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Abstract: Background: Depression is a prominent and highly prevalent nonmotor feature in patients
with Parkinson’s disease (PD). The neural and pathophysiologic mechanisms of PD with depression
(DPD) remain unclear. The current diagnosis of DPD largely depends on clinical evaluation. Methods:
We proposed a new family of multinomial tensor regressions that leveraged whole-brain structural
magnetic resonance imaging (MRI) data to discriminate among 196 non-depressed PD (NDPD)
patients, 84 DPD patients, 200 healthy controls (HC), and to assess the special brain microstructures in
NDPD and DPD. The method of maximum likelihood estimation coupled with state-of-art gradient
descent algorithms was used to predict the individual diagnosis of PD and the development of DPD in
PD patients. Results: The results reveal that the proposed efficient approach not only achieved a high
prediction accuracy (0.94) with a multi-class AUC (0.98) for distinguishing between NDPD, DPD, and
HC on the testing set but also located the most discriminative regions for NDPD and DPD, including
cortical regions, the cerebellum, the brainstem, the bilateral basal ganglia, and the thalamus and
limbic regions. Conclusions: The proposed imaging technique based on tensor regression performs
well without any prior feature information, facilitates a deeper understanding into the abnormalities
in DPD and PD, and plays an essential role in the statistical analysis of high-dimensional complex
MRI imaging data to support the radiological diagnosis of comorbidity of depression with PD.

Keywords: Parkinson’s disease; depression; mood disorders; MRI; structural MRI; diagnosis;
prognosis; tensor regression; multinomial regression; gradient descent

1. Introduction

Parkinson’s disease (PD) is a major neurodegenerative disease influenced by both
genetic and environmental factors [1]. As the second most common neurodegenerative
disorder, PD is characterized by the degeneration of dopamine-producing cells in the brain,
presenting a broad range of symptoms from motor dysfunctions to nonmotor psychobe-
havioral manifestations [2,3].

Nonmotor features can appear in the earliest phase of the disease even before clinical
motor impairment [4–6]. Depression is a prominent nonmotor feature which is highly
prevalent early in the disease process and has a significant impact on quality of life and
disability [7–9]. Although common in other chronic diseases [10–12], research suggests
that depression and anxiety are even more common in PD. It is generally accepted that
clinically significant depressive disturbances occur in 40–50% of patients with PD [13].
As such, depression is one of the most frequently reported neuropsychiatric disturbances
in PD and influences many other clinical aspects of the disease [14]. In addition to causing
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inherent emotional distress, depressive disorders negatively impact quality of life, motor
and cognitive deficits, functional disability, and other psychiatric comorbidities in patients
with PD [14]. Knowledge of the pathophysiology of PD depression remains limited,
and available diagnostic tools are better at detecting motor symptoms than nonmotor
symptoms, such as depression [15]. Clearly, physician recognition and treatment in PD
with depression (DPD) is not enough. DPD on self-report was not recognized by more than
60% by neurologists according to the Unified Parkinson’s Disease Rating Scale (UPDRS) [8],
while a large sample study of 1449 outpatients with PD revealed that depression rates were
already substantially elevated at an early PD stage [16].

Although the neural and pathophysiologic mechanisms predicting rates of DPD pro-
gression remain unclear and are key research priorities. Understanding the inner working
mechanisms and discovering biomarkers of DPD is one of the most intriguing scientific
questions. Studies in neuroscience strongly suggest intervention during early therapeutic
windows [6,17]. PD is a model candidate for precision-medicine-based approaches, which
customizes treatments based on patients’ individual genotype and may help reach dis-
ease modification [18,19]. Clinical trials have been underway that target specific PD risk
genes and their protein products [18,20]. The National Institute of Mental Health Research
Domain Criteria (RDoC) initiative grew out of the agency’s goal to develop new ways of
classifying mental disorders based on behavioral dimensions and neurobiological measures
and efforts have been devoted to understand depression within the context of RDoC by
seeking an integrative understanding of the disorder across multiple units of analysis from
genes to neural circuits to behavior [21,22].

A variety of neuroimaging technologies, including functional magnetic resonance
imaging (fMRI), structure MRI (sMRI), positron emission tomography (PET), and electroen-
cephalography (EEG), have also been adopted for PD diagnosis. The recent Movement
Disorders Society Clinical Diagnostic Criteria for PD have included the results of a few of
these neuroimaging techniques to serve as single supportive criteria or absolute exclusion
criteria for the diagnosis of PD [23]. Structural MRI and advanced MR techniques have
been used for the classification of PD and the atypical Parkinsonian syndromes. Thus, lever-
aging neuroimaging techniques may lead to an early, accurate, and objective diagnostic
classification by highlighting the underlying neurochemical and neuroanatomical changes
that underlie this spectrum of disorders [24,25].

Structure MRI has received more research focus with better stability and repeatability
compared to fMRI, where there were concerns about accuracy due to noise [26,27]. A brain
microstructural study found decreased white matter fiber characteristic in right arcuate
fasciculus and bilateral middle cerebellar peduncles and increased network connectivity
in prodromal early PD, which might indicate neural compensation [28]. A diffusion
tensor imaging (DTI) study of white matter microstructure changes found that FA in
the mediodorsal thalamus decreased, and there was a relationship between FA in the
mediodorsal thalamus and DPD. Another microstructure difference was found between
the DPD and non-depressed PD (NDPD) in the bilateral mediodorsal thalamic regions,
but the sample size was relatively small and the clinical score included only the Hamilton
depression rating scale (HAMD) [29].

Machine learning and artificial intelligence are recognized as booming and promising
methods used to detect connectivity [30]. A study of network abnormalities among non-
manifesting PD related to gene Leucine Rich Repeat Kinase 2 (LRRK2) mutation carriers
displayed significant non-motor cerebral changes among populations “at risk” for future
development of PD [27]. More recently, a computer-based technique utilizing convolutional
neural networks (CNN) [31–33] to create prognostic and diagnostic biomarkers has gener-
ated a lot of attention. However, these methods typically require significantly large memory
and extensive computation time. In addition, the intuitions behind these machine learning
methods are not apparent as the model parameters could not be explicitly interpreted.
On the contrary, the tensor regression model [34,35] is a regression framework that treats
clinical outcomes as response and images as covariates in the form of multi-dimensional
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arrays. These tensor regression methods could not only resolve the computational and
modeling challenges of large-scale imaging data but could also achieve perfect accuracy,
even in smaller sample sizes.

Up until now, most of the existing methods have focused on either the individual
diagnosis of PD or the progression of depression comorbidity without simultaneously
inferring the onset as well as the stage of PD. In this study, our goal was to build and validate
a multinomial tensor-regression-based framework that leveraged three-dimensional (3D)
sMRI data to differentiate between non-depressed PD, depressed PD, and healthy subjects.
We used the method of maximum likelihood estimation coupled with state-of-art gradient
descent algorithms to predict the individual diagnosis of PD and the development of
DPD in PD patients. The proposed method could further identify regions of interest in
NDPD and DPD relevant to the disease onset such that physicians could perform an early
diagnosis in time for available treatment. More importantly, our method performed well
without any prior feature information that restricted analysis to only a few brain regions,
demonstrating its ability to be executed by untrained operators and to be applied to unseen
patient data for both the diagnosis of PD and the assessment of depression comorbidity.

2. Materials and Methods
2.1. Participants and Clinical Evaluation

This study was approved by the Medical Research Ethical Committee of Nanjing Brain
Hospital (Nanjing, China) in accordance with the Declaration of Helsinki, and written
informed consent was obtained from all subjects. A total of 276 PD patients, including
84 depressed PD (DPD) patients and 192 NDPD subjects, along with 200 healthy controls
(HCs) were recruited. All the demographic characteristics and clinical symptom ratings
were collected before MRI scanning, and all patients were in the ON state during the MRI
scan. All subjects underwent a complete neurological and psychological status assessment
and a review of medical history records. Mini-mental state examination (MMSE) was used
to evaluate cognition. DPD patients were diagnosed with the Diagnostic and Statistical
manual of Mental Disorders, Fifth Edition (DSM-V) criteria by an experienced psychiatrist.
Afterwards, the severity of depression was quantified using the Hamilton Depression Scale
(HAMD). Unified Parkinson’s Disease Rating Scale-Motor (UPDRS-III) was recorded for
motor function, and Parkinson’s disease severity was rated according to Hoehn and Yahr
(H & Y). The same metrics listed above except UPDRS-III and H & Y were applied to the
control group. The neurocognitive tests were administered to each participant individually
by a professional appraiser in the neuropsychological research center. The demographic
and clinical data of patients with NDPD, DPD, and HC were compared using a Fisher’s
exact test (for sex), multivariate analysis of variance (MANOVA) (for age, education, MMSE,
and HAMD), and analysis of variance (ANOVA) (for UPDRS-III and H & Y between NDPD
and DPD only). The level of significance was set at p < 0.05 for standard comparison and
at p < 0.016 for multiple comparison with Bonferroni correction.

2.2. MRI Acquisition and Preprocessing

Images were scanned on Siemens verio 3.0T superconducting MRI system with
8-channel head coil in the department of radiology. The structural scans were acquired
using 3D T1-Flair with the following parameters: repeat time (TR) = 2530 ms, echo time
(TE) = 3.34 ms, matrix = 256, flip angle(FA) = 7◦, thickness = 1.33 mm, gap = 0.5 mm,
slices = 128. Resting-state BOLD-fMRI was collected axially using an echo-planar imaging
(EPI) sequence with the following parameters: TR = 2000 ms, TE = 30 ms, FA = 90◦, field of
view (FOV) = 24 cm × 24 cm, matrix = 64× 64, NEX = 1, slices = 31, thickness = 3.5 mm,
gap = 0.6 mm. The subjects were instructed to keep their eyes closed, relax their minds and
remain as motionless as possible during the data acquisition. Rubber earplugs were used
to reduce noise, and foam cushioning was used to fix the head to reduce motion artifacts.
The MR images were retrieved from the archive by two experienced neuroradiologists
(Qingling Huang & Xiao Wang).
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Three-dimensional T1-weighted images from both PD patients and HCs were then
normalized using Statistical Parametric Mapping (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/, accessed date: 20 August 2019) on the Matlab platform. The detailed step
included spatial normalization to the Montreal Neurological Institute (MNI) space using the
transformation parameters estimated via a unified segmentation algorithm [36] (Figure 1).
In particular, the unified segmentation algorithm adopts a probabilistic framework that
enables image registration, tissue classification, and bias correction to be combined within
the same generative model. The procedure involves the minimization of a cost function that
quantifies the differences between the individual image space and the template. Individual
images for all subjects were therefore mapped from their individual MRI imaging space
to a common reference space. As a result, the images of original size of (512, 512, 128)
were converted into images of size (79, 95, 79). This meant passing from 33,554,432 to
592,895 voxels such that the complexity of the following analysis was dramatically reduced
without loss of relevant information.

Figure 1. Original MRI images (a–c) and normalized MRI images (d–f). The original images of size
(512, 512, 128) were normalized using Statistical Parametric Mapping. Individual images for all
subjects were mapped to a common reference space with size (79, 95, 79) to reduce the complexity.

2.3. Multinomial Tensor Regression

The normalized 3D sMRI scans in our cases have 79 × 95 × 79 = 592,895 voxels,
i.e., 592,895 parameters to be estimated in a regression setup, if each voxel is treated as
a covariate. The authors in [34] proposed the family of tensor regression models that
incorporate the special structure of tensor covariates encoded in these images for binary
classification. The curse of dimensionality is diminished by imposing a low rank ap-
proximation to the extremely high-dimensional full coefficient array, which allows the
development of a fast estimation algorithm and regularization. Adapted to our case, we
propose the following multinomial tensor regression model to discriminate between NDPD,
DPD, and HC.

Let n denote the generic sample size representing the number of 3D images exploited
for fitting the model. Recall that we have a total of three categories. For 1 ≤ i ≤ n, 1 ≤ j ≤ 3,
let Yij be the binary variable that indicates whether the ith subject has NDPD, DPD, or this
person is healthy. That is:

• Yi1 = 1 if the ith patient is healthy and 0 otherwise;
• Yi2 = 1 if the ith patient has DPD and 0 otherwise;

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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• Yi3 = 1 if the ith patient has NDPD and 0 otherwise.

Denote Xi ∈ R79×95×79 as the three-dimensional array encoded in the sMRI scan for
the ith subject. The multinomial tensor classification model can be expressed as:

Yij ∼ Multinomial (µi1, µi2, µi3), (1)

log
(µi1

µi3

)
= 〈B1, Xi〉, (2)

log
(µi2

µi3

)
= 〈B2, Xi〉 (3)

where 〈Bk, Xi〉 represents the inner product of tensor Bk and Xi for k = 1, 2. Bk ∈ R79×95×79

is a weight tensor in the form of

Bk =
R

∑
r=1

β1
k,r ◦ β2

k,r ◦ β3
k,r,

i.e., a rank-R CP decomposition of Bk, where β1
k,r ∈ R79, β2

k,r ∈ R95, and β3
k,r ∈ R79 are three

vector components, and β1
k,r ◦ β2

k,r ◦ β3
k,r denotes their outer product. For our application,

we use R = 1 and simplify the notation by Bk = β1
k ◦ β2

k ◦ β3
k for the rest of the paper, but the

framework applies to cases where R > 1.
Similarly, we define β1

k ◦ β2
k as the outer product of β1

k and β2
k. It is easy to see that

each slice of Bk on the first two dimensions equals the multiplication of β1
k ◦ β2

k by a scalar.
In addition, each entry in B1, B2 reveals the log odds ratio of each voxel in the 3D image
for either HC vs. NDPD or DPD vs. NDPD. Thus, by imposing the structure on coeffi-
cient matrices B1, B2, the multinomial models (1)–(3) have only 2× (79 + 95 + 79) = 506
parameters, which is manageable given our sample size.

This model also allows for intercepts and 1-dimensional covariates, and it can be easily
extended to cases with K > 3 classes. A general form can be described as follows:

Yij ∼ Multinomial (µi1, . . . , µiK),

log
( µik

µiK

)
= αk + 〈γk, Zi〉+ 〈Bk, Xi〉, k = 1, . . . , K− 1

where αk is an intercept, and γk is the coefficient vector for the covariate vector Zi. In practice,
Zi contains characteristics including demographical and clinical traits for the ith subject.

2.4. Estimation

For the model specified in (1) to (3), we estimate the parameters by maximizing the
likelihood. Given the observed imaging data Xi and the binary indicators of the three
classes Yi1, Yi2, andYi3 for i = 1, . . . , n, the log-likelihood function can be expressed as:

l
(

β1
1, β2

1, β3
1, β1

2, β2
2, β3

2
)
=

n

∑
i=1

3

∑
k=1

yik log(µik), (4)

where:

µi1 =
exp(〈β1

1 ◦ β2
1 ◦ β3

1, Xi〉)
1 + exp(〈β1

1 ◦ β2
1 ◦ β3

1, Xi〉) + exp(〈β1
2 ◦ β2

2 ◦ β3
2, Xi〉)

, (5)

µi2 =
exp(〈β1

2 ◦ β2
2 ◦ β3

2, Xi〉)
1 + exp(〈β1

1 ◦ β2
1 ◦ β3

1, Xi〉) + exp(〈β1
2 ◦ β2

2 ◦ β3
2, Xi〉)

, (6)

µi3 =
1

1 + exp(〈β1
1 ◦ β2

1 ◦ β3
1, Xi〉) + exp(〈β1

2 ◦ β2
2 ◦ β3

2, Xi〉)
. (7)
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The parameters Θ =
(

β1
1, β2

1, β3
1, β1

2, β2
2, β3

2
)

are solved by block relaxation [37] as in Algorithm 1.
The parameters are updated in a blockwise manner until convergence.

Algorithm 1 Block relaxation algorithm for maximizing (4).

Initialize
{

β
j(0)

k
}

j=1,2,3;k=1,2 with random values

repeat (t ≥ 1)
for j = 1, 2, 3 and k = 1, 2 do

β
j(t+1)

k = argmax
β

j
k
l
(

β1(t+1)

1 , β2(t+1)

1 , . . . , β
j
k, . . . , β2(t)

3
)

end for
until |l

(
Θ(t+1))− l(Θ(t))| < ε

When block relaxation is used for binary classification as in [34], the subproblem
for β

j
k can be reduced to a general logistic regression setup since the inner product term

〈β1
k ◦ β2

k ◦ β3
k, Xi〉 can be transformed into 〈βj

k, Xi(j)
(

β1
k � β2

k � · · · � β
j−1
k � β

j+1
k � · · · �

β3
2
)
〉, where � denotes the Khatri–Rao product. However, the same technique does not

apply to multinomial tensor regression as the likelihood becomes much more complicated.
Therefore, we adopt Adam optimizer [38] for solving the subproblems in Algorithm 1. The
above estimation procedure was implemented in Python TensorFlow.

3. Results
3.1. Clinical and Demographic Data

In Table 1, we provided the complete demographic and clinical information for all
subjects participating in this study. No significant difference was observed between the
gender, ages, education, and MMSE and UPDRS-III scores of PD including DPD and NDPD
patients in comparison to the HCs, while significant differences were detected with respect
to the HAMD and H & Y scores among the three groups. In particular, for DPD patients,
the HAMD scores (20.2± 4.6) were significantly higher than those for NDPD patients
(6.9± 3.1) and HCs (2.2± 2.3), while the H & Y scales (1.4± 0.6) were significantly lower
than those for NDPD patients (1.8± 0.7). Our goal is to develop a tensor regression model
that performs well without any prior medical information. Since the HAMD score is the
most widely used clinician-administered scale for assessing depression and the H & Y
scale is used to measure how Parkinson’s symptoms develop, both of which are strongly
correlated with the progression of PD and DPD, we did not include these two metrics when
building the tensor regression model.

Table 1. Clinical and demographic data evaluation of NDPD, DPD, and HC. a. The p value for
gender distribution by Fisher’s exact test. b. The p value for age by multivariate analysis of variance
(MANOVA). c. The p value for education by MANOVA. d. The F test statistic and the p value for
MMSE scores by MANOVA. e−g. The p values for HAMD scores by Paired-Samples t test with
Bonferroni correction for further comparison between three groups. h. The F test statistic and the p
value for UPDRS-III by analysis of variance (ANOVA). i. The F test statistic and the p value for H &
Y by ANOVA.

Characteristics DPD (n = 84) NDPD (n = 192) HC (n = 200) Test Statistic p Value

Sex (M/F) 36/48 104/88 96/104 0.409 >0.05 a

Age (year) 58.1± 7.5 57.8± 7.0 57.8± 5.5 0.021 >0.05 b

Education (year) 11.0± 3.1 11.8± 3.3 11.7± 4.8 0.689 >0.05 c

MMSE 28.7± 1.1 28.6± 1.7 29.0± 2.3 0.585 >0.05 d

HAMD 20.2± 4.6 6.9± 3.1 2.2± 2.3 243.2 (p < 0.05) <0.016 e < 0.016 f <
0.016 g

UPDRS-III 28.3± 13.2 26.4± 13.3 N/A 0.295 >0.05 h

H & Y 1.4± 0.6 1.8± 0.7 N/A 5.37 <0.05 i
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3.2. Quantitative Performance

The performance of our tensor regression Model (1) to (3) was evaluated and tested
on NDPD and DPD patients and healthy controls. The sMRI scans for all subjects were
first randomly divided into training set (80%) and testing set (20%) while retaining the
DPD:NDPD:HC ratio in both sets. We first obtained the parameter estimates using the
method specified previously based on the training set. The learning rate in the Adam
optimizer was tuned through 10-fold cross-validation. Next, we evaluated the fitting
performance and prediction performance on the training and testing sets, respectively.

We compared the performance of the proposed method with the multinomial logistic
regression as well as 3D CNN, where each voxel was treated as a covariate. Note that
the multinomial logistic regression could not handle the large dimension of over 500,000.
Therefore, we only considered taking the first 1000, 3000, and 10,000 voxels as predictors and
built the multinomial logistic regression models under these three cases. The multinomial
logistic regression model was implemented in R glmnet, and 3D CNN was built in Python
deep learning API keras. The area under the ROC curve (AUC) is a widely used measure of
performance of supervised classification rules. However, the simple form is only applicable
to the case of two classes. We adopted the AUC calculation for the case of more than two
classes by averaging pairwise comparisons [39], i.e., the multi-class extension of the AUC
approach (MAUC). In particular, this measure reduces to the standard form in the two-class
case. In addition to MAUC, we also evaluated model performance on both the training
and testing sets using Prediction Accuracy (PA) and Rand Index (RI). PA was calculated
through number of correct classifications divided by the sample size, and the metric of RI
was computed following the definition in [40].

The results were provided in Tables 2 and 3. We found that the proposed method
achieved a perfect fitting accuracy in the training set and the highest prediction accuracy
in the testing set among all the competitors. The performance of 3D CNN on the training
set is superior, while its performance on the testing set is much worse compared with that
on the training set, which is understandable due to the problem of possible over-fitting.
Furthermore, based on the MAUC values, our method was shown to be quite robust with
respect to the varying thresholds.

Table 2. The summary statistics for prediction performance on the training set for all methods.

Model RI PA MAUC

Multinomial Tensor 1 1 1
Multinomial Logistic (d = 1000) 0.59 0.61 0.69
Multinomial Logistic (d = 3000) 0.6 0.63 0.64
Multinomial Logistic (d = 10,000) 0.66 0.68 0.73

3D CNN 1 1 1

Table 3. The summary statistics for prediction performance on the testing set for all methods.

Model RI PA MAUC

Multinomial Tensor 0.89 0.94 0.98
Multinomial Logistic (d = 1000) 0.49 0.44 0.55
Multinomial Logistic (d = 3000) 0.56 0.56 0.69
Multinomial Logistic (d = 10,000) 0.58 0.63 0.70

3D CNN 0.55 0.31 0.53

3.3. Aberrant Structural Brain Regions

One major advantage of our method was that one could simultaneously reveal the
most discriminative structural changes in NDPD and DPD patients. In Figure 2, we
drew the heatmaps for the coefficient matrices β1

1 ◦ β2
1, β1

1 ◦ β3
1 and β2

1 ◦ β3
1 in Model (2)

corresponding to three different surfaces and aligned the locations with significant values
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to the sMRI images for both NDPD patients and healthy subjects. Specifically, the disease-
related alterations were found mainly in the bilateral frontotemporal and occipital lobes,
basal ganglia, thalamus, corpus callosum, midbrain, and cerebellum.

Figure 3 allows us to structurally visualize the differences in DPD and NDPD by
plotting the coefficient matrices β1

2 ◦ β2
2, β1

2 ◦ β3
2, and β2

2 ◦ β3
2 in Model (3). In particular,

compared with NDPD, the DPD group displayed distinguishable differences in the corpus
callosum, the cerebellum, and the right superior temporal gyrus. At the same time, the
bilateral fronto-occipital lobe, left temporal lobe, bilateral basal ganglia, and thalamus also
showed significant differences.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Three-dimensional sMRI images for NDPD (a–c), HC (d–f), and the heatmaps for coefficient
matrices corresponding to three different surfaces respectively (g–i). Voxels with yellow and dark
blue colors correspond to regions with aberrant structural changes for NDPD compared with HC.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Cont.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Three-dimensional sMRI images for DPD (a–c), NDPD (d–f), and the heatmaps for co-
efficient matrices corresponding to three different surfaces respectively (g–i). Voxels with yellow
and dark blue colors correspond to regions with aberrant structural changes for DPD compared
with NDPD.

4. Discussion

In this study, we built and validated a multinomial tensor-regression-based framework
that leveraged 3D sMRI scans to simultaneously differentiate among NDPD, DPD, and
healthy subjects. Other than the tool of tensor regression, interested readers might be
aware of another class of machine-learning-based methods to localize PD in the brain
(i.e., localization of disease biomarkers). Salvatore et al. [41], Zhang et al. [42], Abós
et al. [43], Palumbo et al. [44] used machine learning algorithms based on either principal
components analysis (PCA) or Support Vector Machine (SVM) that allowed individual
differential diagnosis of PD to obtain voxel-based morphological biomarkers of PD. Another
school of research including [45–47] focused on Region of Interest methods (ROI), where
some specific regions of the brain such as the gray matter and hippocampal volume were
extracted due to a priori knowledge about their effects on brain functionality and memory.
More recently, a computer-based technique utilizing CNNs [31–33] to create prognostic and
diagnostic biomarkers has been more widely adopted and has generated a lot of attention.
These methods also exploited 3D structural MRI and required no prior knowledge on
significant regions that might impact the progress of PD. However, these CNN-based
methods usually require large memory and extensive computation time. For example,
the average run time of fitting a tensor regression model to the 3D normalized MRI images
was about 1586 s, and the processor was a 2.3 GHz dual-core Intel Core i5 with 8 GB
memory, while the typical run time for fitting a CNN model was about more than 10
times of 1586 s on the same processor. Hence, compared with the tensor-regression-based
method, implementing a CNN tends to be more computationally expensive. Furthermore,
the intuitions behind these CNN-based methods are not as straightforward as tensor
regression in the sense that not only could the coefficients for CNN not be explicitly
interpreted as in Figures 2 and 3, but the underlying theoretical property for CNN is also
still yet to be justified, while for tensor regression, the complete convergence analysis has
been thoroughly investigated [34,35].

The proposed method certainly has limitations. First, this method was only based on
the tensor regression method with structural MRI rather than the previous methods based
on network and functional MRI, which would be excellent topics for future studies. Second,
the sample size in typical neuroimaging studies, including the current study, is quite small
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compared to the large image voxel size. Hence, the high-dimensional challenge remains
pervasive rather than an exception in neuroimaging analysis. In these cases, regularization
becomes essential for stabilizing the coefficient estimates and for minimizing the harm
of over-fitting. In the near future, for sample-starved studies, we intend to either use
penalty regularization [34,48] or impose sparsity through multiway shrinkage priors [49]
for identifying sub-regions associated with the PD. We will also include more subjects to
diminish the threats caused by the high dimensionality. Furthermore, we will consider
fitting the multinomial tensor regression with R ≥ 2 and compare its performance with the
current findings. The ultimate goal is to build a tensor regression model that integrates both
structural MRI and functional MRI and can accommodate the high-dimensional nature
of imaging data. This requires an original and creative combination of knowledge and
tools from high-dimensional statistics, radiomic analysis, and biostatistics focusing on
radiological studies. The proposed research will thus advance knowledge at the cross-
roads of several exciting fields of statistics and bioinformatics. The proposed work is of
potentially transformative nature by substantially broadening the paradigm of inference of
neuroimaging data for disease risk stratification using traditional classification methods
and extending the tensor regresssion methods to substantially new and complex domains.

5. Conclusions

To the best of our knowledge, this study was the first attempt to construct a tensor-
regression-based platform for structurally discriminating among NDPD, DPD, and HC
with a high prediction accuracy. In terms of clinical characteristics, significant differences
were detected with respect to the HAMD and H & Y scores among three groups of DPD,
NDPD, and HC. In terms of regions with abnormal structures, significant differences were
found in bilateral the frontotemporal and occipital lobes, basal ganglia, thalamus, corpus
callosum, midbrain, and cerebellum between NDPD and HC. Concurrently, structural
differences in the corpus callosum, cerebellum, and the right superior temporal gyrus,
as well as the bilateral fronto-occipital lobe, left temporal lobe, bilateral basal ganglia, and
thalamus were detected between DPD and NDPD.

These findings suggest disease-related alterations of structure as the basis for faulty
information processing in this disorder. Our findings were in good agreement with the
alternative structure and functional features in cortical regions, cerebellum, brainstem, bi-
lateral basal ganglia, thalamus, and limbic regions in previous studies [26–29,50,51]. More
importantly, our algorithm performed well without any prior feature information and
regardless the variability of imaging protocols and scanners, demonstrating its feasibility
to be executed by untrained operators and to be generalizable to unseen patient data to
support the diagnosis of both PD and the progression of DPD. In conclusion, tensor regres-
sion facilitates a deeper understanding into the abnormalities in DPD and PD and plays
an essential role in statistical analysis of high-dimensional complex MRI imaging data to
support the radiological diagnosis of comorbidity of depression with PD.
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