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Climate scientists have long emphasized the importance of cli-
mate tipping points like thawing permafrost, ice sheet disintegra-
tion, and changes in atmospheric circulation. Yet, save for a few
fragmented studies, climate economics has either ignored them or
represented them in highly stylized ways. We provide unified esti-
mates of the economic impacts of all eight climate tipping points
covered in the economic literature so far using a meta-analytic
integrated assessment model (IAM) with a modular structure. The
model includes national-level climate damages from rising tem-
peratures and sea levels for 180 countries, calibrated on detailed
econometric evidence and simulation modeling. Collectively, cli-
mate tipping points increase the social cost of carbon (SCC) by
~25% in our main specification. The distribution is positively
skewed, however. We estimate an ~10% chance of climate tip-
ping points more than doubling the SCC. Accordingly, climate
tipping points increase global economic risk. A spatial analysis
shows that they increase economic losses almost everywhere. The
tipping points with the largest effects are dissociation of ocean
methane hydrates and thawing permafrost. Most of our num-
bers are probable underestimates, given that some tipping points,
tipping point interactions, and impact channels have not been
covered in the literature so far; however, our method of struc-
tural meta-analysis means that future modeling of climate tipping
points can be integrated with relative ease, and we present
a reduced-form tipping points damage function that could be
incorporated in other IAMs.

climate tipping points | social cost of carbon |
integrated assessment model | climate risk

limate tipping points are subject to considerable scientific

uncertainty in relation to their size, probability, and how they
interact with each other (1-4). Their economic impacts are even
more uncertain, and consequently, these are often ignored (5, 6)
or given a highly stylized treatment that fails to accurately repre-
sent geophysical dynamics and is nearly impossible to calibrate
(7-9). As a result, tipping points are only weakly reflected in
the policy advice economists give on climate change, typically by
way of caveats and contextualization, rather than an integral part
of the modeling that gives rise to estimates of the social cost of
carbon (SCC) and other economic metrics of interest.

The very definition of climate tipping points has attracted sig-
nificant scholarship (2, 9, 10). We associate them with perhaps
the best-known definition of “tipping elements”: “subsystems
of the Earth system that are at least subcontinental in scale
and can be switched—under certain circumstances—into a qual-
itatively different state by small perturbations” (2). This is an
intentionally broad and flexible definition that admits a vari-
ety of geophysical responses, including nonlinear feedbacks and
both reversible and irreversible phase changes (9). This flexibil-
ity is important for our purposes because economic studies omit
or inadequately capture geophysical processes of all these sorts.
Adopting a narrower definition (for example, limited to abrupt,
discontinuous changes) would lead us to exclude geophysical
processes with large economic costs.
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A growing body of research has explored climate tipping points
using economic models. We reviewed this literature and identi-
fied 52 papers that model the economic consequences of at least
one climate tipping point (S Appendix, Table S1). Many of these
studies, however, represent climate tipping points in a highly
stylized way. Examples include an instantaneous jump in the
model’s equilibrium climate sensitivity (11), an arbitrary reduc-
tion in global gross domestic product (GDP) (12), and a one-off
permanent reduction in global utility (13). While such studies
have helped put climate tipping points on the economic research
agenda and contributed to understanding qualitative aspects of
climate policy in the face of tipping points, such stylized repre-
sentations are unrealistic from a geophysical point of view and
difficult to calibrate quantitatively. Therefore, we also identified
those studies that are based on geophysical foundations (i.e.,
with at least a reduced-form representation of the key underlying
geophysical relationship[s] that govern the tipping point). This
yielded 21 articles, highlighted in SI Appendix, Figs. S1-S3 and
Table S1.

The literature presents several challenges to developing a
comprehensive synthesis. Each study takes an individual tip-
ping point or a few tipping points and employs a particu-
lar integrated assessment model (IAM) with its idiosyncratic
structure. In doing so, different studies have imposed differ-
ent boundary conditions (e.g., greenhouse gas or GHG emis-
sions scenarios), made different choices on common parameters
(e.g., those governing the discount rate), and even used dif-
ferent welfare metrics to report their results (e.g., marginal
vs. total costs). Furthermore, there are many interactions
between tipping points (14), and there is no simple way to
capture those interactions using basic methods of literature
synthesis.

Significance

Tipping points in the climate system are one of the principal
reasons for concern about climate change. Climate economists
have only recently begun incorporating them in economic
models. We synthesize this emerging literature and pro-
vide unified, geophysically realistic estimates of the economic
impacts of eight climate tipping points with an emphasis on
the social cost of carbon, a key policy input.
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A "Meta-Analytic” IAM

Therefore, we developed a method to synthesize this literature:
a meta-analytic IAM that includes replicas of each tipping point
module in the literature and integrates them into one consis-
tent framework. A standard meta-analysis attempts to combine
multiple estimates of the same treatment effect (e.g., multi-
ple trials of the same drug). Here, we study several mutually
exclusive “treatment effects” (i.e., tipping points), necessitating a
nested, structural model. One could therefore call the approach
“structural meta-analysis.” Table 1 lists the tipping point mod-
ules replicated in this study, spanning eight tipping points, which
are broadly divided into 1) positive carbon-cycle and tempera-
ture feedbacks, 2) ice sheet disintegration, and 3) changes in
large-scale circulation. Some models of prior studies are “pro-
cess based,” with each equation corresponding to a geophysical
process, at least in reduced form, that can be calibrated on the
underlying scientific literature. The tipping processes in these
models tend not to be abrupt (e.g., gradual thawing of per-
mafrost). Other models use survival analysis, whereby a tipping
event can occur in each period with a probability that increases
with temperature. The tipping process in this class of models is
abrupt, but the impacts need not be (e.g., the slow rise of sea
levels upon triggering disintegration of the West Antarctic ice
sheet [WAIS]). A key principle applied here is to exactly repli-
cate the relevant elements of these economic studies. That is, we
do not override the modelers’ original choices on structure and
parameters. We only augment them using the underlying scien-
tific literature if warranted (e.g., converting a “what if” scenario
into a probabilistic event).

The nature of some tipping points places requirements on
the specification of our meta-analytic IAM. First, inclusion of
thawing permafrost and possible dissociation of ocean methane
hydrates makes it important to explicitly model radiative forcing
from methane (CH4) emissions. Second, inclusion of disintegra-
tion of the Greenland ice sheet (GIS) and the WAIS makes
it important to explicitly model sea-level rise (SLR) and cor-
responding damage. Third, inclusion of tipping points related
to changes in the atmospheric circulation, which have hetero-
geneous effects worldwide, makes it important to disaggregate
damages to the national level. To do so, we utilize recent empir-
ical and simulation results on the impacts of temperature and
SLR, which arguably constitute the best available evidence at
present (15, 16). Methods and SI Appendix, section 2 have more
details on the meta-analytic IAM.

Results

Our main economic impact metric is the SCC, the economic cost
of emitting one additional ton of COx (i.e., the marginal damage
cost). The SCC is perhaps the key welfare measure of climate

change in policy discussions, as it can be used to set carbon prices
and inform mitigation efforts (17, 18). Table 2 reports the change
in the expected SCC due to tipping points in our main spec-
ification. These results derive from a Monte Carlo simulation
with a sample size of 10,000. Variation comes from many prob-
abilistic parameters, including probabilistic tipping events. Our
main specification omits “nonmarket” impacts of climate change,
such as those on ecosystems and human health. We include an
estimate of these in our sensitivity analysis instead (see below).
Combining all eight tipping points increases the expected SCC
by 24.5%. As discussed below, this should be seen as a proba-
ble underestimate, given the literature we synthesize has yet to
cover some tipping points, and misses possible impact channels
and interactions even for those it does cover. Fig. 1 shows that
the distribution of expected increases in the SCC is positively
skewed. The median percentage increase in the SCC from all tip-
ping points combined is 18.8%; the 75th percentile is 22.5%, and
the 99.5th percentile is 132.2%.

The individual tipping points contributing most to the increase
in the SCC are dissociation of ocean methane hydrates, which in
itself increases the expected SCC by 13.1%, and the permafrost
carbon feedback (+8.4%). Disintegration of the WAIS increases
the expected SCC by 2.9%. Disintegration of the GIS increases
the expected SCC by 1.8%, similar to Nordhaus’ (19) recent esti-
mate on which the GIS module is based. SI Appendix, Fig. S12
shows, however, that the WAIS and GIS modules predict lower
contributions to SLR from melting of the respective ice sheets
than the process-based models synthesized in the Intergovern-
mental Panel on Climate Change’s Fifth Assessment Report
(IPCC ARS) (20). Therefore, the increase in the SCC due to ice
sheet disintegration may be underestimated. Variability of the
Indian summer monsoon and associated floods and droughts in
India is significant enough to register at the global level, increas-
ing the expected SCCby 1.3%. Dieback of the Amazon rainforest
leads to a modest 0.1% increase in the expected SCC. This is
based on the assumption in the model we replicate that, upon
crossing the tipping threshold, dieback releases 50 GtC over
50 y (14), which equates to only about 5 y of CO; emissions
from fossil fuel and industry at current rates (21). No other
costs of Amazon rainforest dieback have yet been included in
the literature, even though they could be considerable. Two tip-
ping points reduce the expected SCC. Slowdown of the AMOC
reduces the expected SCC by 1.4% by reducing damaging warm-
ing in some countries. The sign of the effect we find is consistent
with the underlying study we replicate (22), even though dam-
ages are modeled differently. The Surface Albedo Feedback
(SAF) reduces the expected SCC by 1.7%. Unlike other tipping
points, a constant level of SAF is included in standard equi-
librium climate sensitivity values. The SAF model we include,

Table 1. Models synthesized in this study
Tipping point Papers IAM Model of TP Uncertainty
Permafrost carbon feedback (PCF) Hope and Schaefer (24) PAGEOQ9 Process based MC
Kessler (25) DICE Process based Deterministic and MC
Yumashev et al. (23) PAGE-ICE Process based MC
Ocean methane hydrates (OMH) Ceronsky et al. (50) FUND Tipping event Deterministic and MC
Whiteman et al. (51) PAGEO9 Tipping event MC
Arctic sea ice/Surface Albedo Feedback (SAF) Yumashev et al. (23) PAGE-ICE Process based MC
Amazon dieback (AMAZ) Cai et al. (14) DSICE Tipping event Survival analysis
GIS disintegration Nordhaus (19) DICE Process based Deterministic
WAIS disintegration Diaz and Keller (47) DICE Tipping event Survival analysis
Atlantic Meridional Overturning
Circulation (AMOC) slowdown Anthoff et al. (22) FUND Tipping event Deterministic
Indian summer monsoon Belaia (48) using Schewe
(ISM) variability and Levermann (52) RICE Process based Stochastic
MC, Monte Carlo simulation.
20f9 | PNAS Dietz et al.
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Table 2. The SCC (2020 US dollars) and the percentage change in
the SCC due to tipping points collectively and individually

Expected SCC, Increase due

TP US$/tCO, to TP, %
None 52.03 -
Permafrost carbon 56.41 8.4
Ocean methane hydrates 58.85 13.1
SAF 51.14 —1.7
Amazon 52.07 0.1
GIS 52.97 1.8
WAIS 53.57 2.9
AMOC 51.28 —1.4
Indian summer monsoon 52.70 1.3
All TPs 64.80 24.5
>~ main effects, all TPs — 24.5
All costly TPs 67.05 28.9
>~ main effects, costly TPs only — 27.6

The expected SCC is computed over 10,000 Monte Carlo draws
with 0.1% trimmed. Specification comprises RCP4.5-SSP2 emissions and
GDP/population growth, Hope and Schaefer PCF, Whiteman et al. beta
OMH, and IPSL AMOC hosing. TP, tipping point.

introduced by ref. 23, describes the changing capacity for sea ice
and land snow to respond to warming. As the area of ice and
snow decreases, which increases albedo forcing, further warm-
ing produces smaller albedo changes, which reduce the effective
equilibrium climate sensitivity. These changes increase temper-
atures in the short term, but they reduce temperatures over the
long term and decrease the SCC, consistent with the underlying
study we replicate (SI Appendix).

When modeled separately and then summed together, the
individual tipping points also increase the expected SCC by
24.5%. Therefore, interactions between tipping points that are
embodied in the meta-analytic IAM (SI Appendix, section 2.1.9)
make no difference to the overall effect. However, this does not
mean interactions between tipping points are entirely unimpor-
tant. Rather, it is the result of positive interactions being offset
by negative interactions. To substantiate this point, Table 2 also
reports the increase in the expected SCC due to the six tip-
ping points that cause net economic costs (i.e., minus AMOC
slowdown and SAF weakening). This is 28.9% compared with
27.6% when summing the six tipping points together. In this
case, positive interactions increase the expected SCC by a further
1.3 percentage points. When AMOC slowdown and SAF weak-
ening are reintroduced, their overall effect in interaction with
each other and with the other tipping points is larger than their
individual effects.

We augment the main specification of the model with exten-
sive uncertainty analysis to explore robustness as well as tail risks.
SI Appendix, section 3.2 reports a wide range of sensitivity anal-
yses. The results of these are summarized in Fig. 2. The effect
of the permafrost carbon feedback is similar across the three
available published studies (23-25). The effect of dissociation of
ocean methane hydrates in our main scenario is robust to dif-
ferent calibrations of the hazard rate and different durations of
the emissions impulse, but it is not robust to different emissions
impulse scenarios. Rather, the increase in the expected SCC
ranges from 4.1 to 49.2% across scenarios reported in the two
available studies, commensurate with the widely varying amounts
of CH, released in these scenarios, the spread of which reflects
uncertainty in the underlying science. All AMOC slowdown sce-
narios result in a decrease in the expected SCC ranging from
—0.7 to —5.7%, the latter in a scenario with a notably large
two-thirds slowdown in the circulation. The percentage increase
in the expected SCC due to all eight tipping points combined
is relatively consistent across different emissions/socioeconomic
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scenario pairs and across variations in two key economic param-
eters governing the welfare value of climate damages, namely the
pure rate of time preference and the elasticity of marginal utility
of consumption. The exception to this is when the elasticity of
marginal utility of consumption is set to a relatively high value
of two. This implies inter alia relatively high risk aversion. In
this case, the increase in the expected SCC is 58.2%, although
the median percentage increase is only 22.0% and the 75th per-
centile increase is only 30.3%. Hence, this result is driven by a
small number of runs in the right tail of the distribution and the
disproportionate effect they have on the expected SCC under
high risk aversion. SI Appendix, Fig. S20 and Table S13 report the
effect of including a leading estimate of global nonmarket dam-
ages from climate change using the nonmarket damage module
from the MERGE (Model for Evaluating Regional and Global
Effects of GHG reductions policies) IAM (26). The resulting
estimates of the SCC are more comprehensive but arguably
more uncertain. The effect of all tipping points combined on the
expected SCC increases marginally, to 26.9%.

As well as high risk aversion, parametric uncertainty relating
to the structure of climate damages can also strongly affect how
tipping points increase the SCC. We adopt a flexible specification
of climate damages that is able to capture the range of assump-
tions in the literature about whether climate damages impact the
level of economic activity or its growth rate. This is an area of
active research in climate economics. In our model, the level of
income per capita in the previous year, on which damages in the
current year work, is given by

g(%t_1):@yEX(Z7t_1)+(1_@)y(27t_1)7 [1]

where ygx (i, t — 1) is counterfactual income per capita in coun-
try ¢ in year ¢—1 taken from an exogenous socioeconomic
scenario, y(i,t— 1) is actual postdamage income per capita
experienced in the previous year, and ¢ € [0, 1] parameterizes the
weight given to each. This specification enables us to explore two
different extreme interpretations of the empirical evidence on
damages (mainly in relation to temperature), as well as combi-
nations of them. The first interpretation (¢ = 1) is that damages
solely impact the level of income in each year, in effect driving
a wedge between what output is feasible given implicit factors of
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Fig. 1. The percentage change in the SCC due to tipping points collectively
and individually. Boxes show medians and interquartile ranges, whiskers
show 95% Cls, crosses mark the average changes (0.1% trimmed), tri-
angles mark the 0.5 percentiles, and squares mark the 99.5 percentiles.
The y axis is truncated. Specification comprises RCP4.5-SSP2 emissions and
GDP/population growth, Hope and Schaefer PCF, Whiteman et al. beta
OMH, and IPSL AMOC hosing. Monte Carlo sample size is 10,000.
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Fig. 2. Infographic summarizing uncertainty about the percentage change
in the SCC due to tipping points and the sources of that uncertainty. His-
togram shows the full distribution of percentage changes in the SCC from a
pooled Monte Carlo sample of size 32,000 (S/ Appendix has further details).
Percentage changes reported in the boxes are expected values for one fac-
tor at a time variations on the following specification: RCP4.5-SSP2 emissions
and GDP/population growth, Hope and Schaefer PCF, Whiteman et al. beta
OMH, and IPSL AMOC hosing. Note that the result for the OMH scenario
includes all eight tipping points on.

production and productivity and what output is actually achieved.
This has been the traditional approach in climate economics
(27). The second interpretation (¢ =0) is that temperatures
entirely impact the growth rate of income by directly impacting
the accumulation of factors of production and/or by impacting
productivity growth (15, 28-30). Our main specification is an
intermediate value of ¢ =0.5. SI Appendix, Fig. S17 and Table
S10 show that the expected increase in the SCC due to tipping
points is relatively robust to variations in ¢ across most of its
range. However, when ¢ = 0—pure growth damages—both the
SCC and the effect of tipping points on the SCC increase dra-
matically. The SCC is now thousands of dollars, consistent with
a previous study that also simulated pure growth damages at the
national level (30). Tipping points increase the expected SCC by
87.0%, as the initial effect propagates over time. Large increases
are observed across the distribution, as SI Appendix, Fig. S17
makes clear.

Across all parametric and scenario uncertainties, we estimate
an expected increase in the SCC of 42.8% due to climate tipping
points (SI Appendix, section 3.2.9 has details). We estimate a 95%
CI of —0.3 to +186.0%. The distribution is positively skewed,
and the SCC is at least doubled in roughly 10% of sample runs.
This suggests that tipping points have consequences for the over-
all level of risk borne by the world economy in the future, which
has implications for financial markets: for instance, via the equity
risk premium (31). This is explored more directly in Fig. 3, which
compares the distribution of global mean consumption per capita
in 2050 and 2100 with and without tipping points. The eight tip-
ping points not only reduce global mean consumption per capita,
but also, they significantly increase the dispersion. Therefore,
tipping points increase future consumption risk. The extra dis-
persion is greater in 2050 than in 2100; tipping points increase
the coefficient of variation by 79% in 2050 and 34% in 2100.

In addition to aggregate economic risk, tipping points might
affect the distribution of climate impacts. We exploit the country-
level resolution of our meta-analytic IAM to analyze this, esti-
mating national SCCs. Fig. 4, Upper shows that the SCC is
unequally distributed before tipping points are factored in. It
tends to be higher in hotter, poorer regions, such as South
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and Southeast Asia and sub-Saharan Africa. Some colder, high-
latitude countries in the Northern Hemisphere see a negative
SCC (i.e., net benefits from climate change). This is consistent
with econometric evidence on temperature (15, 32); however,
note that our results also include damages from SLR (16),
increasing relative costs in some countries. Fig. 4, Lower shows
how the inclusion of tipping points affects each country’s SCC.
Almost all countries (98%) see their SCC increase. While the
size of the increase varies from country to country, tipping
points do not materially alter how climate change affects income
inequality. One way to measure this is by computing the Gini
coefficient of national SCCs (30). We calculate this to be 0.64
when tipping points are included, compared with 0.66 with-
out tipping points. ST Appendix, section 3.5 visualizes this using
Lorenz curves. Another way to measure this is the correlation
(population weighted) between national GDP per capita (2020;
purchasing power parity) and national SCCs. This correlation is
—0.326 in the absence of tipping points; more developed coun-
tries experience a lower SCC, and the impacts of climate change
are thus regressive. Tipping points increase this negative correla-
tion only very slightly to —0.335. SI Appendix, section 3.3 plots
the effect on national SCCs of each individual tipping point.
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Fig. 3. Histograms showing the distribution of world mean consump-
tion per capita in 2050 (Upper) and 2100 (Lower) both without tipping
points (blue) and with tipping points (red). Main specification comprises
RCP4.5-SSP2 emissions and GDP/population growth, Hope and Schaefer PCF,
Whiteman et al. beta OMH, and IPSL AMOC hosing. Monte Carlo sample size
is 10,000. Values reported are in 2020 US dollars. TP, tipping point; USD, US
dollars.
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Fig. 4. Country-level expected SCC estimates (2020 US dollars) without tipping points (Upper) and the percentage change in the expected country-level SCC
due to all tipping points (Lower). Welfare changes are normalized to global mean consumption per capita. Specification comprises RCP4.5-SSP2 emissions
and GDP/population growth, Hope and Schaefer PCF, Whiteman et al. beta OMH, and IPSL AMOC hosing. Monte Carlo sample size is 10,000 with 0.1%

trimmed.

Disintegration of the GIS and WAIS primarily affects coun-
tries with low-lying coastal populations. The permafrost carbon
feedback, dissociation of ocean methane hydrates, and the SAF
primarily affect temperature. For these tipping points, country-
level impacts depend on whether a country is below or above its
optimum temperature, and for the permafrost carbon feedback
and SAF, there is a clear association with latitude. AMOC slow-
down benefits Europe, while parts of central Asia see increased
climate damages.

Fig. 5 shows the combined effects of the eight tipping points on
warming and SLR. These scatterplots are generated by pooling
decadal temperature and SLR data in the RCP4.5 and RCP8.5
emissions scenarios, giving full coverage of the range of physi-
cal changes possible over the next two centuries. Tipping points
increase the temperature response to GHG emissions over most
of the range of temperatures attained (Fig. 5, Top). Using a
second-order polynomial to fit the data, 2°C warming in the
absence of tipping points corresponds to 2.3°C warming in the
presence of tipping points, for instance. In some model runs, tip-
ping points add as much as 1.5°C additional warming. Beyond c.
7°C warming in the absence of tipping points, the combined
effect of tipping points is to reduce the temperature response
to GHG emissions. SI Appendix, section 3.4 disaggregates the
temperature response by tipping point. It shows that the initially
greater temperature response is primarily due to dissociation
of ocean methane hydrates and to a lesser extent, the per-
mafrost carbon feedback, while the eventually lower temperature
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response is due entirely to the weakening SAF. Tipping points
always increase SLR (Fig. 5, Middle). A linear fit of the data
implies 61% more SLR at any given level. SI Appendix, section
3.4 shows that melting of the GIS and WAIS each contributes
roughly half of the total.

In climate economics, a central relationship is the damage
function (i.e., the reduced-form relationship mapping global
mean temperature increases into contemporaneous welfare
losses). Fig. 5, Bottom plots the additional consumption losses
from the eight tipping points as a function of temperature.
This reduced-form climate tipping points damage function could
be integrated in other IAMs, which work at this higher level
of aggregation. Tipping points reduce global consumption per
capita by around 1% upon 3°C warming and by around 1.4%
upon 6°C warming, based on a second-order polynomial fit of
the data. In some runs, damages exceed 4%. These patterns
strongly reflect the underlying physical changes in Fig. 5, Top
and Middle. Dissociation of ocean methane hydrates and the
permafrost carbon feedback elevate the temperature response
to given greenhouse gas emissions, resulting in higher damages.
Although the weakening SAF provides a countervailing effect,
additional SLR damages from disintegration of the GIS and
WALIS mean that the point at which incremental damages from
tipping points turn negative is not reached until c. 10°C. The
SCC is calculated by converting these consumption losses into
utility losses and then taking the discounted sum from 2020 until
the end of the modeling horizon.
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Fig. 5. Scatterplots of additional warming (Top), SLR (Middle), and damages (Bottom) from all tipping points combined. Data are sampled on a decadal
interval (2020, 2030,...2200) using 1,000 Monte Carlo simulations under each of the RCP4.5 and RCP8.5 emissions scenarios. A nonlinear fit is used for
temperature and damages; a linear fit is used for SLR. Incremental damage from tipping points is expressed as the change in world consumption per capita
due to tipping points, relative to world consumption per capita without climate damages. Specification comprises Hope and Schaefer PCF, Whiteman et al.
beta OMH, and IPSL AMOC hosing. GMST, global mean surface temperature.

Conclusion tured understanding of the whole issue, so that climate tipping
In this paper, we have synthesized an emerging but fragmented  points are better reflected in the policy advice economists give
literature modeling the economic impacts of climate tipping on climate change (33). The eight tipping points that have been
points. Our aim has been to develop a more quantitative, struc- modeled in climate economics to date affect temperatures or
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sea levels in diverse ways. Most increase the SCC, especially
the carbon-cycle feedbacks associated with the release of GHGs
trapped in permafrost and ocean sediments. Two tipping points
reduce the SCC; AMOC slowdown puts a brake on damag-
ing warming in some countries, especially large economies in
northwestern Europe, while the SAF weakens over time, con-
tributing less radiative forcing than the standard assumption of
constant climate sensitivity. As well as increasing climate dam-
ages overall, our second key finding is that climate tipping points
increase the overall level of risk in the global economy. This
increases the expected SCC because risk has a social cost when
society is risk averse. As we have seen, under high risk aver-
sion the premium on the expected SCC is large. It also has
implications for financial markets, where higher risks typically
require higher returns to investors as compensation. Third, we
find that climate tipping points increase economic costs almost
everywhere, and these additional costs are spread relatively
evenly, so that tipping points do not have a significant effect
on inequality. Lastly, we provide a straightforward way of aug-
menting the damage function in IAMs that works with a simple,
reduced-form relationship between temperature and economic
losses.

Discussion

Our research is subject to a number of limitations, which help
to identify future research needs. First, although we have been
able to combine eight different climate tipping points, other
climate tipping points have been identified, which have yet to
be included in climate—economic IAMs (2). Examples include
Boreal forest dieback, variability of the West African monsoon,
and the El Nino Southern Oscillation, the last of which we only
cover as it affects the Indian summer monsoon. Our modular
approach facilitates the inclusion of additional tipping points in
future (in principle, all that is required is that they are driven
by, and affect, existing variables within the model). Second,
our coverage of interactions between tipping points is incom-
plete. ST Appendix, Table S4 summarizes the interactions we do
include. Some are hardwired in the structure of our meta-analytic
IAM. For example, the permafrost carbon feedback affects all
seven other tipping points via global mean temperature. Other
interactions not related to global mean temperature are incor-
porated using estimates from an expert elicitation study (34).
This leaves 12 (of 56) interactions that are not modeled. Third,
there could be missing climate impacts, even of tipping points
that we do include. Perhaps the easiest to envisage are some of
the impacts of Amazon rainforest dieback, such as lost biodi-
versity and ecosystem service flows. Another example is AMOC
slowdown, which is likely to lead to impacts that go beyond tem-
perature. These include ocean acidification and a decrease in
marine productivity, as well as changed wind and precipitation
patterns (35). We have included a nonmarket damage func-
tion in our sensitivity analysis, but this responds to changes in
global mean temperature and does not reflect forest dieback
specifically. Fourth, the tipping point modules we replicate in
this study are subject to uncertainties, no more so perhaps than
dissociation of ocean methane hydrates. Fifth, our meta-analytic
IAM is affected by some well-known controversies and uncer-
tainties, including those in climate science (e.g., equilibrium
climate sensitivity) and in economics (e.g., the discount rate).
Fortuitously, most of these uncertainties appear not to mat-
ter greatly when estimating the effect of tipping points on
the SCC. One notable exception, however, is the extent to
which climate damages affect the level or growth rate of out-
put and how this is related to countries’ development level.
Our economic model includes a standard treatment of util-
ity and welfare, but many recent extensions have been pro-
posed in climate economics, and these often increase the SCC
(e.g., refs. 36-39).
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Methods

The meta-analytic IAM is described in complete detail in S/ Appendix. Its
central features can be summarized as follows.

Anthropogenic Greenhouse Gas Emissions, Growth, and Population Projec-
tions. Greenhouse gas emissions and corresponding baseline projections of
GDP and population growth are exogenous and taken from the Represen-
tative Concentration Pathway (RCP)/Shared Socio-Economic Pathway (SSP)
database (40, 41). We match RCP3-PD/2.6 with SSP1, RCP4.5 with SSP2 and
SSP5, RCP6 with SSP4, and RCP8.5 with SSP5. Since we estimate the SCC, it is
important that our emissions scenarios extend beyond 2100. Therefore, we
use the Extended Concentration Pathways database for emissions (42) and
develop a method of extending the corresponding SSPs beyond 2100 (S/
Appendix). CO, and CH4 emissions are modeled explicitly. Other GHGs and
forcing agents are combined into an exogenous vector of residual radiative
forcing.

Atmospheric Chemistry and Warming. The Finite Amplitude Impulse
Response (FAIR) model is used to represent the carbon cycle (43). FAIR
extends a model with four boxes (i.e., impulse response functions of dif-
ferent timescales) that was used to emulate the behavior of carbon-cycle
models of different complexity, which fed into IPCC AR5 (44). FAIR adds a
positive feedback from cumulative CO, uptake and temperature to the rate
of CO, uptake. This chiefly captures saturation of the ocean carbon sink.
Radiative forcing from CO, at time t is a log function of the ratio of the
atmospheric CO, concentration at time t and the preindustrial concentra-
tion. Radiative forcing from CH,4 is modeled explicitly. After being emitted to
the atmosphere, CH, decays exponentially with an atmospheric lifetime of
12.4 y (45). Radiative forcing is modeled according to IPCC AR5 (45). Radia-
tive forcing is a square root function of the atmospheric concentration of
CH, in excess of preindustrial, with codependence on atmospheric N,O in
the initial model year (2010). Warming is simulated using a two-box model
of heat transfer between the atmosphere and upper oceans and the deep
oceans, which is calibrated on the WCRP Coupled Model Intercomparison
Project Phase 5 (CMIP5) ensemble (46). The inputs are radiative forcing from
CO;, CHy4, and the vector of other GHGs and forcing agents. S/ Appendix,
Fig. S11 compares the temperature projections of our climate module with
the corresponding projections of the CMIP5 ensemble and shows that they
are in close agreement.

Country-Level Temperature Damages. Changes in global mean surface tem-
perature are disaggregated to the national level using nonlinear statistical
downscaling. Changes in national mean surface temperature are then
fed into nonlinear, country-specific damage functions calibrated on recent
empirical evidence (15).

Country-Level Damages from SLR. Changes in global mean surface temper-
ature drive global mean SLR via thermal expansion and melting of small
ice caps and glaciers (plus additional SLR from the GIS and WAIS tipping
modules) (19, 47). SI Appendix, Fig. S12 compares our SLR projections with
the projections of process-based models synthesized in IPCC AR5 (20). The
projections of total SLR are similar, comprising a larger contribution from
thermal expansion, small ice caps, and glaciers in our model offset by a
smaller contribution from GIS and WAIS disintegration in our model, dic-
tated by the tipping point modules we replicate. Global mean SLR is mapped
on damages at the national level using recent high-resolution modeling
results (16).

Flood and Drought Due to the Indian Summer Monsoon. In India, GDP is
additionally affected by variability of the summer monsoon, which deter-
mines the occurrence of drought or flood according to the ISM tipping
module (48).

Levels vs. Growth Damages. We adopt a flexible specification allowing dam-
ages from temperature and SLR (and in India, from the summer monsoon)
to affect either the short-term level of GDP or long-term growth prospects.
In our main specification, we assign weights of 1/2 to both damage chan-
nels (o = 0.5) based on the principle of insufficient reason, which accounts
for the fact that the empirical evidence on damage channels is only ten-
tative. In our uncertainty quantification, we specify a uniform distribution
with end points corresponding to full weight on the pure levels (o = 1) and
growth (¢ = 0) specifications, respectively (49).

Consumption and Welfare. National GDP per capita is converted into
national consumption per capita using country-specific exogenous savings
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rates, estimated using World Bank data on savings over the period 2005 to
2015. We specify an isoelastic utility function with an elasticity of marginal
utility of consumption of 1.5 in our main specification and a utilitarian social
welfare functional with a constant pure rate of time preference of 1% in
our main specification. In our uncertainty quantification, the elasticity of
marginal utility of consumption is triangular distributed with a minimum of
0.5, mode of 1.5, and maximum of 2, while the pure rate of time prefer-
ence is triangular distributed with a minimum of 0.1%, mode of 1%, and
maximum of 2%.

Tipping Point Modules. There are eight tipping modules, corresponding to
the tipping points listed in Table 1. Each module replicates the underly-
ing studies listed in column 2 of Table 1. Their roles in the model are as
follows.

e The permafrost carbon feedback results in additional CO,
and CH; emissions, which flow back into the CO, and CHy
cycles.

e Dissociation of ocean methane hydrates results in additional CHs

emissions, which flow back into the CH,4 cycle.

e Arctic sea ice loss (also known as the SAF) results in changes in radiative
forcing, which directly affects warming.

e Dieback of the Amazon rainforest releases CO,, which flows back into the
CO; cycle.

e Disintegration of the GIS and WAIS increases SLR.
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e Slowdown of the AMOC modulates the relationship between global
mean surface temperature and national mean surface temperature.

e Variability of the Indian summer monsoon directly affects GDP per capita
in India.

SCC. To estimate the SCC, we run the model twice with consistent assump-
tions, the second time with an additional pulse of emissions in the year 2020.
The SCC is the scaled difference in welfare between the two runs per ton of
CO, emissions. Each run typically involves a Monte Carlo simulation with a
sample size of 10,000.

Data Availability. Simulation model data have been deposited in GitHub
(https://github.com/openmodels/META-2021).
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