and the

other is a radial basis function around an optimal response point,

the information-theoretic model is more likely to identify the

relation between the sensors. This ‘‘sphericisation’’ problem stems

in part from the fact that all statistically independent pairs of

sensors are essentially assigned the same distance from one

another. However, statistical independence tells us relatively little

about the sensoritopic relationship between sensors; the further

apart sensors are, the less information their joint statistics provide

about their sensory distance. In contrast to the information

distance approach, which assigns a finite (and approximately fixed)

distance to independent pairs of sensors, we address this problem

by assigning an arbitrarily large dissimilarity to independent pairs

of sensors (using reciprocation). Our novel ANISOMAP algorithm

then effectively refines over-estimated long distances downwards

based on chains of shorter (more reliable) distances. No specific

threshold defines what constitutes ‘‘long’’ or ‘‘short’’; the principle

operates uniformly at all scales.

The ANISOMAP methods produced high correlation between

reconstructed and original distances in nearly every case. The

exception was for the cylinder geometry in the locomotion

Figure 1. Typical reconstructions for r-ANISOMAP: cylinder, plane, y-shape and sphere.
doi:10.1371/journal.pone.0026561.g001
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Figure 2. r-ANISOMAP reconstructions for the hardware experiments. Top left: actual configuration; sensor 30 failed after experiment 3.
doi:10.1371/journal.pone.0026561.g002
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scenario, where the numerical correlations were relatively poor for

all reconstruction methods. In this scenario the most statistically

similar sensors lie on axial lines on the tactile surface, because

these lines typically form the contact points between a cylinder and

the ground. Consequently, the reconstructions tended to place

points on these lines closer to each other, relative to their

neighbours on neighbouring axial lines. The results were

reconstructed cylinders which reconstructed the topology of the

original sensor layout reasonably well, but were compressed in the

axial direction compared to the original geometry (see Fig. 4). This

is a particular illustration of the fact that a sensoritopic map will

often closely match the sensory surface’s geometry, but sometimes

has a different structure, reflecting the wider sensorimotor

properties of a particular embodiment.

Studying the intrinsic information content of sensory data is

important for the understanding of embodied cognition in nature.

Although we do not claim that the algorithm we use here is

biologically realistic, it allows us to demonstrate that artificial

tactile sensory data contains information about more than just the

immediate tactile environment: it also inherently carries informa-

tion about the structure of the tactile sensory surface. When the

same relations apply in biology, we can conjecture that organisms

Figure 3. Reconstruction quality for 4 algorithms on simulation and hardware data. Boxplots show reconstruction quality (correlation of
reconstructed sensor distance with original distance) of 10,000 random permutations of the algorithm’s output to compare to null hypothesis. Small
‘+’ symbols are boxplot outliers (outlier distance is 1.5 times the inter-quartile range).
doi:10.1371/journal.pone.0026561.g003

Figure 4. Cylinder locomotion reconstruction. Typical reconstruction of the cylinder in the locomotion scenario, showing axial compression.
doi:10.1371/journal.pone.0026561.g004

Generation of Tactile Maps for Artificial Skin

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e26561



might exploit this fact during development, using a different

mechanism. To test this, ANISOMAP or similar artificial

reconstruction techniques could be applied to recorded neural

data, to establish that such informational relations hold.

Using the quantitative measure, across all hardware and

simulation experiments, the best 3D reconstruction was invariably

one of the ANISOMAP variants. Since the r-ANISOMAP

algorithm performed reasonably or excellently in all cases (both

qualitatively and quantitatively), including responding appropri-

ately to unexpected hardware failure, our conclusion from the

experiments is to propose this method as a promising candidate for

developing further approaches to sensoritopic reconstruction and

automatic self-calibration in robotics. We expect that that artificial

skin sensors will provide enough intrinsic information to allow

reasonably accurate reconstructions of more complex somatosen-

sory surfaces than the ones we studied; this observation will feed

into the debate about why somatotopic maps in the cortex are not

faithful to the topology of the skin [17,22,23].

In conclusion, like visual and auditory surfaces, and despite

being more complex in their topology, immediate tactile sensory

signals in artificial skin inherently contain information about the

tactile surface. This is due to local spatial relations between pairs of

tactile sensors being reflected in their joint statistics. The

information contained in these pairwise statistical relationships

can be integrated globally by a novel algorithm, ANISOMAP, and

be shown to capture most of the spatial structure of the tactile

surface.

Methods

This section describes the methods used in sensoritopic

reconstruction from three distance estimate methods (information

distance, ISOMAP and ANISOMAP). It also briefly describes the

scenarios and geometries used in the simulation experiments, and

the parameters of the physical hardware experiments. Further

details and raw data are provided in supplementary information

online.

The methods we used to estimate sensory distance (information

distance, ISOMAP and ANISOMAP) are described in detail

below.

We begin with an overview of our experimental methodology in

general terms. The two sections after the overview deal with the

collection of artificial tactile data - the first section addressing

artificial skin simulation and the second section describing lab

experiments on artificial skin hardware.

General Methodology
Here we give an overview of our experimental process from the

measurement of tactile data to the generation of sensoritopic

reconstructions. Later sections describe in more detail how the

tactile data was obtained and and how the reconstruction

algorithms operated.

Following [13], we considered sensoritopic reconstruction

methods based on statistical distance estimation. Each pair of

sensors was assigned a distance based on the joint statistics of their

data, resulting in a matrix of sensory distances. In general,

embedding these sensory distances directly in a 2- or 3-

dimensional Euclidean reconstruction is not possible because the

sensory distance matrix may very well be non-Euclidean.

However, standard multidimensional scaling (MDS) algorithms can

be used to find an embedding which conforms as closely as

possible to the specified distance matrix.

We adopted our basic assumption from [13]: that physically

close sensors will tend to be more systematically related in their

response statistics than physically distant sensors. This allowed us

to estimate sensory distance either by using a direct information

distance metric [24] as in [13], or by applying a more general

metric construction algorithm to a statistical similarity measure

(in the case of the present study, either linear correlation or

mutual information). We briefly remark that the use of mutual

information provides a fully non-linear comparison of sensor data

streams; thus, the similarity between streams need not directly

reflect spatial closeness, but may in fact reflect a more general

type of statistical similarity [12,13]. In the present tactile scenario

this does not tend to be an issue because of the homogeneity of

the sensors and the relative short range of the spatial stimuli. An

exception was provided by the locomotion scenario for the

cylinder (Fig. 4) which is governed by a more intricate

relationship between physical proximity and statistical sensor

similarity for the cylindrical object: contact between the cylinder

and the ground tends to occur along a single axial line on the

cylinder’s surface.

The overall process was as follows:

N Begin with a number of tactile sensors arranged in some

pattern over the surface of a rigid body, either in simulation

or in hardware. Place the body in an environment which

provides tactile stimulation of the sensors. (Simulations and

physical experiments are described in more detail in later

sections.)

N Record the data from all sensors over an appropriate number

of time steps. (Currently, we consider only the pairwise

instantaneous statistics of the data; temporal structure is

ignored.)

N Generate a sensory distance matrix using each of the following

candidate measures (described in more detail in later sections):

1. Information Distance (as in [13])

2. ISOMAP (based on information distance)

3. ANISOMAP (r-ANISOMAP using linear correlation and

I -ANISOMAP using mutual information)

N Run the SMACOF [25] MDS algorithm (initialised as per

standard with Torgerson scaling) on each generated distance

matrix to create a reconstruction embedded in 3-dimensional

space (for the simulations) or 2-dimensional and 3-dimensional

space (for the hardware).

Information Theory
This section briefly recaps some relevant definitions from

information theory, which will be necessary to explain the

information distance and I-ANISOMAP reconstruction methods.

Mutual information I(A; B) is a statistical measure which

quantifies the amount of informational overlap between two

random variables A and B.

I(A; B)~H(A)zH(B){H(A,B)

where H(X ) is the Shannon entropy of the random variable X , as

follows, where P(X~x) denotes the probability that the random

variable X takes the value x, and P(X~x,Y~y) is the probability

that random variables X and Y , measured together, take the

values x and y respectively. For empirically measured variables,

P(X~x) is taken to be the observed proportion of instances in

which variable X has the value x, and similarly for

P(X~x,Y~y).

Generation of Tactile Maps for Artificial Skin
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H(X )~{
X

x

P(X~x) log P(X~x)

H(X ,Y )~{
X

x,y

P(X~x,Y~y) log P(X~x,Y~y)

Note that I(A; B) is not a normalised quantity; however, by

standard results, it is guaranteed to fulfil the inequality

0ƒI(A; B)ƒ min (H(A),H(B)) and is thus bounded by the

capacity of the sensors.

Information-theoretic measures are amongst the most general

measures of statistical relatedness, since in principle they capture

all systematic relations, and not just linear ones. However, they are

more difficult to measure than the linear correlation coefficient,

both in terms of computational efficiency and in terms of reliably

estimating them from small samples. In our experiments the

sensors were designed to be identical, giving some advantage to the

simpler non-information-theoretic linear correlation measure.

Estimating Sensory Distance: Information Distance
For comparison with previous research, we considered the

information distance measure D(A,B) between two random

variables A and B as used in [13]. The information distance (a

metric; see [24]) is defined as

D(A,B)~H(A,B){I(A; B)

where H(A,B) is the Shannon entropy of the joint distribution

A,B and I(A; B) is the mutual information, as defined in the

previous section.

Readings from each sensor were discretised into 4 bins (6 and 8

bin discretisations were also tested, and produced qualitatively

similar results); this allowed empirical information-theoretic

measures to be calculated exactly. The p log p sums described in

the previous section are computed exhaustively over every possible

discrete outcome. The bin sizes were allocated using a maximum

entropy binning following [26].

Estimating Sensory Distance: ISOMAP
The ISOMAP algorithm, as described in [15], is a simple

algorithm intended to reconstruct the structure of data points on a

low-dimensional manifold embedded in a higher-dimensional

space. This involves constructing a graph over the data in which

only neighbouring points (chosen according to some pre-decided

scheme: either by considering the k closest Euclidean neighbours

of each data point, or all neighbours within a fixed distance �) are

directly connected by edges. The distance between non-neigh-

bouring points is interpreted as the shortest path length within this

graph.

One should note that the ISOMAP method was designed to

preserve only the local structure of the data set. In certain contexts

this may be desirable, but it does involve a loss of information

about the more global relationships between reconstructed points.

For these experiments, we constructed k-nearest-neighbour

ISOMAP graphs as follows. Starting with an initially unconnected

graph, we considered each sensor S in turn and connected it to the

k sensors which had the highest mutual information with S. The

ISOMAP distance matrix was then simply the matrix of shortest

path lengths between sensors. The parameter k was chosen as the

smallest such value yielding a totally connected graph.

Estimating Sensory Distance: ANISOMAP
The ANISOMAP algorithm was developed to produce

consistent distance estimates (i.e. a metric) between arbitrary

objects, based on an initial matrix of dissimilarity values between

objects. We will begin by describing this algorithm at a very

general level, and then describe its application to sensoritopic

reconstruction.

ANISOMAP operates in a similar graph-geodesic spirit to the

ISOMAP algorithm [15], but with two key differences. Firstly,

rather than considering only neighbouring points, all pairs of

points are considered in ANISOMAP. This provides us with an

increase in accuracy for the reconstruction of the long-range

topological properties of the tactile map. Secondly, whereas

ISOMAP initialises the edges of its graph with the (metric)

distances between neighbouring points in some previously known

space, ANISOMAP initialises the edges of its graph with some

appropriate semi-metric (i.e. symmetric, zero diagonal, and

elsewhere positive) matrix. This provides us with the flexibility of

characterising spatial relatedness using originally non-spatial

similarity measures.

For this, note that any semi-metric matrix M can be converted

into a metric M ’ (‘‘metricised’’) in a natural way. First, we

construct a totally-connected weighted graph G, in which we

identify the vertices V1, � � � ,Vi, � � � with the the rows of M (or the

columns, since M is symmetric). We identify the edge weights

Wij ,Wik, � � � in G with the entries mij ,mik of M. The metric M ’ is

then simply the matrix of shortest path lengths between pairs of

vertices in G. Note that if M is itself a metric, then the metricised

matrix M ’ is identical to M (see Text S3 for proof).

In the case of sensoritopic reconstruction, the statistical

similarity between sensors provides more information about their

relative position than their dissimilarity (since sensors at more or

less any distance can be unrelated). In other words, shorter

distance estimates are more reliable than longer ones.

Therefore, ANISOMAP uses the shortest available consistent distance

estimate. This strikes a balance between local and global structure,

in that when a shorter chain of estimated distances doesn’t exist,

the longer ‘‘dissimilarity’’ estimates are preserved intact, but when

such a chain exists, it overrides the longer distance by virtue of the

hypothesis of being more reliable.

In detail, the steps of the ANISOMAP algorithm are as follows:

1. Initialise a semi-metric matrix M of direct dissimilarities

between objects.

2. Construct a metric matrix M ’ by running the Floyd-Warshall

shortest-path algorithm [27,28] with M as input. (This

algorithm computes the shortest paths between all vertices in

a graph).

3. Embed M ’ in the desired embedding space (e.g. 3D Euclidean

space) using a suitable algorithm (e.g. k-dimensional Euclidean

space using SMACOF [25]).

If desired, we can allow the entries of M and M ’ to take the

value ? (technically making M ’ an extended metric rather than a

metric).

It should be noted that this algorithm assumes a desired

embedding space (e.g. 3D Euclidean space). An approach similar

to that described in [6] could in principle be used to automatically

choose a suitable dimensionality for the embedding space, but

since our our focus here is on tactile robotics, in this study we

simply assume a 3-dimensional target space from the outset.

This concludes the general description of the ANISOMAP

algorithm. The next section will describe how we used it in

sensoritopic reconstruction.

Generation of Tactile Maps for Artificial Skin
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r-ANISOMAP and I -ANISOMAP
The ANISOMAP algorithm involves initialising a dissimilarity

matrix M between pairs of sensors Si,Sj (1ƒi,jƒN), then

generating a metric from M using a shortest-path measure. r-

ANISOMAP and I-ANISOMAP were initialised using dissimilarity

matrices Mr (derived from linear correlations between sensors) and

MI (derived from mutual informations between sensors) respec-

tively. Each of these Ms were calculated by taking the reciprocal of

some statistical similarity measure: the linear correlation coefficient

r(Si,Sj) between sensor readings for Mr, and the empirical mutual

information I(Si,Sj) between sensor readings for MI . Since all

sensors had the same characteristics, in the case of using r, we set

negative linear correlation values to zero. A small term proportional

to the value of the smallest positive element r min of the similarity

matrix was added to the denominator of the fraction:

½Mr�ij~
1

max(r(Si,Sj),0)zmrmin

½MI �ij~
1

I(Si,Sj)zmImin

Note that this additive step is not strictly essential to the

ANISOMAP algorithm, and instead
1

0
can be treated as equal to

z?. However, if this is done, then in general the distance matrix

input to the multi-dimensional scaling algorithm for embedding into

Euclidean space may contain infinities (i.e. the reconstructed points

may be partitioned into disconnected sets). To avoid adapting the

SMACOF scaling algorithm to separately have to handle this

scenario, we decided to apply the above regularisation of infinite

distances with a small additive term.

Tactile Data: Simulated Environment
To provide physically relevant data for the 3D sensoritopic

mapping algorithm, a number of simulations were run using the

ODE physics engine [29]. Runs of 2000 simulation steps were

performed for each of four different geometries in a ‘‘bombard-

ment’’ scenario, and each of two different geometries in a

‘‘locomotion’’ scenario.

A summary of the experiments is given below, and the technical

details of the simulations are provided in Text S1. Sample

simulation runs for the various geometries and scenarios are

provided as raw data in Data S1, S2, S3, S4, S5, S6.

Sensor Modelling. Sensors were modelled as short-range

proximity sensors distributed on the surface of a rigid object. The

sensors contributed nothing to the dynamics of the object, and

only registered a non-zero signal when a simulated detectable

body came within the sensor’s range. The sensor’s signal was

proportional to the detectable body’s maximum penetration into

the sensor’s sphere of detection.

This tactile simulation was similar in spirit to the ‘‘simulated

baby’’ in [10], although our approach is simpler and focuses on the

explicit reconstruction of tactile surfaces.

Geometries. Four topologies were simulated: 60 sensors

distributed uniformly on the surface of a sphere, 60 sensors

distributed in 10 columns of 6 on the surface of a cylindrical

object, 105 sensors distributed on the surface of a compound y-

shape object, and 169 sensors distributed in a grid of 13 by 13 on

one surface of a cuboid (see Fig. 5).

Scenarios. Two different physical scenarios were simulated:

N Bombardment. The sensor object (sphere, cylinder, y-shape or

plane) was fixed in the centre of a zero-gravity box filled with

detectable bodies in the form of moving elastic balls. The

object’s sensors detected collisions between the balls and the

sensors’ sphere of sensitivity (the balls also collided with each

other and with the walls of the box). See Fig. 6.

Figure 5. Simulated sensor geometries. The sphere (60 sensors), cylinder (60 sensors, none on the ends), y-shape (105 sensors), and plane (169
sensors) geometries.
doi:10.1371/journal.pone.0026561.g005
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N Locomotion. The sensor object (sphere or cylinder) was propelled

along uneven detectable terrain under simulated gravity. The

object’s sensors detected contact with the simulated terrain

within their spheres of sensitivity. See Fig. 6.

Tactile Data: Physical Environment
We conducted some experiments using a first release hardware

prototype constructed by the Italian Institute of Technology (IIT)

[30] as part of the RoboSKIN project. RoboSKIN is an EU

project which aims to develop artificial skin hardware, middleware

and software technologies in the context of autonomous robotics.

The skin prototype consisted of a hexagonal patch of 72

capacitative sensors, mounted on a flexible substrate and arranged

in 6 triangles of 12 sensors each. The entire patch is covered with a

layer of rubbery silicone. (See Figure S10 in supporting

information for illustration.)

Prototyping Issues. For reasons to do with the prototype

hardware driver, the readings for an entire triangle (12 sensors) on

the prototype was always zero, so we ignored these sensors (we

coded a simple preprocessing step which removes from the dataset

any sensors whose values do not vary). This missing triangle

provided an additional opportunity to gauge the reconstruction

capability of our algorithm.

Additionally, a single capacitative sensor (labelled ‘30’ in Fig.

S10) suffered hardware failure between experimental runs. The

sensor was functional during runs 1 to 3 and faulty in runs 4 and 5.

This sensor had a tendency to saturate intermittently regardless of

whether it was being physically stimulated or not; note that the

readings from this sensor were included in the reconstruction data.

These prototyping issues with the hardware proved an

advantage, by demonstrating that the ANISOMAP-based algo-

rithm can in principle cope with several forms of real-world

complexity: both non-uniform geometry (from the missing

triangle) and unanticipated hardware failure (from the failed

sensor). This is in spirit analogous to the results in [9], where a

robot using an evolution-based self-modelling technique was able

to adapt spontaneously to damage. The skin patch was stimulated

by hand in an ad-hoc manner over a relatively short time period,

so we show the hardware data here mainly to illustrate the

method’s potential.

It can be seen clearly in figure 7 (and in some of the

reconstructions in the supporting information online, see Figures

S1, S2, S3) that the information distance measure has a tendency

to ‘‘spherise’’ reconstructions, spreading the reconstructed points

around a k-sphere. This phenomenon was discussed in one of our

earlier papers [31]: to summarise the idea, most sensors are

unrelated, and have an information distance which is approxi-

mately equal to the sum of the entropies of the individual sensors

(each of which is approximately equal). These near-identical

distances between unrelated sensors cannot be reproduced in a

low-dimensional Euclidean reconstruction, with the consequence

that the information-distance-based reconstructions tend to

‘‘bulge’’. In two dimensions, the effect is less dominant than in

three; this can be seen most clearly in figure 3, where three-

dimensional reconstructions using information distance are

notably worse than two-dimensional ones (this is not true for the

other reconstruction methods).

Experimental Data. In order to validate the reconstruction

algorithm in hardware, we stimulated the prototype skin patch by

hand with an irregular rubbing motion. This stimulation involved

circular and linear motions in various directions pressing the palm

of the hand against the skin patch. Pressure values from 60 sensors

on the 5 responsive triangles were recorded over time and used as

inputs for our reconstruction algorithms.

Figure 6. Simulated scenarios. Bombardment and locomotion.
doi:10.1371/journal.pone.0026561.g006

Figure 7. Typical information distance reconstructions for the simulation experiments, showing ‘‘spherisation’’. Left: reconstructed
cylinder; centre: reconstructed Y-shape; right: reconstructed plane.
doi:10.1371/journal.pone.0026561.g007
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Five runs were recorded of respectively 1120, 1054, 1487, 2128

and 2105 time steps each. The raw data for the runs is provided in

supporting information Data S7, S8, S9, S10, S11, with the data

format described in Text S2.

Supporting Information

Figure S1 Randomly selected reconstructions for the
cylinder (bombardment scenario) for all reconstruction
algorithms.
(TIF)

Figure S2 Randomly selected reconstructions for the
plane (bombardment scenario) for all reconstruction
algorithms.
(TIF)

Figure S3 Randomly selected reconstructions for the Y-
shape (bombardment scenario) for all reconstruction
algorithms.
(TIF)

Figure S4 Randomly selected reconstructions for the
sphere (bombardment scenario) for all reconstruction
algorithms.
(TIF)

Figure S5 All reconstructions for hardware experiment
1.
(TIF)

Figure S6 All reconstructions for hardware experiment
2.
(TIF)

Figure S7 All reconstructions for hardware experiment
3.
(TIF)

Figure S8 All reconstructions for hardware experiment
4.
(TIF)

Figure S9 All reconstructions for hardware experiment 5.
(TIF)

Figure S10 Hardware patch schematic.
(TIF)

Text S1 Summary of simulation method.
(TXT)

Text S2 Summary of format for hardware data.
(TXT)

Text S3 Proof: shortest-path metricisation leaves a
metric matrix unaltered.

(PDF)

Data S1 Sample simulation run output (cylinder bom-
bardment).

(TXT)

Data S2 Sample simulation run output (sphere bom-
bardment).

(TXT)

Data S3 Sample simulation run output (plane bom-
bardment).

(TXT)

Data S4 Sample simulation run output (yshape bom-
bardment).

(TXT)

Data S5 Sample simulation run output (cylinder loco-
motion).

(TXT)

Data S6 Sample simulation run output (sphere locomo-
tion).

(TXT)

Data S7 Hardware experiment data (experiment 1).

(LOG)

Data S8 Hardware experiment data (experiment 2).

(LOG)

Data S9 Hardware experiment data (experiment 3).

(LOG)

Data S10 Hardware experiment data (experiment 4).

(LOG)

Data S11 Hardware experiment data (experiment 5).

(LOG)

Acknowledgments

Many thanks to Ze Ji, whose assistance was invaluable in running the

hardware experiments.

Author Contributions

Conceived and designed the experiments: SM DP KD. Performed the

experiments: SM. Analyzed the data: SM DP. Wrote the paper: SM DP

KD.

References

1. Held R, Hein A (1963) Movement-produced stimulation in the development of

visually guided behavior. J Comp Physiol Psychol 56: 872–6.

2. Roe A, Pallas S, Hahm J, Sur M (1990) A map of visual space induced into

primary auditory cortex. Science 250: 18–820.

3. Chandrasekaran A, Shah R, Crair M (2007) Developmental homeostasis of

mouse retinocollicular synapses. J Neurosci 27: 1746–55.

4. Miikkulainen R, Bednar JA, Choe Y, Sirosh J (2005) Computa- tional Maps in

the Visual Cortex. Berlin: Springer, URL http://www.springer.com/west/

home/biomed/neurosciences?SGWID = 4-131-22-34953211-0.

5. Palakal M, Murthy U, Chittajallu S, Wong D (1995) Tonotopic representation of

auditory responses using self-organizing maps. Mathematical and Computer

Modelling 22: 7–21.

6. Pierce D, Kuipers B (1997) Map learning with uninterpreted sensors and

effectors. Artificial Intelligence 92: 169–229.

7. Philipona D, O’Regan J, Nadal JP (2003) Is there something out there? inferring

space from sensorimotor dependencies. Neural Computation 15: 2029–2049.

8. Sporns O, Lungarella M (2006) Evolving coordinated behavior by maximizing

information structure. In: Artificial Life X MIT Press.

9. Bongard J, Zykov V, Lipson H (2006) Resilient Machines Through Continuous

Self-Modeling. Science 314: 1118–1121.

10. Kuniyoshi Y, Yorozu Y, Suzuki S, Sangawa S, Ohmura Y, et al. (2007)

Emergence and development of embodied cognition: a constructivist approach

using robots. Prog Brain Res 164: 425–45.

11. Cannata G, Denei S, Mastrogiovanni F (2010) Towards automated self-

calibration of robot skin. In: IEEE International Conference on Robotics and

Automation IEEE. pp 4849–4854.

12. Olsson L, Nehaniv CL, Polani D (2004) Sensory channel grouping and structure

from uninterpreted sensor data. In: Evolvable Hardware IEEE Computer

Society. pp 153–160.

13. Olsson L, Nehaniv C, Polani D (2006) From unknown sensors and actuators to

actions grounded in sensorimotor perceptions. Connection Science 18: 121–144.

14. Modayil J (2010) Discovering sensor space: Constructing spatial embeddings that

explain sensor correlations. In: IEEE Int. Conf. on Development and Learning

(ICDL).

15. Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for

nonlinear dimensionality reduction. Science 290: 2319–2323.

Generation of Tactile Maps for Artificial Skin

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e26561



16. Obermayer K, Ritter HJ, Schulten K (1989) Large-scale simulation of a self-

organizing neural network: Formation of a somatotopic map. In: Eckmiller R,
Hartmann G, Hauske G, eds. Parallel Processing in Neural Systems and

Computers. Amsterdam: Elsevier. pp 71–74.

17. Stafford T, Wilson S (2007) Self-organisation can generate the discontinuities in
the somatosensory map. Neurocomputing 70: 1932–1937.

18. Kohonen T (1995) The adaptive-subspace som (assom) and its use for the
implementation of invariant feature detection. In: Fogelman-Souliè F,
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