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Abstract: The intrinsic healing following tendon injury is ideal, in which tendon progenitor cells
proliferate and migrate to the injury site to directly bridge or regenerate tendon tissue. However, the
mechanism determining why and how those cells are attracted to the injury site for tendon healing is
not understood. Since the tenocytes near the injury site go through apoptosis or necrosis following
injury, we hypothesized that secretions from injured tenocytes might have biological effects on cell
proliferation and migration to enhance tendon healing. Tenocyte apoptosis was induced by 24 h cell
starvation. Apoptotic body-rich media (T-ABRM) and apoptotic body-depleted media (T-ABDM)
were collected from culture media after centrifuging. Tenocytes and bone marrow-derived stem cells
(BMDSCs) were isolated and cultured with the following four media: (1) T-ABRM, (2) T-ABDM,
(3) GDF-5, or (4) basal medium with 2% fetal calf serum (FCS). The cell activities and functions were
evaluated. Both T-ABRM and T-ABDM treatments significantly stimulated the cell proliferation,
migration, and extracellular matrix synthesis for both tenocytes and BMDSCs compared to the control
groups (GDF-5 and basal medium). However, cell proliferation, migration, and extracellular matrix
production of T-ABRM-treated cells were significantly higher than the T-ABDM, which indicates
the apoptotic bodies are critical for cell activities. Our study revealed the possible mechanism of
the intrinsic healing of the tendon in which apoptotic bodies, in the process of apoptosis, following
tendon injury promote tenocyte and stromal cell proliferation, migration, and production. Future
studies should analyze the components of the apoptotic bodies that play this role, and, thus, the
targeting of therapeutics can be developed.
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1. Introduction

Musculoskeletal injures are the leading cause of health care visits in the United States
with a huge economic burden [1,2]. Tendon injuries in the hand are common and have
a major impact on work and function. Despite advances in surgical repair techniques,
healing of finger flexor tendons remains problematic because of poor vascularization and
hypocellularity [3,4]. Flexor tendon healing often results in adhesion formation, an extrinsic
healing mechanism that restricts tendon motion and reduces hand function. In contrast, if
a tendon heals intrinsically, e.g., through tenocyte proliferation and migration, there will
be less scar and adhesion formation and correspondingly better function [5–8]. One piece
of evidence for the intrinsic healing of tendons is that the tenocytes or progenitor cells
proliferate and migrate to the injury site to promote tendon healing by producing Col-1 and
Col-3 [9–11]. However, the mechanism of these cellular activities is unclear. It is known
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that tenocytes at the injury site undergo apoptosis after tendon injury [12]. Apoptotic body
formation occurs when cells undergo apoptosis [13,14]. This packaging of apoptotic cells is
primarily thought to mediate immunologic and phagocytotic clearance. However, whether
the secretions from apoptotic cells would stimulate the cell migration and proliferation of
intrinsic tenocytes or progenitor cells from either the blood or bone marrow are unknown.

In this study, we investigated the effects of apoptotic bodies released by apoptotic
tenocytes on freshly cultured canine flexor tendon tenocytes and bone marrow-derived stem
cells (BMDSCs) regarding cell proliferation and migration. We hypothesized that tenocyte
apoptotic body-rich media (T-ABRM) would promote tenocyte and BMDSC proliferation
and migration when compared to tenocyte apoptotic body-depleted media (T-ABDM) and
typical culture media as well.

2. Results
2.1. Characterization of a Cell Culture Conditioning Medium

Conditioned media from apoptotic tenocytes contained 24.1% vesicles larger than
3 µm (gate R1), which were mainly suspended cells and dead cell debris, 70.3% vesicles
between 1 and 3 µm (gate R2), which were mainly apoptotic bodies, and 3.6% microvesicles
smaller than 1 µm (gate R3) (Figure 1A second panel). After centrifugation to obtain T-
ABRM, the apoptotic body concentration increased to 85.9% (Figure 1A third panel). In the
T-ABDM obtained by the centrifugation (16,000 g, 20 min) of T-ABRM, the apoptotic body
concentration decreased to 35.7%. However, the vesicles smaller than 1 µm increased to
53% (Figure 1A fourth panel).
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Figure 1. Tenocyte-derived apoptotic particles characterized by flow cytometry. (A) FSC/SSC dot 
plot analysis of particles from apoptotic tenocytes. Size markers were used at 1.0, 3.0, and 6.0 µm. 
Conditioned media from apoptotic tenocytes contain suspended cells and dead cell debris (gate R1), 
apoptotic bodies or vesicles between 1 and 3 µm (gate R2), and microvesicles smaller than 1µm (gate 
R3). T-ABRM, obtained by centrifugation (800 g, 10 min), contains the most apoptotic bodies and 
vesicles (1–3 µm). T-ABDM, obtained by the centrifugation (16,000 g, 20 min) of T-ABRM, contains 
mainly small vesicles and rare apoptotic bodies (<1 µm). (B) Annexin V/fluorescein isothiocyanate 
(FL-1) and propidium iodide (FL-2) dot plot analysis of live cells, dead cells, and cell-derived vesi-
cles. Dead cells, T-ABRM, and T-ABDM stained positive with annexin V, but live cells (in red) 
stained a low binding of annexin V and propidium iodide. The set of quadrant gates was based on 
the respective unstained control population. The percentage of events or dots in the graph is shown 

Figure 1. Tenocyte-derived apoptotic particles characterized by flow cytometry. (A) FSC/SSC dot
plot analysis of particles from apoptotic tenocytes. Size markers were used at 1.0, 3.0, and 6.0 µm.
Conditioned media from apoptotic tenocytes contain suspended cells and dead cell debris (gate R1),
apoptotic bodies or vesicles between 1 and 3 µm (gate R2), and microvesicles smaller than 1µm (gate
R3). T-ABRM, obtained by centrifugation (800 g, 10 min), contains the most apoptotic bodies and
vesicles (1–3 µm). T-ABDM, obtained by the centrifugation (16,000 g, 20 min) of T-ABRM, contains
mainly small vesicles and rare apoptotic bodies (<1 µm). (B) Annexin V/fluorescein isothiocyanate
(FL-1) and propidium iodide (FL-2) dot plot analysis of live cells, dead cells, and cell-derived vesicles.
Dead cells, T-ABRM, and T-ABDM stained positive with annexin V, but live cells (in red) stained a low
binding of annexin V and propidium iodide. The set of quadrant gates was based on the respective
unstained control population. The percentage of events or dots in the graph is shown in the upper
right corner of the respective region. (C) Fluorescence microscopy of DAPI+ and DiI+ tenocytes
before and after 24 h of serum-starved treatment demonstrated tenocyte apoptosis in which tenocyte
cytoplasm shrunk and dark and unclearly stained nuclei was observed (middle). In addition, many
divided nuclei (in green) with cell membrane-covered vesicles (apoptotic bodies in red) were detected
(right) (Scale bar was 5 µm) (Representative plots and images from 4 independent experiments).

In the control group in which the cells were cultured under normal culture conditions
(10% serum with minimum essential medium [MEM]), only 4.28% ± 1.2% of cells were
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annexin-V (AV) positive and propidium iodide (PI) negative, indicating few apoptotic cells,
and 4.25% ± 0.7% were positive for both AV and PI, indicating few necrotic cells. However,
after 24 h in serum deprivation (T-ABRM), 48.3% ± 2.1% of cells were AV positive and PI
negative, indicating a pronounced induction of apoptosis in tenocytes, and almost all the
remaining cells, 52% ± 4%, were positive for both AV and PI, indicating necrosis. In the
T-ABDM, 21% were AV positive and PI negative and only 1.78% were AV and PI positive,
which indicated that the majority of the apoptotic and necrotic cells were removed by
high-speed centrifugation (Figure 1A,B).

Figure 1C illustrates that normal tenocytes were positive for DAPI (green) and DiI
(red), with the cytoplasm staining red and the nuclei staining green on fluorescence confocal
microscopy (left). After 24 h of culture without serum, significant cytoplasm shrinkage
with dark and unclearly stained nuclei was observed (middle). In addition, many divided
nuclei with cell membrane-covered vesicles (apoptotic bodies) were detected (right).

2.2. T-ABRM and T-ABDM-Mediated Cell Proliferation

The cell proliferation results showed significant differences in both tenocytes and
BMDSCs incubated with T-ABRM compared to those incubated with basal media or T-
ABDM alone at 24, 48, and 72 h of cultivation (p < 0.05) (Figure 2A,B). Tenocyte and BMDSC
proliferation increased in a T-ABRM dosage-dependent manner. Interestingly, T-ABRM
media in a 1:1 ratio (T-ABRM: basic-media) had the highest cell proliferation after 48 h.
Cell proliferation of the tenocytes in the T-ABRM media was significantly increased as
compared to BMDSCs, indicating that tenocytes increased their responsiveness to apoptotic
bodies compared to BMDSCs (Figure 2C).
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cording to the standard curves, the absorbance of each sample was converted into the cell popula-
tion. The graph shows the population-time of the cell growth curve with each cell type. (C) Line 
graph depicts the tenocyte and BMDSC proliferation rate after treatment with different dilutions of 
T-ABRM over 48 h. The protein content of T-ABRM (1:1) was about 0.3 mg/mL. MEM was used to 
obtain and dilute the T-ABRM. MEM with 2% FBS should only be used as a control. Each sample 
was examined in quadruplicate. BMDSCs indicate bone marrow stromal cells; Ctrl, control; FBS, 

Figure 2. Effect of T-ABRM, T-ABDM, and GDF-5 on the proliferation of tenocytes and BMDSCs. Cell
proliferation assay with Cell Counting Kit-8 of tenocytes (A) and BMDSCs (B). The cell population-
absorbance standard curve of each cell type was calculated and analyzed as previously. According
to the standard curves, the absorbance of each sample was converted into the cell population. The
graph shows the population-time of the cell growth curve with each cell type. (C) Line graph depicts
the tenocyte and BMDSC proliferation rate after treatment with different dilutions of T-ABRM over
48 h. The protein content of T-ABRM (1:1) was about 0.3 mg/mL. MEM was used to obtain and dilute
the T-ABRM. MEM with 2% FBS should only be used as a control. Each sample was examined in
quadruplicate. BMDSCs indicate bone marrow stromal cells; Ctrl, control; FBS, fetal bovine serum;
GDF-5, growth and differentiation factor 5; MEM, minimum essential media; T-ABDM, tenocyte
apoptotic body-depleted media; T-ABRM, tenocyte apoptotic body-rich media.

2.3. Cell Migration under T-ABRM and T-ABDM Stimulation

Tenocyte and BMDSC migration was significantly increased in both the T-ABDM
and T-ABRM groups compared to the GDF-5 and control media groups (n = 4, p < 0.05)
(Figure 3A,B). The migration rate of tenocytes with GDF-5 stimulation was significantly
higher than that of the control group (Figure 3A), but there was no significant difference
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between GDF-5 and control in the BMDSC group (Figure 3B). Figure 3C–J is a representative
image of the migration assays for both tenocytes (C–F) and BMDSCs (G–J) after 24 h.
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Figure 3. Tenocyte migration test under the T-ABRM stimulated condition. (A) Tenocytes were
stimulated under different culture conditions, including control (MEM + 2% FBS), T-ABRM, T-ABDM,
and GDF-5 (MEM + 2% FBS + 100 ng/mL GDF-5) at 24 h. (B) BMDSCs were stimulated under
different culture conditions, including control (MEM + 2% FBS), T-ABRM, T-ABDM, and GDF-5
(MEM + 2% FBS + 100 ng/mL GDF-5) at 24 h. Colorimetric measurements were taken according
to instructions with an enzyme-linked immunosorbent assay reader. Tenocyte (C–F) and BMDSC
(G–J) migration assays with the following treatments: control media (C,G), T-ABDM (E,I), T-ABRM
(F,J), and GDF-5 media (D,H) after 24 h. Cell concentration was 105 cells per well. Migrated cells on
the bottom side of the membrane were stained and imaged according to assay instructions. * p < 0.05,
** p < 0.01; n = 4, BMDSCs indicate bone marrow stromal cells; Ctrl, control; FBS, fetal bovine serum;
GDF-5, growth and differentiation factor 5; MEM, minimum essential media; T-ABDM, tenocyte
apoptotic body-depleted media; T-ABRM, tenocyte apoptotic body-rich media.

2.4. Gene Expression Assay

Gene expression measured by quantitative reverse transcription–polymerase chain
reaction (RT-PCR) revealed that in the T-ABRM-treated tenocyte group, collagen 1a (Col-1a)
mRNA was significantly upregulated with culture time compared to the control group
at 24 h (1.2 ± 0.3-fold, n = 3, p < 0.05), 48 h (1.9 ± 0.2-fold, n = 3, p < 0.05), and 72 h
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(3.3 ± 0.3-fold, n = 3, p < 0.05). Collagen 3a (Col-3a) mRNA was also significantly upregu-
lated at 24 h (1.4 ± 0.1-fold, n = 3, p < 0.05), 48 h (2.1 ± 0.1-fold, n = 3, p < 0.05), and 72 h
(2.6 ± 0.1-fold, n = 3, p < 0.01). Transforming growth factor β (TGF-β) was upregulated
at 24 h (3.34 ± 0.1-fold, n = 3, p < 0.05), 48 h (2.8 ± 0.3-fold, n = 3, p < 0.05), and 72 h
(1.8 ± 0.1-fold, n = 3, p < 0.05) compared to the control group (Figure 4).
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healing. As the tendon is a hypercellular tissue, tendons require a much longer period of 
time to heal than other connective tissues [17,18]. Understanding the mechanism of 
tenocyte proliferation and migration is crucial to find ways to accelerate tendon intrinsic 
healing. Inflammatory factor and growth factor stimuli have been reported to play an im-
portant role in the induction of cell proliferation and differentiation, cell alignment and 
migration, extracellular matrix synthesis, and tissue remodeling in all tendon healing pro-
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Figure 4. Tenocyte gene expression of Col-1a, Col-3a, and TGF-β in T-ABRM treatment. * p < 0.05,
** p < 0.01, compared with the control. Col-3a indicates collagen 1a; Col-3a, collagen 3a; T-ABRM,
tenocyte apoptotic body-rich media; TGF-β, transforming growth factor β.

In the T-ABRM-treated BMDSC group, Col-1a mRNA was upregulated compared to
the control group at 24 h (3.3 ± 0.1-fold, n = 3, p < 0.05), 48 h (2.3 ± 0.1-fold, n = 3, p < 0.05),
and 72 h (1.2 ± 0.1-fold, n = 3, p < 0.05). Col-3a mRNA was also significantly upregulated
at 24 h (3.7 ± 0.1-fold, n = 3, p < 0.05), 48 h (4.3 ± 0.2-fold, n = 3, p < 0.05), and 72 h
(2.6 ± 0.1-fold, n = 3, p < 0.01). TGF-β was upregulated at 24 h (2.9 ± 0.1-fold, n = 3,
p < 0.05), 48 h (2.0 ± 0.2-fold, n = 3, p < 0.05), and 72 h (3.2 ± 0.1-fold, n = 3, p < 0.05)
(Figure 5).
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3. Discussion

During the past 50 years, developments in techniques and materials for the repair of
tendon injuries have significantly improved the clinical outcomes of patients after surgery.
Unfortunately, excellent results are not yet attained universally [15,16]. Tendon healing
depends on the ability of the injured tendon to recruit cells from its surface for intrinsic
healing. As the tendon is a hypercellular tissue, tendons require a much longer period
of time to heal than other connective tissues [17,18]. Understanding the mechanism of
tenocyte proliferation and migration is crucial to find ways to accelerate tendon intrinsic
healing. Inflammatory factor and growth factor stimuli have been reported to play an
important role in the induction of cell proliferation and differentiation, cell alignment
and migration, extracellular matrix synthesis, and tissue remodeling in all tendon healing
processes [19–21]. Tenocyte proliferation and migration are fundamental for tendon devel-
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opment, homeostasis, and regeneration after injury. In our study, we found that after 24 h
in tissue culture, T-ABRM significantly increased cell proliferation and migration in both
tenocytes and BMDSCs compared to other groups including T-ABDM, GDF-5, and basal
media. These results indicated that the cell vesicles between 1 and 3 µm, which mainly
contain apoptotic bodies, have more significantly positive effects on tenocytes and BMDSCs
compared to the vesicles less than 1 um of the T-ABDM media. However, it is unknown
which proteins, cytokines, and/or growth factors are contained in the apoptotic bodies that
ranged from 1 to 3 µm.

Traditionally, apoptosis has been regarded as the silent cell death because it does
not trigger an inflammatory response. However, a number of recent studies have shown
some evidence of paracrine signals originating from apoptotic cells [22,23]. Using several
different model systems, some studies maintained that the appearance of apoptotic cells
can represent a signal for the proliferation of stem or progenitor cell populations, in
which the compensatory proliferation was vital for the repair and regeneration of injured
tissue [8,24–26]. In our flow cytometry analysis, we found that in T-ABRM, the majority
of vesicles were between 1 and 3 µm in size, which may include apoptotic bodies and
large proteins. After high-speed centrifugation, a large portion of the apoptotic body was
depleted, leaving the vesicles smaller than 1 µm in the medium. Although ABDM can also
enhance cell proliferation and migration, its effects were significantly less than with ABRM.

BMDSCs have been found to exert therapeutic effects not only by direct differentiation
into surrounding wound tissues, but also by the production of autocrine and paracrine fac-
tors [27,28]. The application of BMDSCs has been reported to enhance tendon healing [29].
Our results showed that apoptotic bodies could further enhance BMDSC and tenocyte
proliferation and migration.

Some cell types, such as thymocytes and neutrophils, have been reported not to
produce apoptotic bodies [14]. However, in our study, tenocytes like endothelial cells have
the ability to undergo apoptotic body formation. In our study, fluorescence-activated cell
analysis showed that tenocytes had gone through apoptosis and produced a large amount
of apoptotic bodies after 24 h of serum deprivation, which is consistent with the results
of another study using endothelial cells [30]. Immunohistochemistry also showed that
tenocyte apoptotic bodies contain intact membrane stained with DiI and part of the nucleus
DNA stained with DAPI (Figure 1C).

TGF-β is a secreted protein that controls proliferation, cellular differentiation, and
migration [31,32]. TGF-β expression of both tenocytes and BMDSCs increased after ABRM
stimulation. Expression of types I and III collagen also increased after ABRM treatment.
This may be due to the phenotypic differences between the two different cell lines.

4. Materials and Methods
4.1. Isolation of Apoptotic Bodies Derived from Tendon Cells

Tenocytes were isolated and cultured with protocols performed as previously de-
scribed [33]. Tenocytes in passage 3–5 were incubated for 24 h in basal media without
serum to induce apoptosis [30]. Conditioned media from apoptotic tenocytes were cen-
trifuged (800 g for 10 min) to discard dead cells and large debris from the media to obtain
the T-ABRM based on the established protocol [30]. This T-ABRM was further centrifuged
(16,000 g for 20 min) to deplete the apoptotic bodies to obtain T-ABDM (Figure 6) [30].
Aannexin V/fluorescein isothiocyanate (FITC; BD PharMingen, Hamburg, Germany) and
PI (BD PharMingen, Hamburg, Germany) were used to identify the cell’s apoptotic and
necrotic responses. The flow cytometry with a single-cell gate was performed and analyzed
in a fluorescence-1/fluorescence-2 dot plot to quantify the percentage of annexin V+/PI−
cells, representing the apoptotic and necrotic populations.
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4.2. Characterization of T-ABRM by Flow Cytometry and Immunohistochemistry

T-ABRM was analyzed by flow cytometry choosing forward/side scatter dot in a
fluorescence-activated cell sorter (FACScan, BD FACSCanto). For flow cytometry, apoptotic
bodies were stained for 30 min with an annexin V-FITC apoptosis detection kit (1:400) as
per the previous manufacturer’s instructions (BD Pharmingen, BD Bioscience, USA). In ad-
dition, tenocytes were incubated with 1 g/mL PI before flow cytometry for 10 min at room
temperature. To measure the size, we used a size marker (1.0 µm, 3.0 µm, 6.0 µm; Bangs
Laboratories, Inc., Fishers, IN, USA). For tenocytes, apoptotic bodies were close to the range
of 1.0 to 3.0 µm, whereas microvesicles were much smaller than 1 µm [34]. For fluorescence
microscopy, after 24 h of serum deprivation, the DiI-stained tenocytes (the tenocytes were
pre-stained with 5 ul/mL DiI [1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Per-
chlorate, Sigma-Aldrich Inc., St. Louis, MO, USA] at 37 degrees Celsius for 20 min and
then washed with PBS) were plated on coverslips fixed with 4% paraformaldehyde and
stained with 1 g/mL DAPI (4′,6-diamidino-2-phenylindole dihydrochloride; Sigma, St.
Louis, MO, USA). Images from the fluorescence microscope were taken using a confocal
imaging system (LSM 780 microscope system, Zeiss, Oberkochen, Germany).

Each group with normal tenocytes were starved of serum for 24 h and labelled with
Vybrant Cell-Labeling Solutions (Molecular Probes; Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions before tenocytes were seeded on cover slices.
Cell-seeded coverslips were cultured in 6-well plates until reaching 50–60% confluence
(about 6 h). Then, cells were fixed with fresh 4% paraformaldehyde for five minutes and
then washed three times with phosphate-buffered saline solution. To mount cells on a slide,
VECTASHIELD Mounting Medium with DAPI (Vector Laboratories, Inc., Newark, CA,
USA) was dispersed over the entire section according to the instructions. Tenocytes were
observed with a confocal microscope (LSM 780; Zeiss, Oberkochen, Germany).

4.3. Measurement of Cell Proliferation and Viability

The isolation and culture of BMDSCs were performed using previously described pro-
tocols [35]. To evaluate tenocyte and BMDSC viability and proliferation, the Cell Counting
Kit-8 (Dojindo Molecular Technologies, Inc., Rockville, MD, USA) was used for each group.
This assay was performed according to the manufacturer’s instructions. BMDSCs and
tenocytes were first cultured in a series of known quantities (0.1 × 103–1.0 × 106) in a 2-fold
linear dilution ratio in 96-well plates and absorbance cell number standard curves were
used to calculate quantity. Then, the conditioned media co-cultured cells were cultured in
different culture times (0, 12, 24, 48, and 72 h) and the absorbance optical density value at
450 nm was tested and determined with an enzyme-linked immunosorbent assay reader.
The total number of cells in each group was calculated according to the standard curve.
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4.4. Measurement of Cell Migration

Tenocytes passaged 2–3 were incubated for two hours in appropriate serum-free media
(MEM only) prior to cell migration assay. Then, with 0.25% trypsin-EDTA (Gibco; Thermo
Fisher Scientific, Waltham, MA, USA), cells were harvested and washed twice. Cells should
be aspirated by pipetting up and down gently; it is important to break down into individual
cells as much as possible. Trypsin and inhibitors were removed by spinning down the
cells with MEM and 0.5% FBS, and then the cells were resuspended in MEM with 0.5%
FBS and counted. The Millipore QCM cell migration assay kit was prepared in a 24-well
format with 8-µm pore size inserts according to the user instructions. Then 1 × 105 cells
were gently added to the upper compartment of the inserts. The cells were incubated in
Transwell plates (Corning, NY, USA) at 37 ◦C and 5% carbon dioxide for 2.5 h. This allows
cells to migrate toward the underside of the insert filter (Figure 7). After 24 h of cell culture
in different co-cultured media, the insert was carefully removed. Cells that did not migrate
through the membrane remained on the upper side of the filter membrane and were gently
removed with a cotton swab. Cells on the lower side of the insert filter were quickly fixed
by 5% glutaraldehyde for 10 min and then stained with a cell stain medium for 20 min.
The non-migratory cell layer was removed from the interior of the insert. Excess water
was drained from the side of the insert using a cotton swab to keep the insert membrane
dry. The cells on the lower side of the filter were imaged under a microscope and recorded.
The stained insert was transferred to a clean well containing 200 µL of extraction buffer
for 15 min at room temperature. The stain was extracted from the underside by gently
tilting the insert back and forth several times during incubation. The insert was removed
from the well. The dye mixture was then transferred to a 96-well microplate suitable
for colorimetric measurement. The optical density at 560 nm was measured. The same
experimental procedure was performed for control groups with only MEM with 2% FBS
and GDF-5 (100 ng/mL) [36]. Each migration condition was tested three times.
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4.5. RT and Quantitative Real-Time PCR

Total RNA was obtained from cultured BMDSCs and tenocytes and extracted using
TRIzol reagent (Invitrogen, Waltham, MA, USA) according to the manufacturer’s proto-
col. The total RNA concentration was determined using a NanoDrop (Thermo Scientific,
Waltham, MA, USA). cDNA was synthesized using a Transcriptor First Strand cDNA
Synthesis Kit (Roche, Basel, Switzerland) with anchored oligo (dT) primer. The reverse
transcriptase was inactivated by heating to 85 ◦C for 5 min. The quantitative RT-PCR test
was performed using a Light Cycler 480 SYBR Green I Master kit (Roche) in a LightCycler
480 instrument (Roche). The following amplification cycles were employed for all genes:
5 min of an initial denaturation at 95 ◦C, followed by 45 cycles of 95 ◦C, 60 ◦C, and 72 ◦C
for 10, 20, and 20 s, respectively, plus an extension at 72 ◦C for 5 min. Those samples were
measured in each group.

4.6. Statistical Analysis

The results of the migration, proliferation, and gene expression studies were analyzed
by one-way factorial analysis of variance. A Student’s t test was used for the statistical
analysis. A Tukey-Kramer post hoc test for each pairwise comparison was performed
if there was a significant difference. All results were shown as means, with the SD in
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parentheses. The significance level was set to p < 0.05 in all cases. All statistical analyses
were performed using JMP software, version 9.0.1 (SAS Institute, Cary, NC, USA).

5. Conclusions

In conclusion, our data indicate that tenocytes and BMDSCs cultured in ABRM or
AMDB from tenocytes enhanced cell proliferation, migration, and production, in which
ABRM showed better results compared to ABDM. Our findings have a significant impact
in two respects. First, the findings explore the possible mechanism of intrinsic healing of
the tendon in which tenocyte proliferation and migration may be initiated by the apoptosis
and necrosis of the tenocytes following tendon injury. Second, our findings may provide
basic support for the potential novel therapeutic treatments to enhance tendon healing
using major cytokines contained in the T-ABRM or T-ABDM after they are identified with
proteomic arrays in our future studies. This could open up a new arena for tendon healing
augmentation, especially when BMDSCs are considered as a cell-based treatment.
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