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Purpose/Objectives: Node-positive breast cancer patients often receive
chemotherapy and regional nodal irradiation. The cardiotoxic effects of these
treatments, however, may offset some of the survival benefit. Cardiac magnetic
resonance (CMR) is an emerging modality to assess cardiac injury. This is a pilot trial
assessing cardiac damage using CMR in patients who received anthracycline-based
chemotherapy and three-dimensional conformal radiotherapy (3DCRT) regional nodal
irradiation using heart constraints.

Materials and Methods: Node-positive breast cancer patients (2000–2008) treated
with anthracycline-based chemotherapy and 3DCRT regional nodal irradiation (including
the internal mammary chain nodes) with heart ventricular constraints (V25 < 10%)
were invited to participate. Cardiac tissues were contoured and analyzed separately
for whole heart (pericardium) and for combined ventricles and left atrium (myocardium).
CMR obtained ventricular function/dimensions, late gadolinium enhancement (LGE),
global longitudinal strain (GLS), and extracellular volume fraction (ECV) as measures of
cardiac injury and/or early fibrosis. CMR parameters were correlated with dose-volume
constraints using Spearman correlations.

Results: Fifteen left-sided and five right-sided patients underwent CMR. Median
diagnosis age was 50 (32–77). No patients had baseline cardiac disease before regional
nodal irradiation. Median time after 3DCRT was 8.3 years (5.2–14.4). Median left-sided
mean heart dose (MHD) was 4.8 Gy (1.1–11.2) and V25 was 5.7% (0–12%). Median
left ventricular ejection fraction (LVEF) was 63%. No abnormal LGE was observed.
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No correlations were seen between whole heart doses and LVEF, LV mass, GLS, or
LV dimensions. Increasing ECV did not correlate with increased heart or ventricular
doses. However, correlations between higher LV mass and ventricular mean dose, V10,
and V25 were seen.

Conclusion: At a median follow-up of 8.3 years, this cohort of node-positive
breast cancer patients who received anthracycline-based chemotherapy and regional
nodal irradiation had no clinically abnormal CMR findings. However, correlations
between ventricular mean dose, V10, and V25 and LV mass were seen. Larger
corroborating studies that include advanced techniques for measuring regional heart
mechanics are warranted.

Keywords: 3D conformal radiation therapy, cardiotoxicity, cardiac MRI, radiation therapy, breast cancer

INTRODUCTION

The use of regional nodal irradiation (RNI) for node positive
breast cancer treatment after breast conserving surgery or
mastectomy improves local control and survival (1, 2). However,
the disease-specific survival advantage of RNI may be attenuated
by higher non-breast cancer mortality (3, 4) secondary to cardiac
causes (5–9). Patients with left-sided breast cancer receiving
radiation have increased rates of major coronary events (9, 10)
and cardiac mortality (7, 11). In addition, cardiac deaths (10, 12)
correlate with extrapolated mean heart irradiation dose. There
is an estimated approximately 4–16% relative increase in heart
disease and/or major coronary events for each 1 Gy in mean heart
dose received (9, 10, 13). Patients receiving internal mammary
chain (IMC) nodal radiation (14) and patients treated with left-
sided breast conserving therapy (15) also demonstrate higher late
cardiac morbidity. In addition, many breast cancer patients who
receive RNI also receive cardiotoxic anthracyclines as part of their
chemotherapy (16). Anthracyclines have been shown to increase
risk of systolic dysfunction and congestive heart failure as well
as subclinical cardiac changes (17–19). Although this risk does
not outweigh the survival benefit of anthracyclines (20), cardiac
changes can be seen in survivors as far as 18 years or more from
diagnosis (21). The interaction of anthracyclines and radiation on
cardiovascular outcomes is not fully understood, but additional
cardiac risk factors have been shown to increase the absolute risk
of cardiac events after radiation therapy (9).

Many of the studies demonstrating increased levels of
cardiac morbidity and mortality in breast cancer patients
receiving radiation include mostly patients treated prior to the
mid-1980s (4, 5, 8, 11). A number of recent breast cancer
radiation techniques result in reduced radiation doses to the
heart (22–25). Studies of more recent series of breast cancer
patients have demonstrated lower excess cardiac mortality from
radiotherapy (4, 5, 7, 26). Advances in radiotherapy such as three-
dimensional conformal radiation therapy (3DCRT) have allowed
quantification of heart irradiation doses and treatments that
deliver lower doses of radiation to the heart. Further exploration
is therefore warranted to assess the intuitive notion that modern
3DCRT techniques diminish damage to the heart, reduce adverse
cardiac events, and improve overall survival.

Cardiac magnetic resonance imaging (CMR) is a powerful
modality that allows for sensitive evaluation of cancer therapy-
induced cardiac changes (27, 28). While CMR is not as widely
used as echocardiograms, its utility is rapidly growing in
cardiac research studies as an attractive modality. CMR is
more reproducible than echocardiography (29), and CMR has
been shown to be superior to echocardiography to identify
cardiotoxicity in cancer survivors (30). Furthermore, CMR is not
affected by acoustic window or geometric assumptions, and it
is less dependent upon operator skills than echocardiography.
CMR is also attractive due to its ability to acquire anatomical,
functional, and perfusion information in one scanning period
with one modality. CMR’s exquisite soft tissue contrast and spatial
resolution (1–2 mm) may elucidate otherwise masked differences
in cardiac parameters (31).

The purpose of this pilot study is to utilize CMR to
examine cardiovascular function in women who received both
anthracycline-based chemotherapy and RNI using 3DCRT and
the use of heart constraints in treatment planning. This study
also aims to explore whether CMR-demonstrated changes in
perfusion, cardiac function, or cardiac anatomy correlate with the
received radiation doses.

MATERIALS AND METHODS

This Institutional Review Board approved trial (NCT02348684)
was conducted by screening a Medical College of Wisconsin
database from 2000 to 2008 for lymph node-positive breast
cancer patients treated with post-operative 3DCRT RNI with
a pre-determined heart constraint (32). Clinicopathologic data
were obtained from patient medical records. All patients received
either left- or right-sided breast or chest wall irradiation, along
with irradiation to the undissected axillary, supraclavicular, and
IMC lymph nodes to doses of 45–50 Gy in 1.8–2 Gy fractions.
The institutional cardiac dose constraints utilized during this
time period required that less than 6% (ideal) and less than
10% (acceptable) (32) of the volume of the left ventricle received
25 Gy (V25), based on studies by Gagliardi and Gyenes (33–35).
MHD was not constrained. All contours were recreated and/or
verified for the study patients for consistency. Heart contours
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included (1) the whole heart as defined by pericardium, and (2)
the ventricular volume as defined by both ventricles and the left
atrium, excluding pericardium (32). Eligibility criteria were prior
anthracycline chemotherapy, no cardiac disease (including heart
failure, coronary heart disease, significant valvular disease, or
cardiac event such as myocardial infarction) pre-breast cancer
diagnosis, and no recurrent breast cancer. Patients unable to
tolerate an MRI with contrast were excluded, as well as patients
with active atrial fibrillation due to suboptimal CMR images
in the setting of this arrhythmia. Eligible women were invited
via letter to enroll in this IRB-approved trial. Fifteen left-sided
patients and five right-sided patients were enrolled, for a total
of twenty patients. CMR parameters evaluated included the
following indicators of left ventricular (LV) and right ventricular
(RV) function: ejection fraction (EF) and left ventricular mass
index (LVMI). LV and RV dimensions were also obtained: LV
end-diastolic volume index (LVEDVI), LV end-systolic volume
index (LVESVI), RV end-diastolic volume index (RVEDVI),
and RV end-systolic volume index (RVESVI). In addition,
late gadolinium enhancement (LGE) and total LV myocardial
extracellular volume (ECV) fraction were obtained as measures
of cardiac scar and/or early cardiac fibrosis (36, 37). The LV was
divided into three zones (basal, mid, and apical), and the short
axis slices were set up visually to represent these areas. Planned
analysis included correlation of CMR parameters with cardiac
dose-volume constraints using Spearman correlations.

CMRs were obtained on a Verio 3T MRI scanner (Siemens
Healthineers, Erlangen, Germany) with patients imaged
in the supine position using commercially available RF
transmitter/receiver coils. Geometric assessment of the LV
was performed without contrast using a steady-state free
precession (SSFP) cine sequence. Imaging parameters were:
repetition time (TR) = 56.52 ms, echo time (TE) = 1.36 ms,
asymmetric echo with factor 0.41, flip angle (FA) = 42◦, field
of view (FOV) = 252 mm2

× 300 mm2, matrix of 162 × 192
(in-plane pixel dimensions of 1.56 mm × 1.56 mm), slice
thickness = 10 mm, receiver bandwidth (BW) = 1,240 Hz/px,
parallel imaging using GRAPPA reconstruction (R = 2), and
25 cardiac phases. Gadolinium contrast agent (gadopentetate
dimeglumine, Magnevist, Bayer Healthcare, Berlin, Germany)
was administered at a rate of 0.2 mmol/kg and maximum dose
of 20 mmol via peripheral IV. After a 10-min delay, LGE images
were obtained for myocardial fibrosis assessment using a T1-
weighted, segmented inversion-recovery (IR), fast gradient-echo
(GRE) pulse sequence. Imaging parameters were: TR = 750 ms,
TE = 1.94 ms, FA = 20◦, FOV 340 mm2

× 265 mm2, matrix
of 256 × 160, slice thickness = 10 mm, BW = 300 Hz/px, and
no acceleration. Coverage of the entire LV was achieved by
acquiring 6–8 short-axis (SAX) slices with 10-mm slice spacing,
along with long axis images for cross validation. The same
heart coverage with identical slice prescriptions were used for
both cine and LGE imaging. Qualified cardiac MRI physicians
(JR and AW) blinded to the patient identifying information,
including dosimetric parameters and side of breast cancer,
interpreted the CMR images.

Semi-automated quantification of LV volumes and myocardial
mass was performed using CVI42 5.3.0 (Circle Cardiovascular

Imaging, Calgary, Canada). Manual identification of the slice
range to be segmented and the mitral valve annulus were
performed. Optional corrections comprised manual contouring
of epicardial or endocardial surfaces to restrict region-growth and
adjusting blood sensitivity. LV volumes were quantified as the
sum of short axis chamber volumes (2D area × slice thickness)
measured during end-diastole (end diastolic volume, EDV) and
end-systole (end systolic volume, ESV). EF was calculated as
100 × (EDV-ESV)/EDV. LV mass was calculated as the product
of myocardial volume and specific gravity ([Epicardial EDV-
Endocardial EDV] × 1.05). Global longitudinal strain (GLS)
was calculated from short and long axis SSFP cine sequences
utilizing the Tissue Tracking module of CVI42 5.3.0 (Circle
Cardiovascular Imaging, Calgary, Canada).

Contrast-enhanced CMR images were analyzed to determine
the amount of LGE versus normal LV myocardial volumes.
Any hyperenhanced areas of LGE were manually planimetered
by visual inspection in each SAX slice, including only regions
that were fully enhanced and approximately ≥6 standard
deviations (SD) above the mean signal of normal myocardium.
Identical slices during cine imaging were compared to identify
extent of blood pool and epicardial fat. Global ECV was
obtained using the 3-3-5 MOLLI MyoMaps motion-corrected T1
map sequence (Siemens Healthineers, Erlangen, Germany) pre-
contrast and 15 min post-contrast injection, and corrected with
hematocrit obtained on the day of the CMR. Statistical analyses
were performed using Graphpad Prism Version 7.0 (GraphPad
Software, La Jolla, CA, United States) and SAS version 9.3 (SAS
institute, Cary, NC, United States). Spearman’s correlations were
calculated to determine correlation between heart dose and CMR
parameters. Wilcoxon’s rank sum tests were used to compare
CMR values in left- versus right-sided patients. P < 0.05 was
considered significant.

RESULTS

Fifteen left-sided and five right-sided patients were enrolled in
this study after obtaining informed consent, and the patients
subsequently underwent CMR. The median age of the patients
at diagnosis was 50 years (range 32–77). The median age
at CMR was 60 years (range 40–83). The median time after
3DCRT was 8.3 years (range 5.7–14.4, Table 1). The presence
of cardiac risk factors at the time of CMR is shown in Table 1.
Patient characteristics were similar between groups (Table 1).
All patients received doxorubicin or epirubicin as part of
their chemotherapy. Fifteen patients received doxorubicin and
cyclophosphamide, with thirteen patients receiving four cycles,
one patient receiving three cycles, and one patient receiving
two cycles. Three patients received six cycles of docetaxel,
doxorubicin, and cyclophosphamide and two patients received
docetaxol, epirubicin, and cyclophosphamide. Two patients also
received trastuzumab (one left-sided patient and one right-sided
patient) in addition to chemotherapy. Four patients had a ten
pack-year or greater smoking history (three left-sided and one
right-sided patient). Six patients had hypertension (five left-sided
and one right-sided). Two left-sided patients had type II diabetes
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TABLE 1 | Patient characteristics.

Median (range) All patients
(N = 20)

Left-sided
(N = 15)

Right-sided
(N = 5)

Age at diagnosis 50 (32–77) 49 (35–77) 52 (32–75)

Age at MRI 59 (40–84) 58 (41–84) 64 (40–80)

Follow-up (years) 8.3 (5.2–14.4) 8.2 (5.7–13.9) 8.5 (5.2–14.4)

Receipt of Trastuzumab 2 1 1

Smoking history ≥ 10
pack-year

4 3 1

Cardiovascular disease 0 0 0

Hypertension 6 5 1

Hyperlipidemia 6 6 0

Type II diabetes 2 2 0

Patient characteristics and the presence of cardiovascular risk factors at the time
of MRI are shown.

(Table 1). None of the patients had a history of clinical cardiac
disease at the time of trial enrollment.

The heart dose-volume values for left- and right-sided patients
are summarized in Table 2. Among right-sided patients, the
median of the mean heart dose (MHD) was 0.6 Gy (0–1.0 Gy),
and there was no volume of the heart receiving 5 Gy. Among

TABLE 2 | Patient cardiac dose-volume radiation parameters.

Median Mean Range

Left-sided patients

Mean heart dose 4.8 Gy 5.2 Gy 1.1–11.2 Gy

Max heart dose 51.9 Gy 49.2 Gy 11.4–54.4 Gy

Heart V5 16.4% 22.8% 0.2–63.5%

Heart V10 9.9% 14.5% 0–50.3%

Heart V25 5.7% 5.7% 0–12.4%

Heart V45 1.3% 1.3% 0–4.1%

Mean ventricular dose 5.8 Gy 5.6 Gy 0.2–11.2 Gy

Max ventricular dose 51.2 Gy 47.5 Gy 6.3–52.8 Gy

Ventricular V5 21.5% 28.3% 0–77.0%

Ventricular V10 12.1% 16.7% 0–55.1%

Ventricular V25 5.2% 5.9% 0–15.4%

Ventricular V45 0.7% 1.2% 0–3.5%

Right-sided patients

Mean heart dose 0.6 Gy 0.6 Gy 0–0.1 Gy

Max heart dose 3.8 Gy 3.9 Gy 0–6.4 Gy

Heart V5 0 Gy 0 Gy 0 Gy

Heart V10 0 Gy 0 Gy 0 Gy

Heart V25 0 Gy 0 Gy 0 Gy

Heart V45 0 Gy 0 Gy 0 Gy

Mean ventricular dose 0.4 Gy 0.4 Gy 0–0.8 Gy

Max ventricular dose 2.4 Gy 2.0 Gy 0.2–3.3 Gy

Ventricular V5 0 Gy 0 Gy 0 Gy

Ventricular V10 0 Gy 0 Gy 0 Gy

Ventricular V25 0 Gy 0 Gy 0 Gy

Ventricular V45 0 Gy 0 Gy 0 Gy

Abbreviations: V5, volume of the heart receiving 5 Gy; V10, volume of the heart
receiving 10 Gy; V25, volume of the heart receiving 25 Gy; V45, volume of the
heart receiving 45 Gy.

left-sided patients, the median MHD was 4.8 Gy (1.0–11.2 Gy)
and median heart V25 was 5.7% (0–12.4%); the maximum heart
doses ranged from 11–54 Gy (Table 2). For left-sided patients,
the median mean ventricular dose was 5.8 Gy (0.2–11.2 Gy) and
median ventricular V25 was 5.2% (0–15.4%, Table 2). A summary
of CMR values is provided in Table 3. Representative four-
chamber inversion recovery delayed enhancement images from
three separate patients, without evidence of fibrosis, are shown in
Figure 1. The median LVEF was 63%. Pericardial thickness was
normal in all patients (<4 mm), and no pericardial abnormalities
were found. No first-pass perfusion abnormalities were seen.
No late gadolinium enhancement was seen. Two patients had
valvular abnormalities found on CMR (a left-sided patient with
mild aortic regurgitation and a right-sided patient with mild
mitral regurgitation).

Established abnormal values for ECV have not been
universally agreed-upon (36, 38–40); however, some studies find
that total LV myocardial ECV values correlated with higher
likelihood of cardiac events and certain cardiac conditions (36,
40) and that ECV values correlated with myocardial fibrosis
seen on biopsy (36). While some patients had total myocardial
ECV values about 30%, these values were not higher in patients
with left-sided tumors (Table 3), and higher ECV values did not
correlated with increased heart (Table 4) or ventricular doses
(Table 5). Most of the patients in this cohort had lower absolute
GLS values than previously reported normal values (41), with
16/20 patients with lower absolute strain values (Table 3 and
Supplementary Material). However, GLS did not correlate with
doses of radiation received by the heart or ventricles (Tables 4 and
5). It is unclear whether these patients had lower absolute strain
values due to anthracycline exposure or other cardiac risk factors.

LVM (or indexed LVM, LVMI) has been shown to be an
independent risk factor for prediction of cardiovascular events
(42). However, in this cohort, no abnormally elevated values were
seen for LVMI or LV dimensions (Table 3). No abnormal CMR
values were seen in the two patients who received trastuzumab.
No correlations were seen between the MHD and max heart
dose, heart V5, heart V10, heart V25, or the CMR parameters
of LVEF, LVMI, or LV dimensions (Table 4). However, there
were significant correlations between higher LVMI and the mean
ventricular dose (r = 0.398, P = 0.012), the ventricular V10
(r = 0.386, P = 0.027), and the ventricular V25 (r = 0.425,
P = 0.016, Table 5). Examination of correlations between basal,
mid, and apical ECV values and heart or ventricular radiation
doses also did not show any signification positive correlations
(not shown). No correlations between increased total myocardial
ECV measurements and higher heart doses (Table 4) or higher
ventricular doses (Table 5) were seen.

DISCUSSION

A better understanding of the correlation between radiation
doses to the heart and subclinical cardiac changes in breast
cancer patients in modern series will be helpful to improve
the therapeutic ratio of radiation therapy (43). This pilot study
examined whether CMR could detect significant subclinical
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TABLE 3 | Cardiac MRI values of patients.

Median (range) Normal range All patients (N = 20) Left-sided (N = 15) Right-sided (N = 5) P value (left vs. right)

LVEF 52–72% 63% (52–77%) 64% (52–77%) 61% (56–75%) 0.919

LVEDVI (ml/m2) 56–95 63 (46–83) 61 (46–74) 66% (56–83) 0.219

LVESVI (ml/m2) 14–34 23 (13–32) 22 (13–32) 26 (14–31) 0.500

LVMI (g/m2) 41–81 46 (32–56) 48 (32–56) 40 (38–50) 0.186

GLS −22.1% to −15.9% −14.6% (−17.8% to −11.1%) −14.4% (−16.5% to −11.1%) −15.6% (−17.8% to −12.9%) 0.161

ECV (total) – 27% (23–34%) 27% (23–31%) 34% (24–34%) 0.119

Abbreviations: LVEF, left ventricular ejection fraction; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; LVMI, left
ventricular mass index; GLS, global longitudinal strain; ECV, extracellular volume fraction.

FIGURE 1 | Example CMR Images and Location of Apex, Mid, and Base of Ventricles. (A–C) Representative four-chamber inversion recovery delayed enhancement
images from three separate patients, without evidence of fibrosis. (D) A 4-channel steady-state free precession cine image demonstrating the usual position of the
three short axis images that measure ECV for base (1), mid (2), and apex (3) of the left ventricle.

cardiac changes in women who received 3D conformal RNI
(planned with heart constraints) and anthracyclines for node-
positive breast cancer. With a median follow-up of 8.3 years
in this cohort, CMR values were largely within normal limits.
However, while the LVMI values were within normal limits
(Table 3), there were significant positive correlations between
LVMI and the ventricular mean dose, V10, and V25 (Table 5).
In addition, increased total heart or ventricular doses were not
statistically correlated with increased ECV values, a measure of
extracellular volume that is increased in the setting of myocardial
injury and an indicator of interstitial fibrosis (37). Correlations
of unknown significance were seen between total LV ECV and
maximum heart doses, as well as mid-LV ECV and ventricular
doses, where lower ECV values correlated with higher radiation
doses (Tables 4 and 5). It should be noted that the changes in
LVMI without a corresponding change in ECV may be due to
increased cardiomyocyte size causing hypertrophy, without or
before reactive or replacement fibrosis, as has been seen post-
radiation in some patients and preclinical models (44, 45). Total
heart or ventricular radiation doses did not correlate with GLS
values (Tables 4 and 5).

Radiation-induced cardiac events most commonly include
pericarditis, myocardial fibrosis/scar, coronary artery disease, and
valvular disease (19, 46). These deficits may be, at least in part,
mediated by damage to the microvasculature, causing decreased
coronary blood flow and resulting in diastolic dysfunction. This
theory is supported by the fact that well-differentiated myocytes
are relatively radioresistant. Anthracyclines, in contrast, are
directly toxic to myocytes and thus are thought to cause
cardiotoxicity possibly through a separate mechanism, which can
potentiate the effects of radiation. Macrovascular injury may also
contribute, as radiation promotes inflammation and oxidative
damage–accelerating atherosclerosis (47). While anthracyclines
significantly improve survival in breast cancer patients, notable
cardiotoxic side effects can occur (17, 18, 48–50), which increase
markedly with increasing dose (19). In this study, we specifically
chose to examine potential radiation-induced changes to the
heart in patients who not only received regional nodal irradiation,
but also received anthracycline-based chemotherapy. In addition,
two patients received trastuzumab, which can also cause cardiac
injury (51). We saw no clinically abnormal CMR values in
these patients, except GLS values (Table 3), which did not
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TABLE 4 | Correlation between CMR and cardiac radiation dose parameters in all
patients, using whole heart dose-volume values.

Spearman
correlation
(P value)

Mean heart
dose

Max heart
dose

Heart V5 Heart V10 Heart V25

LVEF 0.044
(0.853)

0.020
(0.932)

0.108
(0.651)

0.105
(0.660)

0.082
(0.732)

LVEDVI −0.091
(0.710)

−0.218
(0.371)

−0.198
(0.415)

−0.182
(0.455)

−0.013
(0.957)

LVESVI 0.033
(0.892)

−0.131
(0.594)

−0.165
(0.501)

−0.142
(0.563)

−0.004
(0.988)

LVMI 0.389
(0.099)

0.240
(0.323)

0.366
(0.122)

0.386
(0.103)

0.425
(0.070)

GLS 0.275
(0.241)

0.233
(0.324)

0.333
(0.152)

0.277
(0.238)

0.146
(0.540)

ECV (Total) −0.359
(0.200)

−0.467
(0.038)

−0.388
(0.091)

−0.423
(0.063)

−0.422
(0.064)

R-values and P-values are shown. Abbreviations: LVEF, left ventricular ejection
fraction; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular
end-systolic volume index; LVMI, left ventricular mass index; GLS, global
longitudinal strain; ECV, extracellular volume fraction. Bolded values indicate
P < 0.05.

TABLE 5 | Correlation between CMR and cardiac radiation dose parameters in all
patients, using ventricular dose-volume values.

Spearman
correlation
(P value)

Mean
ventricular

dose

Max
ventricular

dose

Ventricular
V5

Ventricular
V10

Ventricular
V25

LVEF −0.044
(0.429)

−0.020
(0.324)

0.108
(0.744)

0.105
(0.739)

0.082
(0.911)

LVEDVI −0.091
(0.994)

−0.218
(0.353)

−0.198
(0.416)

−0.182
(0.613)

0.013
(0.893)

LVESVI 0.033
(0.596)

−0.131
(0.895)

−0.165
(0.501)

−0.142
(0.621)

−0.004
(0.750)

LVMI 0.398
(0.012)

0.240
(0.215)

0.366
(0.087)

0.386
(0.027)

0.425
(0.016)

GLS 0.237
(0.314)

0.222
(0.348)

0.370
(0.108)

0.300
(0.199)

0.126
(0.596)

ECV (total) −0.411
(0.072)

−0.454
(0.045)

−0.379
(0.100)

−0.418
(0.067)

−0.449
(0.047)

R-values and P-values are shown. Abbreviations: LVEF, left ventricular ejection
fraction; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular
end-systolic volume index; LVMI, left ventricular mass index; GLS, global
longitudinal strain; ECV, extracellular volume fraction. Bolded values indicate
P < 0.05.

correlate with radiation doses (Table 4 and 5). However, the
reproducibility of feature tracking can also be variable (52, 53).
In addition, feature tracking is not as robust or sensitive as
other standard strain measuring techniques, such as tagging,
strain-encoding [SENC or fast-SENC (fSENC)] (54–59), or
displacement-encoding with stimulated echoes (DENSE) (60).
Future studies examining strain using CMR would ideally make
use of these more advanced techniques. Especially relevant,
recent studies illustrated the capabilities of fSENC for robust and
detailed analysis of cardiac function and myocardial contractility
pattern as fast as one slice per heartbeat. Such an approach would
allow for evaluating cardiac function based on whole-heart strain

analysis in a few seconds without the need for breath-holding
or a contrast agent, which is of particular importance in cancer
patients who may have difficulties with longer exams (56–59).

Previous studies have found trastuzumab to be cardiotoxic
with 5% prevalence of cardiomyopathy when used as
monotherapy and 10–15% prevalence when used with
anthracyclines (51, 61). Despite receiving both radiation to
the heart and cardiotoxic systemic therapy, our cohort of patients
did not demonstrate significant abnormal CMR values for LVEF,
LVEDVI, LVESVI, LVMI, or ECV. All patients in this study
received IMC radiation as part of their RNI. Due to the proximity
of IMC nodes to the heart, IMC irradiation can result in higher
heart radiation exposure than radiation treatments omitting
these regional lymph nodes. IMC nodal treatment has been
controversial in practice (62, 63), but the recent MA.20 (64) and
EORTC 22922 (65) studies demonstrated benefits of RNI that
included treatment of the IMC nodes. Thus, rates of IMC nodal
irradiation are likely to increase in the future.

To date nearly all studies evaluating outcomes by SPECT
or other measures of cardiac injury have done so in breast
cancer patients who did not have their radiation treatments
planned with intent to treat IMC and with a heart constraint in
place for dosimetric planning. Over the time period the patients
in our study were treated, the heart constraint used for left-
sided patients at our institution was ventricular V25 < 10%
(32). This constraint results in higher MHD than currently
accepted in clinical practice. In addition, the whole heart,
including the pericardium and the ventricular tissue, were
re-contoured on the radiation planning CT to determine
received doses for the purposes of this study. In this cohort
of patients receiving CMR with a ventricular dose constraint
(but without a mean heart dose constraint), the mean heart
doses were >5 Gy in 7/15 (47%) left-sided patients and
>4 Gy in 10/15 (67%) left-sided patients, with mean heart
doses >7.5 Gy in 3/15 (20%) left-sided patients. In right-
sided patients, all had mean heart doses less than 0.7 Gy
(Table 2). Even with left-sided patients receiving higher mean
heart doses than recommended in current practice (mean
heart doses <4 Gy when possible), at a median of over
8 years of follow-up, no perfusion defects or significant cardiac
abnormalities were seen.

Perfusion changes have been detected in patients who recently
received left-sided radiation therapy by using SPECT imaging,
with changes correlating to the radiation treatment fields and
with the percent of heart in the radiation fields (66–69).
There is less data on long-term SPECT changes, although
in one study a proportion of patients at 3 and 6 years
had perfusion defects after radiation treatments in which the
heart was not excluded from the treatment fields (70). Two
prospective studies that used cardiac sparing techniques and
excluded the entire heart from the radiation beams found no
myocardial perfusion defects (71, 72). A recent study using
echocardiogram with strain to examine cardiac function in
breast cancer patients receiving contemporary radiation and
cardiotoxicity systemic therapy did not reveal differences in
strain post-radiation, although patients were examined only
at 6 months after radiation (73). In this study, CMR was
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chosen for its potential to acquire anatomical, functional and
perfusion information in one single scanning period, and for
its increased spatial resolution (1–2 mm for CMR compared
to 1.5 cm for SPECT). Our results are comparable to another
study that used CMR to examine breast cancer patients treated
with 3DCRT or IMRT up to 24 weeks of treatment. In that
study, transient EF decreases were seen at 6 months on MRI,
but this resolved by 24 months, and values for most parameters
examined were in the normal range at 24 months, without
the presence of wall motion abnormalities or late gadolinium
enhancement (74).

In this pilot study, we examined women with long-term
follow-up after completion of RNI and cardiotoxic chemotherapy
using CMR, which can detect functional abnormalities and
provide excellent spatial resolution. Taken together, our CMR
data suggests that in this cohort there is no significant cardiac
injury from receiving both RNI and cardiotoxic chemotherapy,
despite relatively high mean heart doses received by a significant
proportion of left-sided patients. It is important to note that
patients included in this trial had no clinical evidence of
cardiac disease at the time of treatment or prior to their study
participation. Prior studies have demonstrated that cardiac events
are more frequent after radiation in patients with baseline
heart disease, thus these results are likely not applicable to this
group (9).

In this study, positive correlations were found between
ventricular dose volume parameters and LVMI. However,
there was no evidence of increased ECV with increasing
heart or ventricular radiation doses. It may be that even
more refined regional cardiac analysis is necessary to study
radiation-induced cardiac changes, as correlations may not
be as evident when whole heart or ventricular doses are
compared to global heart function. Indeed, the use of
standardized cardiac heart substructure contours may allow
more refined analysis of risk of cardiac disease based upon
dose localization within the heart (75). For future studies,
including advanced CMR techniques for studying regional
heart mechanics (76) [e.g., MRI tagging (77), fSENC (54–59),
or DENSE (60)] could reveal important information about
myocardial regional contractility patterns that are expected to
be affected at earlier timepoints after radiation, before reduction
of global heart function and heart failure development. For
global LV geometric measurements (LVEDV, LVEDVI, LVESV,
LVESVI, LVEF and LVMI), only short-axis data was used.
The inclusion of long-axis data and combining geometric
data from multiple orientations in future studies would be
expected to reduce the inherent geometric errors, potentially
revealing significant changes that could have been masked in the
current analysis.

Strengths of this study include the long median follow-
up in patients who received anthracyclines and regional
nodal irradiation, as well as receipt of radiation treatment
using 3DCRT which allowed determination of cardiac and
ventricular doses. However, this pilot study is limited by
the small cohort of patients, as well as the lack of details
regarding exercise capacity, detailed clinical symptoms, or
cardiac biomarkers, although hypothesis-generating findings

are seen with respect to ventricular radiation doses and
LVMI. The CMR values were largely within normal limits
despite a median MHD of >4 Gy for breast cancer patients
enrolled in this study. This finding may reflect that in
this population of patients without clinical cardiac disease
there is a higher threshold for cardiac injury. Alternatively,
this finding could mean that radiation therapy planned
with cardiac constraints successfully limited partial heart
injury, unlike prior studies evaluating cardiac injury from
radiation delivered without constraints. It could also be
that differences were present, but they were masked by the
inherent uncertainties of in the estimation methods used.
There is also the possibility of bias, as these 20 women
self-selected from a cohort of women invited by letter to
return for cardiac MRI. In addition, significant differences
could have been present, but were masked by the inherent
uncertainties in the estimation methods to obtain CMR
values. For future studies, additional more sensitive analyses
using CMR with multiple geometric views, regional strain
analysis, and feature tracking may improve sensitivity to
detect subclinical radiation changes. In addition, baseline
CMR data was not available for this cohort of patients.
However, the correlations seen between ventricular dose volume
parameters and LVMI values are hypothesis-generating. Larger
corroborating studies are warranted to further examine the utility
of CMR in detection of therapy-induced heart disease in node
positive breast cancer patients who receive both cardiotoxic
chemotherapy and radiation.
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