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Abstract: Outdoor air pollution is associated with respiratory infections and allergies, yet the role of
innate lymphoid cells (ILCs) in pathogen containment and airway hyperresponsiveness relevant to
effects of air pollutants on ILCs is poorly understood. We conducted a systematic review to evaluate
the available evidence on the effect of outdoor air pollutants on the lung type 1 (ILC1) and type 2
ILCs (ILC2) subsets. We searched five electronic databases (up to Dec 2018) for studies on the effect of
carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), diesel exhaust particles (DEP),
ozone (O3), and particulate matter (PM) on respiratory ILCs. Of 2209 identified citations, 22 full-text
papers were assessed for eligibility, and 12 articles describing experimental studies performed in
murine strains (9) and on human blood cells (3) were finally selected. Overall, these studies showed
that exposure to PM, DEP, and high doses of O3 resulted in a reduction of interferon gamma (IFN-γ)
production and cytotoxicity of ILC1. These pollutants and carbon nanotubes stimulate lung ILC2s,
produce high levels of interleukin (IL)-5 and IL-13, and induce airway hyperresponsiveness. These
findings highlight potential mechanisms by which human ILCs react to air pollution that increase the
susceptibility to infections and allergies.
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1. Introduction

Air pollution exposure is associated with an array of respiratory problems, particularly in children
because their lungs and immune system are still maturing [1–4]. Development of lung infections and
exacerbation of allergic airway diseases are more frequently found in people living in highly polluted
areas [5–8]. In fact, we found that Ecuadorian children highly exposed to CO, NO2, fine particulate
matter with diameters no greater than 2.5µm (PM2.5) or volcanic ashes presented increasedsusceptibility
to respiratory infections [7], high rates of hospitalization for pneumonia [8], and elevated rate of
emergency room visits due to acute upper and lower respiratory infections and asthma-related
conditions [9].

PM, DEP, O3, and other chemicals and polluting compounds have been shown to have deleterious
effects on the respiratory function of humans [3,5–8,10–13]. Exposure to these outdoor environmental
pollutants can result in acute airway inflammation [14,15], increased mucosal secretions [16], oxidative
lung damage [17–19], and loss of antibacterial functions [20–24]. These conditions may be mediated by
a harmful effect of the pollutants on lung immune cells.
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The effects of specific air pollutants on certain classic lung innate immune cells including alveolar
macrophages (AM), polymorphonuclear (PMN), and dendritic cells (DC) have been recently gaining the
attention [25–28]. For instance, it has been reported that particulate matter alters the anti-mycobacterial
function of human respiratory epithelium [29] and that DEP impairs antibacterial immunity by
suppressing the nucleolar factor NF-kβ pathway in human blood monocytes [30]. Also, concentrated
urban particles have been shown to hamper bacterial clearance by AMs and PMNs in mice [31], whereas
DEP induces activation of inflammatory signaling molecules and cytokine synthesis in AMs [32].
However, not much is known about the effects of air pollutants on newer sets of immune cells,
so-called innate lymphoid cells (ILCs), which play an essential role in lymphoid tissue formation,
tissue remodeling, tissue homeostasis [33,34], inflammation, and regulation of host responses to
infection [34,35]. These cells are involved in the initiation, modulation, and resolution of lung
diseases [36].

ILCs are derived from a bone marrow common lymphoid progenitor [37], have a lymphoid
morphology, and lack both antigen-specific receptors and myeloid phenotypic markers. They populate
barrier surfaces, including skin, intestine, lung, and some mucosal-associated lymphoid tissues [36].
Three major groups of ILCs have been defined based on the transcription factors needed for their
development and the cytokines they produce [37–39]. Figure 1 summarizes the current understanding
of ILC types, functions and activation pathways. The ILC1 group includes classical natural killer (NK)
and non-NK cells, which are cytotoxic and produce interferon gamma (IFN-γ) [40,41]. The ILC2 group
expresses interleukin (IL) IL-5 and IL-13 [41]. The type 3 (ILC3) group comprises of LTi cells, NKp46−

ILC3, and NKp46+ ILC3, which produce IL-17 and/or IL-22 [41]. Due to their cytokine production,
ILCs 1, 2, and 3 resemble the adaptive T helper (Th) 1, Th2, and Th17 cells respectively [42]. In addition,
human ILCs are highly heterogeneous among patients, tissues, and health conditions because they
exhibit diversity in the expression of their surface markers [43,44].

In this paper, we systematically appraised all available studies to date that examined the effect
of PM, O3, and DEP on lung ILC subsets in in vivo and in vitro models. While the role of ILCs in
inflammation and the effects of air pollutants on classic innate immune cells are recognized, the effects
of air pollutants on the lung ILCs remains scarce. Defining such relationships may help to understand
how air pollutants affect respiratory infections and allergies. These investigations may also provide
insights on potential strategies for improving diagnosis and treatment for these diseases.
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Figure 1. Summarizes the understanding of innate lymphoid cell (ILC) types, activation pathways and
functions. Innate lymphoid cells are derived from a common lymphoid progenitor, have a lymphoid
morphology, and lack antigen-specific receptors. Based upon the transcription factors needed for their
development and the cytokines they produce, ILCs are divided in three groups which mainly populate
barrier surfaces. ILC1 includes classical natural killer (NK) and non-NK cells and depends on the
transcription factor T-bet. ILC2 depends on the transcription factors GATA3 and RORα. ILC3 requires
the transcription factor ROR-γt and comprises a heterogeneous subset of cells. After external antigen
contact, respiratory epithelial cells and classical innate immune cells produce several cytokines which
stimulate different ILCs groups. IL-12, IL-15, IL-18 prime ILC1s to produce IFN-γ and other cytokines
involved in microbe elimination, Th1 activation, and tumor eradication. ILC2s are activated by IL-4,
prostaglandin D2 (PGD2), IL-33 and IL-25 to produce amphiregulin involved in tissue repair, IL-5 to
recruit eosinophils, and IL-13 to stimulate mucus production by epithelial cells. ILC3s are primed by
IL-18, IL-23, and IL-1β to produce principally IL-17 and IL-22 which participate in lymphoid tissue
formation, Th cell regulation, B cell activation, and epithelium activation and repair. EC, epithelial cell;
MØ, macrophage; DC, dendritic cell; PGD2, prostaglandin D2; TSLP, Thymic Stromal Lymphopoietin.

2. Materials and Methods

The systematic review was conducted using the general principles of the PRISMA-P (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) [45] aimed to facilitate the development
and reporting of systematic review protocols. The study protocol is available online [46].

2.1. Search Strategy

For the literature search, no limits were set on study designs, language or year of publication.
We searched five electronic databases: Embase (via Embase.com), Medline (via Ovid), Web of Science,
Cochrane Central, and Google Scholar from their inception until May 2018 for studies that measured
the effect of air pollution exposure on number, viability, or function of any of the ILCs. The search
strategy was constructed in cooperation with a medical information specialist (Wichor M Bramer,
Medical Library, Erasmus MC) and combined terms related to air pollution (e.g., “air pollution”,
“CO”, “DEP”, “PM2.5”, or “O3”) with those related to ILCs (e.g., “innate lymphoid cells”, “ILC1”,
“ILC2”, “ILC3”, or “NK”), respiratory health (e.g., “asthma”, “respiratory infections”), or immunity
(e.g., “innate immunity” or “cytokines”). We additionally checked references cited in selected articles
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and hand searched the PubMed engine database to retrieve additional articles. The full search strategy
is provided in the Supplementary material, Resource S1: Search terms, and Figure 2.
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Figure 2. Flow diagram of study selection.

2.2. Screening and Eligibility Criteria

Article titles and abstracts were initially screened for eligibility by two authors (B.E., M.C.). We
included all studies based on cohorts, cross-sectional, experimental, in vitro, or in vivo designs in
either animals or humans, that examined the effect of air pollutants exposure (measured by either
pollution measurements or serologic markers of exposure) on lung ILCs and/or cytokines. We excluded
systematic reviews, comments, consensus reports, editorials, guidelines, and protocols.

2.3. Study Selection

First, we read the abstract of the retrieved references and selected those that included any of
the specified respiratory health (e.g., asthma, airway hyperreactivity, and respiratory infection), as
well as ILCs cell number and viability, cytokine production and activity, infection susceptibility and
allergen-induced response, and airway hyperresponsiveness. Second, we read the full paper of the
selected abstracts to confirm if they fulfilled all selection criteria. Disagreements were resolved by
consensus and in consultation with a third independent reviewer (Josje Schoufour, Department of
Epidemiology, Erasmus MC).

2.4. Data Extraction

Extracted data from each article were registered in a predesigned form to record study design,
analysis unit, and type of exposure, route and doses of exposure, experimentation arm/groups, findings,
and conclusions (Supplementary Material Resource S2: Methodological details of the studies).
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2.5. Quality Assessment of The Evidence

The quality of each study was assessed in terms of reproducibility of experimental methods and
results, using a modified version of the Animal Research Reporting in vivo Experiments (ARRIVE)
guidelines [47], and an adapted scale for in vitro experiments in human cells (Supplementary Material,
Resource S3: Modified ARRIVE guidelines, and Resource S4: Adapted scale from ARRIVE guidelines
for experimental studies in human cells).

2.6. Synthesis of the Evidence

The diversity in study designs, models, doses, and ways of assessing exposure and outcomes, did
not allow us to carry out comparative quantitative analysis. Instead, we provided a qualitative overview
of the extracted data and characterized the studies, exposures, outcomes, and the main findings.

3. Results

The search of electronic databases and hand searching provided 2209 citations. After removing
duplicates, 1521 unique titles remained. Of these, 1499 studies were excluded based on the initial
screening criteria. For the remaining 22 references, full-text papers were retrieved and further assessed
for eligibility. From these, ten studies were not considered for the purpose of this review because
one study did not measure lung ILCs and nine did not include the inorganic pollutants as the study
objective. These studies were designed to induce allergic airway inflammation and observe how ILCs
interact with the adaptive immune system, particularly Th2. (Supplemental Material, Resource S5) (For
flow diagram see Figure 2). Out of the 12 remaining articles selected for the final evaluation, six studies
investigated the effects of different pollutants on NK cells and six studies examined the effects on
various other ILCs (Table 1). There were nine studies based on in vivo and in vitro murine experimental
models [48–56], and three studies based on ex vivo and in vitro human cell models [57–59].

Regarding the quality of the experimental procedures, experimental animals, and experimental
outcomes, all murine model studies met at least 75% of requirements stipulated by the modified ARRIVE
guidelines. Experimental procedures and experimental outcomes of the human cell studies met at least
89% of requirements stipulated by the adapted scale (Supplementary Material, Resource S3: Modified
ARRIVE guidelines, and Resource S4: Adapted scale from ARRIVE guidelines for experimental studies
in human cells). These percentages ensure the reliability of the in vitro experimental procedures.

Table 1 lists the 12 selected studies and their main findings, and Table 2 integrates the main
findings per cell type, focusing first on ILC1-NK cells and then summarizing the effects of air pollutants
on ILC2 cells. Overall, the studies show the diversity in study designs, models, doses, and ways of
assessing exposure and outcomes. They were:

(a) 3 studies on the effects of O3 on ILC2 (all in mice) [51,52,55],
(b) 3 studies on the effects of O3 on NK cells (1 in mice and 2 in humans) [54,58,59],
(c) 1 study on the effects of carbon nanotubes on ILC2 (in mice) [48],
(d) 1 study on the effects of DEPs on ILC2 (in mice) [49],
(e) 2 studies on the effects of DEPs on NK cells (1 in mice and 1 in humans) [50,57],
(f) 1 study on the effects of PM2.5 on ILC2 (in mice) [56],
(g) 1 study on the effects of PM2.5 on NK cells (in rats) [53].
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Table 1. Characteristics and main findings of the studies.

Authors, Year
Type of Exposure

(Doses; Method of
Administration)

Outcome Summary of Findings/Observed Effects
of Exposure on the Outcome

Type of Cell: Mice ILCs

Beamer, et al. 2013 [48]
Multi-walled carbon
nanotubes
(50 µg; oropharyngeal)

IL-33 function on ILC2

• Epithelial cells (type II pneumocytes)
in the lavage fluid induce secretion
of IL-33

• Elevated levels of IL-33 induce
recruitment of ILCs in the airways

• ILCs acting in response to IL-33
stimulate AHR and eosinophil
recruitment through the release
of IL-13

Type of Cell: Mice ILC2

De Grove, et al. 2016 [49]
DEP
(25 mg on days 1, 8, and
15; intranasal)

Function and cytokine
production

• DEP alone has little effect but
enhances the effects of house dust
mite (HDM) exposure

• Marked increase in
epithelium-derived cytokines IL-25
and IL-33

• Increased numbers of DCs,
neutrophils, ILC2s, CD41 T cells,
CD81 T cells, and eosinophils.

• ILC2s marginally contribute to
DEP-enhanced allergic
airway inflammation

• Dysregulation of ILC2s and Th2 cells
attenuated DEP-enhanced allergic
airway inflammation.

• A crucial role for the adaptive
immune system on concomitant
DEP plus HDM exposure

Mathews, et al. 2017 [51] O3 (2 ppm for 3 h;
inhaled)

IL-33 action on ILC2
and γδ T

• Interaction between Obesity and O3
• Increased lung IL-13+ innate

lymphoid cells type 2 (ILC2) and
IL-13+ γδ T cells in obese mice

• Increased ST2+γδ T cells, indicating
that these cells can be targets
of IL-33,

• O3 induced type 2 cytokine
expression in ILC2s and γδ T cells in
obese mice

• Little or no effect of O3 on IL-33 in
lean mice.

• ILC2s and γδ T appear to contribute
to the effects of IL-33

Yang et al. 2016 [52]
O3
(3 ppm for 2 h on day 16;
inhaled)

Il5 and Il13 RNA
expression

• O3 exposure increased airway levels
of IL-33, a potent activator of
lung ILC2s

• Lung-resident ILC2s were the
predominant early source of the Th2
cytokines IL-5 and IL-13 in
O3-exposed mice

• No ILC2 influx or proliferation
within 12 h after O3 exposure

• ILC2s from the lungs: greater
increased activation of Il5 and Il13
mRNA 12 h after O3
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Table 1. Cont.

Authors, Year
Type of Exposure

(Doses; Method of
Administration)

Outcome Summary of Findings/Observed Effects
of Exposure on the Outcome

Kumagai, et al. 2017 [55]

O3
(0.8 ppm on
day 1 or for 9 consecutive
weekdays; inhaled)

ILC2 in airway
inflammation, mucus cell
metaplasia, and Type 2
immunity

• O3 induced pulmonary esosinophilic
inflammation in ILC sufficient mice

• O3 induced mucus cell metaplasia in
proximal airway epithelium

• O3 increased mRNA transcripts of
type 2 immunity in lung

Lu, et al. 2018 [56]

PM2.5
(25 mL/kg of a
suspension of 15 g/L on
days 1, 8, 15, and 21;
intranasal)

ILC2-related
transcription factors

• Increased expression of RORα and
GATA3 transcription factors, which
are vital factor for ILC2.

• Increased IL33-levels which
activates ILC2s

Type of Cell: Rats NK

Burleson, et al. 1989 [54]

O3
(1.0 ppm for 23.5 h /day
on 1, 3, 7, or 10
consecutive days;
ambient)

Number and function of
NK, and function of
adherent cells

• O3 induced suppression of
pulmonary NK activity

• Cell/products involved in NK
activation mediate
the immunosuppression

• O3 decreased number but not
viability of NK

Zhao, et al. 2014 [53]
PM2.5
(1, 5, or 10mg/kg body
weight; intratracheal)

Number and bacterial
response

• PM2.5 increases susceptibility to
respiratory infection by S. aureus.

• PM2.5 decreases the number of NK
cells in the lung and suppress AM
phagocytosis, which provides a
potential mechanism to explain that
association between ambient air
pollution and pulmonary
bacterial infections

Type of Cell: Mice NK

Finkelman, et al. 2004 [50] DEP
(2 mg once; injected i.p.) INF gamma production

• DEP potently inhibits IFN-γ
production by NK and NKT cells,
which is rapid in onset, long lasting,
and dose-related

• DEP induces an inhibitory effect on
steady-state INF-γ mRNA levels
and may also suppress INF-γ
production through
posttranscriptional mechanisms

Type of Cell: Human NK

Müller, et al. 2013 [57]
DEP
(10 µg/mL; direct
exposure of cell)

Function and cytokine
release

• DEP reduced expression of the
cytotoxic NK cell surface marker
CD16, gene and protein expression
of granzyme B and perforin, and the
ability to kill target cells

Kucuksezer, et al. 2014 [58]

O3
(1, 5, 10, and 50 mg/mL
cRPMI; direct exposure
of cell)

Number, function
• O3 increased number of CD16 cell

and cytotoxicity of NK

Müller, et al. 2013 [59]
O3
(0.4 ppm; direct exposure
of cell)

Effect of O3 exposed
epithelial cells on natural
killer cells function,
cytokine release.

• O3 reduced markers of activation,
INF-γ production, and
cytotoxic function.

• O3 upregulated ligands for NK in
epithelial cells.
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Table 2. Effects of air pollutants on NK cells and ILC2: integration of findings.

NK Cell Features a

Exposure PM 2.5 DEP O3 CN

Model Rats Mice Human Rats Human Mice

Number
↓NK BALF
↓Influx into

airways

↓NK in
spleen

↓% lung
lymphocytes

Low doses:
↑ number

Cytokine ↓IFN-γ

↑IL-1β
↑ IL-8
↑ TNF-α

no changes
in INF- γ

↓ IFN-γ

Activity

↑

Susceptibility
to

respiratory
infection by

S. aureus

↓

Cytotoxicity
↓ CD16

expression
↓ Granzyme

B levels
↓ Perforin

levels

↓ Pulmonary
NK activity

↓

Cytotoxicity
↓ Granzyme

B levels
↓Markers of
cytotoxicity

Low doses: ↑
cytotoxicity

ILC2 cell features b

Exposure PM 2.5 DEP O3 CN

Model Rats Mice Human Mice Human Mice

Number
↑ in alveolar

space but
not in lungs

No effect in
lean mice
↑IL-5+ and

IL-13+ ILC2s
in BAL in

obese mice

↑ in lung

Cytokine ↑IL-5
↑IL-13

↑IL-5
↑IL-13 ↑IL-13

Air way
hiperresponsiveness

(AHR)

Enhances
AHR:

↑ RORα and
GATA3

transcription
factors

related to
ILC2

Enhances
AHR:

Accumulation
of ILC2s and
Th2 cells and

type 2
cytokine

production

Induces
AHR:

↑ expression
of lung
mRNA

transcripts
associated
with type 2
immunity

Induces
AHR:

↑ IL-13 from
ILC2

a References: [50,53,54,57–59]. b References: [48,49,51,52,55,56]. CN = carbon nanotubes.

3.1. Effects of Air Pollutants on ILC1-NK Cells

NK cells play a fundamental role in the immunity against intracellular infections and tumor
immune surveillance (Figure 1). Overall, the summary showed that exposure to air pollutants results
in decreased or impaired NK cell number, and modified cell function and cytokine release (Table 2).

3.1.1. Cell Number and Viability

Studies in murine strains demonstrated that PM2.5 exposure decreases significantly both the
absolute NK cell number in broncho-alveolar lavage fluid (BALF) and the NK cell influx into the
airway lumen at 24 h post S. aureus infection [53]. Similarly, DEP exposure decreased the number
of NK cells in spleen in mice [50]. Concerning O3 exposure, this pollutant decreases the percentage
of lung lymphocytes in mice, although without effect on their viability [54]. In contrast, in human
cells, 3–5 days of low dose (1mg/mL) O3 exposure significantly increased the total NK cell population
defined as CD3-CD16+/56+ without significant changes among the expression levels of other surface
molecules [58].
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3.1.2. Cytokine Production

NK cells stimulated by IL-12 or IL-18, secreted from dendritic cells and macrophages, produce
several cytokines, principally IFN-γ, IL-1β, IL-8, IL-17A, and tumor necrosis factor alpha (TNF-α),
which are involved in lung inflammatory processes and infection resistance (Figure 2). DEP exposure
caused strong, rapid in onset, long-lasting, and dose-related suppression of IFN-γ production in
murine NK following lipopolysaccharide (LPS) stimulation; this suppression was due to the inhibition
of the IL-12, and IL-18 response to LPS by accessory cells as well as by a direct inhibitory effect on
IFN-γ mRNA levels, partly through post-transcriptional mechanisms [50]. In NK cells from healthy
non-smoking non-asthmatic volunteers, DEP produced a modest increase of IL-1β, IL-8, and TNF-α
release with no changes in IFN- γ [57]. O3 exposure also reduces the expression of IFN-γ on human NK
cells by affecting the direct cell-cell interactions between epithelial and NK cells, and it is dependent on
UL16 binding protein 3 (ULBP3) and major histocompatibility complex class I chain-related protein A
and B (MICA/B) on epithelial cells [59].

3.1.3. Activity

Cytotoxic activity of the NK cell is achieved through the release of granzyme B and perforin once
the activating receptors have recognized their ligands (Figure 1). Activating receptors include NKp46,
NKp44, CD16, CD69, and NKG2D. The murine experiments with the preceding PM2.5 exposures have
demonstrated that: (a) exposure triggers a significant increase in bacterial load in the lung of rats
infected by S. aureus; and (b) adoptive NK cell transfer to the lung of those rats markedly reduces the
bacterial load to a level comparable to control rats that were infected with S. aureus, but not exposed to
PM2.5. A potential mechanism explaining these observations is that alveolar macrophages, cultured
with NK cells, have a high rate of phagocytosis of S. aureus, and suggests that interactions between NK
cells and lung macrophages facilitate better control of bacterial infection by innate phagocytic cells [53].
In vitro and ex vivo experiments in human blood cells showed that exposure to DEP alone significantly
reduces the cytotoxic potential of NK cells as compared to controls. At the same time, exposure to
DEP, in the context of stimulation with the viral mimetic polyI:C, decreases the expression of CD16,
granzyme B, and perforin, and suppresses the ability of NK cells to kill target cells without affecting the
percent of NKG2D+ and NKp46+ cells [57]. In murine strains, continuous exposure to 1.0 ppm O3 for
1, 5, and 7 days had a significant immunosuppressive effect on pulmonary NK cell activity compared
to controls, but this effect was reversed after 10 days of continuous O3 inhalation [54]. Furthermore, it
has been demonstrated that the effect on pulmonary NK cells involved several cell types and/or their
products that stimulate NK cells [54].

Similarly, studies on the interrelation between O3-exposed human epithelial cells and NK cells
showed that direct exposure to O3 reduces, although non significantly, the expression of NK cell
receptors (NKG2D and NKp46), the intracellular levels of granzyme B, and cytotoxicity function [59].
Yet, in another study, low doses of O3 exposure (1 mg/mL and 5 mg/mL) induced an increase in human
NK-cell cytotoxicity without a significant difference between doses [58].

3.2. Effects of Air Pollutants on ILC2

ILC2 play critical roles in immune protection, tissue repair, brown fat biogenesis, and in the
regulation of the inflammatory process (Figure 1). Air pollutants stimulate or inhibit ILC2 as shown in
experiments in mouse models (Table 2).

3.2.1. Cell Number and Viability

ILC2s (nuocytes) represent approximately 1% of the total number of cells in the whole lung lavage
in mice [48]. Exposure to DEP plus house dust mite (HDM) increased the number of cytokine-expressing
ILC2s along with Th2 T cells in the alveolar space of mice, but not in the lung tissue itself [49]. O3

exposure did not affect the total number of pulmonary ILC2 in non-obese mice [52,55], suggesting
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no influx or proliferation within 12 h after O3 exposure in such mice [52]. However, in obese
mice O3 increased the number of IL-5+ and IL-13+ ILC2s [51]. Conversely, exposure to carbon in a
multi-walled carbon nanotube experiment in two strains of mice resulted in a significant increase of
ILC2 numbers [48].

3.2.2. Cytokine Production and Activity

Exposure to DEP plus HDM also increased IL-5 and IL-13 levels in the BALF ILC2 compared
with DEP alone and saline exposed groups, but this increase was also seen in Th2 cells, which was
the principal source of those cytokines [49]. Experimental studies in mice showed that O3 [51,52] and
multi-walled carbon nanotube [48] exposure induced the production of IL-33 by lung tissue which in
turn activated several cells in the lung including Th2 T cells and ILC2 cells to produce IL-13 [48,51,52]
and IL-5 [51,52]. In fact, it was reported that 12 h of O3 exposure significantly increased the transcription
of IL-5 and IL-13 mRNA with the consequent increase of IL-5 and IL-13 production [52]. Additionally,
it was confirmed that ILC2s were the principal source of IL-5 and IL-13 since O3 exposure of CD4+

Thy1+ Th cells isolated from the lungs did not induce those cytokines 12 h after exposure [52], and
that bronchoalveolar lavage type 2 cytokines were not significantly reduced in O3-exposed obese mice
when CD4+ T cells were depleted by treating mice with a depleting anti-CD4 antibody [51].

3.2.3. Allergen-Induced Response and Airway Hyperresponsiveness (AHR)

IL-33, IL-5 and IL-13 are critical for AHR since they induce granulocyte infiltration and changes in
airway epithelia (Figure 1). In an ovalbumin murine asthma model, exposure to PM2.5 exacerbated the
asthma symptoms by significantly increasing the expression of RORα and GATA3 levels in peripheral
blood mononuclear cell, transcription factors related to ILC2, suggesting that ILC2s play a crucial role
in serious asthma induced by PM2.5 [56].

AHR was significantly enhanced by DEP exposure in HDM exposed mice due to accumulation of
ILC2s and Th2 cells and type 2 cytokine production (IL5 and IL-13); however, the contribution of ILC2
after DEP exposure was marginal since ILC2 deficient mice exposed to DEP showed AHR depending
on Th2 cells activation [49].

ILC-sufficient mice exposed for 9 days to ozone showed significantly greater BALF eosinophils,
mucous cell metaplasia with more mucins in the proximal airway epithelium, and increased expression
of lung mRNA transcripts associated with type 2 immunity than air-exposed mice [55]. Additionally,
mice treated with anti-Thy1.2 antibodies, which significantly reduce a total number of both ILCs
and T cells, dramatically lost the O3-induced influx of eosinophils and mucous cells metaplasia [55].
Importantly, intra-tracheal transfer of ILC2s to mice treated with anti-Thy1.2 showed that O3-exposed
mice stimulated with methacholine present dramatically enhanced AHR compared to air-exposed
mice [52].

Concerning carbon nanotube exposure, this regimen also induced AHR in mice through IL-13
action. The mechanism was via activation of epithelial cells to produce IL-33, which in turn recruits
and stimulates ILC2 to produce IL-13 [48].

3.3. Effects of Air Pollutants on ILC3

No studies were identified that explored the effects of air pollutants on ILC3 numbers, viability, or
cytokine production.

4. Discussion

In this systematic review, we showed that PM, DEP, O3, and carbon nanotubes affect ILCs in the
respiratory system in two ways. The pollutants generally inhibit ILC1 (NK cell) cytotoxicity and cytokine
(IFN-γ) production, thereby increasing the susceptibility to infections and allergies. The pollutants
also stimulate ILC2 to produce IL-5 and IL-13, thereby increasing airway hyperresponsiveness.
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With regard to mechanism of action, the reviewed studies suggest that exposure to particulate
contaminants (DEP and PM2.5) and high doses of O3 impair lung NK cell activity directly by
decreasing expression of the activating receptors CD16 and CD69, granzyme B and perforin levels,
and also indirectly by dampening the activity of neighboring cells implicated in NK cell activation.
In addition, these same pollutants decrease IFN-γ secretion of NK cells, an important cytokine
responsible for stimulating macrophages [60–62] and for inducing adaptive Th1 differentiation and
function [63–65]. These alterations of NK cells jointly lessen the ability of the organism to fight against
intracellular pathogens, viruses in particular, and may thereby result in increased susceptibility to
respiratory infections.

With regard to ILC2 cells, experimental studies in murine strains indicate that DEP, O3, and
multi-wall carbon nanotubes activate ILC2 to produce IL-5 and IL-13, via a larger production of IL-33.
As IL-5 and IL-13 are also produced by Th2 cells and are responsible for IgE class switching on B cells
and the recruitment and activation of eosinophils [66–69], ILC2s stimulated by air pollutants likely act
synergistically with Th2 cells to mount allergic respiratory processes, such as rhinitis and asthmatic
episodes associated to air pollutants.

This review contributes to our understanding of the role that ILCs play in the effect of environmental
air pollutant exposure on respiratory infections and allergic disease. Our findings may be useful to
identify potential intervention strategies, targeting the key molecules which enhance pulmonary NK
cell function to protect against infections or to control an excessive activation of ILC2, thus decreasing
the production of allergy-related cytokines and minimizing airway allergic inflammation. With respect
to the development of preventive strategies, a comprehensive solution against harmful effects of air
pollution on the respiratory health should require the implementation of and compliance with a broad
range of policies to improve air quality [70].

We excluded nine studies that addressed the crosstalk between ILCs, particularly ILC2,
and adaptive type 2 immune response during a natural airborne allergen-induced allergic airway
inflammation, but not included any of the inorganic pollutants. The general conclusion is that both type
of cells work together in a bidirectional way to maintain airway hyperreactivity. In the supplementary
material we provided the list of the excluded studies.

This is the first comprehensive systematic review that builds a general picture of how ILCs are
affected by different air pollutants and how respiratory health is affected. Since most of the evidence
included in this review is based on in vitro and in vivo studies, thus the extrapolation of our findings to
general population may be difficult. The experimental models could also underestimate or overestimate
the effects of contaminants on the ILCs because a) the animal studies use inbred strains, which may
differ in immune responsiveness to the heterogeneous responses found in the general population; b)
the doses and duration of the exposure used in the experimental conditions may not represent real-life
exposures; and c) the relationship between a dose of exposure and number of exposed cells may not
accurately represent reality. Therefore, it would be important that future studies examine the effects of
air pollution on human ILCs, for example in sputum samples and, preferably, in combination with
reliable exposure measurements. These studies should help to understand the role and mechanisms
underlying the participation of these cells in infections and airway hyperreactivity associated with air
pollutants exposure.

5. Conclusions

This systematic review of available studies on air pollution and ILCs shows that air pollution
impairs the function of ILCs, increasing the susceptibility to infections and allergies. Exposure to key
air pollutants, including PM, DEP, and O3 stimulate lung ILC2s to produce high levels of IL-5 and
IL-13 and generally inhibit the cytotoxicity and IFN-γ production by ILC1-NK cells. These processes
most likely play an essential role in the airway hyperresponsiveness and increased susceptibility to
respiratory infections triggered by exposure to air pollution. Our findings also highlight substantial
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gaps in knowledge and the need to better understand the mechanisms by which human immune
systems react to air pollution.
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