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Abstract
G-protein coupled receptor (GPR120) is an omega-3 fatty acid receptor that inhibits macrophage-induced tissue inflamma-
tion. Recent studies revealed GPR120 promotes colorectal carcinoma through modulation of VEGF, IL-8, PGE2, and NF-kB 
expression. However, three-dimensional structure of GPR120 is not yet available in Protein Data Bank (PDB). In the present 
study, we focused on a 3-D structural model of GPR120 has been constructed using homology modeling techniques. The 
structural quality of the predicted GPR120 model was verified using Procheck, Whatif, ProSA, and Verify 3D. After this 
chemical database of natural compounds have been constructed and screened for its druggability using molinspiration server. 
Molecular docking studies of natural compounds on GPR120 model revealed that silibinin (− 6.87 kcal/mol), withanolide 
(− 6.19 kcal/mol), limonene (− 6.17 kcal/mol), and cervical (− 6.15 kcal/mol) have shown good docking interactions with 
active site residues of the target. Active site residues of Arg280, Asp275, and Gly122 showed hydrogen-bonding interac-
tions with predicted compounds. Based on these in silico findings, we proposed that virtual screening of natural compounds 
against of GPR120 is a novel approach to find potential anti-colorectal cancer therapeutics.

Keywords  Colorectal cancer · G-protein coupled receptor 120 · Homology modeling natural compounds · Rule of five · 
Docking studies · Potential therapeutics

1  Introduction

Colon or colorectal cancer is a type of cancer that starts 
in the large intestine (colon) or the rectum (end of the 
colon). The origin of colon cancer is gastrointestinal tract 
of the epithelial cell lining present in the colon or rectum. 
Commonly mutations occur in the intestinal crypt cells 
(Ionov et al. 1993; Abdul Khalek et al. 2010). Colorectal 
cancer (CRC) is the third among most common malig-
nancies worldwide (Shike et  al. 1990) and the second 
leading cause of cancer deaths in the United States. It is 

estimated that 132,700 new cases were diagnosed in the 
United States in 2015 and 49,700 deaths occurred due 
to this disease (American Cancer Society 2015). Better 
medication is still a significant cause of cancer-associated 
deaths. CRC is based on a complex of diseases arising 
from multistep process events in enterocytes, including 
genetic, epigenetic events, and abnormal signaling in basic 
cellular pathways. Thus, it is a hallmark of clinical value 
to identify potential molecules for tumor-preventive strate-
gies (Roberta Bertorelle et al. 2014).

In G-protein-coupled receptors (GPCRs), ligands bind 
specifically to GPCRs to stimulate and induce a variety of 
cellular responses via several second messenger pathways; 
e.g., modulation of cyclic-AMP production, the phospholi-
pase C pathway, ion channels, and MAPK (Ulloa-Aguirre 
et al. 1999; Gether 2000; Schulte and Fredholm 2003). 
They are important signaling molecules for many aspects 
of cellular functions, including vision, olfaction, behavior, 
and autonomic transmission nervous system (Morris and 
Malbon 1999). Besides, they also regulate many charac-
teristic features of tumorigenesis, including proliferation, 
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invasion, survival at the secondary site, and immune cell 
function, as well as several cancer-associated signaling 
pathways (Feigin 2013). These properties permitted the 
widespread development of GPCR-targeted drugs, which 
represent nearly 30% of all currently used therapeutics 
(Lappano and Maggiolini 2011; Dorsam and Gutkind 
2007). In particular, G-protein-coupled receptor 120 
(GPR120), the most enigmatic member of this large fam-
ily, has generated attention because of its potential role 
in the regulation of metabolic and inflammatory diseases 
such as obesity and type 2 diabetes.

G-protein coupled receptor 120 is a functional omega-3 
FA receptor/sensor and mediates powerful insulin sensitiz-
ing and anti-diabetic effects by repressing macrophage-
induced tissue inflammation (Oh et al. 2010). It is highly 
expressed in adipose tissue and proinflammatory mac-
rophages, while activation of GPR120 affected LPS- and 
TNF-α-induced inflammatory signaling responses (Oh 
et al. 2010; Ichimura et al. 2012). Activation of GPR120 
signaling induced the expression and secretion of proan-
giogenic mediators of CRC cells which promoted the 
angiogenesis. The PI3K/Akt–NF-kB pathway is activated 
by GPR120 signaling and required for GPR120 signaling-
induced angiogenic switching in CRC cells. Furthermore, 
GPR120 activation enhanced motility of CRC cells and 
induced epithelial–mesenchymal transition (EMT) of CRC 
cells (Wu et al. 2013).

There is an increasing demand for natural compounds 
that improve human health. The World Health Organization 
estimated that approximately 80% of the world’s inhabit-
ants rely on the traditional medicine for their primary health 
care (Farnsworth et al. 1985). Plants have long been used in 
the treatment of cancer (Hartwell 1971), and many nutritive 
and non-nutritive phytochemicals with diversified pharma-
cological properties have shown promising responses for 
the prevention and/or intervention of various cancers (Surh 
2003), These products, especially phytochemicals, have been 
extensively studies and have exhibited anti-carcinogenic 
activities by interfering with the initiation, development, 
and progression of cancer through the modulation of vari-
ous mechanisms including cellular proliferation, differentia-
tion, apoptosis, angiogenesis, and metastasis (Rajesh et al. 
2015). We focused on construction of GPR120 model using 
in silico tools and refinement of structure by docking stud-
ies with natural compounds which are believed to help in 
understanding of structural features and the interactions of 
natural compounds with GPR120 which may be helpful in 
designing of novel inhibitors of colorectal cancer.

2 � Materials and methods

In the present study, all the calculations were performed in 
a workplace by AMD 64 bits dual processing hi end server 
machines. Molecular modeling tasks were performed with 
Modeller9v3; docking calculations were performed with 
AutoDock 4.0. Unless otherwise stated, default settings were 
used during all calculations.

2.1 � Sequence alignments

All the analysis was carried out by AMD 64 bits dual pro-
cessing hi end server machines. The sequence of G-protein 
coupled receptor120 (gi: 82581671) was obtained from the 
National Centre for Biotechnology Information (NCBI. 
http://www.ncbi.nlm.nih.gov/). Local alignments were pre-
dicted using Blastp (Basic Local Alignment Search Tool) 
(Altshul et  al. 1997) at the NCBI and the homologous 
entries were obtained from the protein data bank (Berman 
et al. 2000). The Blastp alignment was further refined using 
sequence alignments in the Clustal W/X 1.83 with default 
parameters (Thompson et al. 1994).

2.2 � 3D model construction

The Blastp alignment was used for homology modeling built 
in Modeller9v3 (http://www.salil​ab.org/model​ler/9v3) which 
generated structures by applying spatial restraints. A bundle 
of 100 models from the random generation of the starting 
structure was calculated and subsequently the best model 
(with the low RMS value of superposition using Swiss-pdb 
viewer) (Guex and Peitsch 1997). To gain a better relaxa-
tion and much apart arrangement of the atoms, refinement 
was done on the built GPR120 model by energy minimi-
zation (EM). The stabilization was assessed by graphics 
visualization.

2.3 � Evaluation of the homology model

The stereochemical parameters of the energy minimized 
GPR120 model were assessed by Procheck (Laskowski 
et  al. 1993), Whatif (Vriend 1990), Errat (Colovos and 
Yeates 1993), ProSA (Sippl 1993) and Verify 3D (Bowie 
et al. 1991; Luthy et al. 1992). Verify 3D was used to assess 
whether a primary sequence is compatible with the current 
3D structural model. The compatibility between the amino 
acid side chains in the model is a validation criterion. Tor-
sion angle restraints for the side chains of each amino acid 
in the predicted GPR120 model were determined using a 

http://www.ncbi.nlm.nih.gov/
http://www.salilab.org/modeller/9v3
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Web server Predictor (Berjanskii et al. 2006). The predic-
tor assigns an error in the predicted chi (χ) torsion angle 
and including grains by combining its confidence scores 
with predicted or identified secondary structures and local 
sequence identity. Secondary structural conformations for 
the developed GPR120 model were predicted by Pdbsum 
(Laskowski et al. 2005).

2.4 � Docking studies

2.4.1 � Selection and screening of natural ligands

To fulfil the aim of constructing a novel ligand for GPR120, 
we selected a library of 100 molecules from the previous 
publications and browsing Internet. The selected library of 
ligands was tested for Lipinski’s rule of five using molinspi-
ration server (Lipinski et al. 2001) for their ability to follow 
the rule of five. Auto Dock 4.0/ADT (Goodsell and Mor-
ris 1998) program was used to investigate ligand binding 
to structurally refined GPR120 model using a grid spacing 
of 0.375 Å and the grid points in X, Y, and Z axis were set 
to 60 × 60 × 60. The search was based on the Lamarckian 
genetic algorithm (Miyamoto and Kollman 1992; Oprea 
et al. 2001) and the results were analyzed using binding 
energy. For each ligand, a docking experiment consisting of 
100 stimulations was performed and the analysis was based 
on binding-free energies and root-mean-square deviation 
(RMSD) values. Docking with natural Compounds was 
also performed onto GPR120 model with the same param-
eters and PMV 1.4.5 viewer was then used to observe the 
interactions of the docked compounds to the GPR120 model 
(Kitchen et al. 2004) and we submitted the developed 3D 
model of GPR120 to Protein Model Data Base (PMDB) 
(Castrignano et  al. 2006), which maintains 3D models 
obtained by structure prediction methods.

3 � Results and discussion

3.1 � Sequence alignments

The coordinating 3D structure of Human Delta Opioid 7tm 
Receptor (PDB ID: 4N6H) (Fenalti et al. 2014). We found 
more than 70 crystallographic structures showing high iden-
tity score with respect to G-protein coupled receptor 120 
using BLASTp results. We selected the Human Delta Opioid 
7tm Receptor structure as template and the sequence identity 

Fig. 1   Multiple sequence align-
ment of GPR120 receptor and 
the template 4N6H. Highly con-
served residues are represented 
by as stars

Fig. 2   a Predicted 3-D structure of GPR120 using Modeller 9v3. b 
Superimposed structures of GPR120 (hot pink) and 4N6H (cyan)
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between G-protein coupled receptor 120 and template 4N6H 
has 26% similarity having a resolution of 1.80 Å making it 
an excellent template. The most significant step in homology 
modeling process is to obtain the correct sequence align-
ment of the target sequence with the homologues. Finally, 

we performed an alignment between the selected template 
and the G-protein coupled receptor 120 using the ClustalX 
1.8 with default parameters (Thompson et al. 1994). The 
sequence alignment performed homology modeling is shown 
in Fig. 1.

Fig. 3   a ProSA-web Z-scores of all protein chains in PDB determined by X-ray crystallography (light blue) and NMR spectroscopy (dark blue) 
with respect to their length. The Z-score of GPR120 present in that range represented in large black dot. b Energy plot for the predicted GPR120
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3.2 � Homology modeling

The search using the BLASTp alignment algorithm within 
the PDB database showed various potential templates 
for molecular modeling purposes. More than 70 crystal-
lographic structures showed high identity score with and 
maximum query coverage respect to G-protein coupled 
receptor. The coordinates of the crystal structures of Human 
Delta Opioid 7tm Receptor (PDB ID: 4N6H) (Castrignano 
et al. 2006) were used as a template to build the structure 
of G-protein coupled receptor 120. The 3D models of the 
G-protein coupled receptor 120 were built by Modeller 9v3. 
One hundred models were generated and the crystal struc-
ture of the template was saved for further refinement and 
validation (Fig. 2a, b). Furthermore, refinement was per-
formed to obtain the best conformation of the developed 
model of G-protein coupled receptor 120.

3.3 � Structural validation of developed model

The constructed model was subjected to validation using 
Ramachandran plot with Procheck program by checking 
the detailed residue-by-residue stereochemical quality of a 
protein structure (Laskowski et al. 1993). The Ramachan-
dran plot revealed that 100% of the residues in homol-
ogy model were in favored and allowed regions. The main 
structural elements of the optimized GPR120 homology 
model are shown in Fig. 3. In comparison with the tem-
plates, the homology model had a similar Ramachandran 
plot with 0.0% residues in disallowed regions. The total 
quality G-factor was − 0.1, which indicates a good qual-
ity model (acceptable values of the G-factor in Procheck 
are between 0 and − 0.5, with the best models displaying 
values close to zero) showed in (Table 1). The Errat is a 
so-called “overall quality factor” for non-bonded atomic 
interactions and higher scores mean higher quality (Sippl 
1993). The normally accepted range is > 50 for a high-
quality model (Colovos and Yeates 1993). In the current 
case, the Errat score for the GPR120 model is 54.366, 
which well within the range of a high-quality model. 

Analysis of the energy minimized GPR120 model with 
Whatif web interface (Vriend 1990) revealed that RMS 
Z-Scores for bond angles and bond lengths are all close 
to 1 and also within the limits of template. Detailed struc-
tural investigation of the predicted GPR120 model with 
Pdbsum, a secondary structure prediction server, revealed 
that 225 (59.7%) residues are in α-helices and 3 (0.8%) 
residues are in 3–10 helix and 137 (36.3%) residues are 
in other conformations (Fig. 4, Laskowski et al. 2005). 
The tertiary structure of GPR120 showed close similar-
ity to crystallized 4N6H, with a backbone RMS value 
of GPR120–4N6H, is between 0.58 and 0.72 Å, respec-
tively. The low RMS values for backbone superposition 
reflect the high structural conservation of this complex 
through evaluation, making it a good system for homol-
ogy modeling.

3.4 � Screening and docking studies of natural 
inhibitors of GPR120

Docking is frequently used to predict the binding orienta-
tion of small molecule drug candidates to their protein 
targets to predict the affinity and activity of the small 
molecule. Hence, docking plays an important role in the 
rational design of drugs (Kitchen et al. 2004). Docking 
studies were performed to gain insight into the binding 
interaction between constructed model of GPR120 and 
selected 100 natural compounds.

3.4.1 � Selection and screening of ligand molecules

One hundred natural compounds used as ligand molecules 
were taken from the National Centre for Biotechnology 
Information (NCBI) Pub-Chem database. These mole-
cules were downloaded in Canonical SMILES format and 
converted to Protein Data Bank (PDB) coordinates file 
using Online SMILIS translate (http://cactu​s.nci.nih.gov/
trans​late/). The selected ligand molecules were checked 
through the Molinspiration online server (http://www.
molin​spira​tion.com/cgi-bin/prope​rties​) for identifying 
their drug-likeness properties, and only 89 molecules that 
obey the Lipinski’s rule of five were used for further dock-
ing analysis (Table 2).

3.4.2 � Docking studies of natural inhibitors with GPR120 
model

Docking studies were performed to gain insight into the 
binding conformation of lead molecules with GPR120 
model. A library of 100 lead molecules was constructed and 
screened for satisfying the minimal criteria of ADME for 

Table 1   Ramachandran plot statistics

Residues in most favored regions 328 95.1%
Residues in additional allowed regions 13 3.8%
Residues in generously allowed regions 4 1.2%
Residues in disallowed regions 0 0.0%
Number of non-glycine and non proline residues 345 100.00%
Number of end-residues (excl. Gly and Pro) 1
Number of glycine residues (shown as triangle) 15
Number of proline residues 16
Total number of residues 377

http://cactus.nci.nih.gov/translate/
http://cactus.nci.nih.gov/translate/
http://www.molinspiration.com/cgi-bin/properties
http://www.molinspiration.com/cgi-bin/properties
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further analysis, using molinspiration. Among the 100 lead 
molecules, 89 molecules were selected based on the crite-
ria of satisfying Lipinski’s rule of five with zero violations. 
All docking calculations were carried out using AutoDock 
4.0/ADT and the dlg files generated were analyzed for their 
binding conformations. Analysis was based on free energy 
of binding, lowest docked energy, and calculated RMSD val-
ues (Table 3). The total clusters of docking conformations, 

with the 89 docked lead molecules, showed negative bind-
ing energies. Among all docking conformations, Silybin 
(Wing Ying Cheung et al. 2010), Withanolide D (Susmita 
Mondal et al. 2010), Limonene (Vigushin et al. 1998), and 
Carvacrol (Hailong et al. 2012), respectively, gave the best 
predicted binding-free energy of − 6.19, − 6.87, − 6.17, and 
− 6.15 kcal mol−1 to the GPR120 (Fig. 5, Table 4), and the 

Fig. 4   Secondary structure wiring diagram for the GPR120 showing the location of secondary structure elements
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Table 2   Drug-like properties of natural compounds used in docking studies onto G-protein coupled receptor 120

S.

no.

Name of

compound

Structure of  

compound 

Mol. wt Log p

value

H.

donor

H.

ace-

ptor

TPSA Rot.

bonds

1
Guggulsterone

s E
312.453 3.62 0 2 34.14 0

2 Capsaicin 305.418 3.103 2 4 58.56 9

3 (-)Epicatechine 290.271 1.369 5 6 110.37 1

4
Epicatechingall

ate
442.376 2.537 7 10 177.13 4

5 Eugenol 164.204 2.1 1 2 29.46 3

6 Eupatin 360.318 2.314 3 8 118.59 4

7 Gingerol 294.391 3.217 2 4 66.76 10

8 Isoeugenol 164.204 2.379 1 2 29.46 2

9 Limonene 136.238 3.615 0 0 0.0 1
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Table 2   (continued)

10 Oliandrin 576.727 2.877 2 9 120.76 6

11 Quercetin 302.238 1.683 5 7 131.23 1

12 Triterpenoid 552.774 3.224 3 7 121.13 4

13 Betulinic acid 456.711 7.04 2 3 57.527 2

14
Cinnamyl 

acetate
176.215 2.736 0 2 26.30 4

15 Daidzein 254.241 2.559 2 4 70.66 1

16 Evodimine 303.365 2.819 1 4 39.33 0

17 Genistin 432.381 0.48 6 10 170.04 4

18 Paradol 278.392 4.602 1 3 46.53 10

19
Yakuchinone-

A
312.409 4.241 1 3 46.53 9
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Table 2   (continued)

20 Artemisine 282.336 3.316 0 5 54.07 0

21 Carvacrol 150.221 3.815 1 1 20.22 1

22 Catharanthine 366.435 3.987 1 4 45.33 3

23
Phenolic 

Steroid
256.389 4.58 1 1 20.22 0

24 Tabersonine 336.435 3.687 1 4 41.57 3

25 Citral 152.237 3.654 0 1 17.071 4

26 Caffeine 194.194 0.063 0 6 61.83 0

27 Rhein 284.223 2.997 3 6 111.89 1

28 Rubiadin 254.241 3.719 2 4 74.59 0

29 Taxifolin 304.254 0.712 5 7 127.44 1

30 Tyrosol 138.166 1.005 2 2 40.45 2

31 Viscidulin 11 330.292 2.731 3 7 109.36 3
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Table 2   (continued)

32 Wogonin 284.267 2.958 2 5 79.90 2

33

3-

Hydroxyflavon

e

238.242 3.446 1 3 50.43 1

34 Formononetin 268.268 3.095 1 4 59.67 2

35 Galangin 270.24 2.651 3 5 90.89 1

36 Isofraxidin 222.196 1.543 1 5 68.90 2

37 Kojic acid 142.11
− 0.8

88
2 4 70.66 1

38 Luvangetin 258.273 3.177 0 4 48.67 1

39 Maltol 126.111
− 0.2

43
1 3 50.43 0

40 Naringenin 272.256 2.177 3 5 86.98 1

41 Osthol 244.29 3.83 0 3 39.44 3

42 Pinocembrin 256.257 2.596 2 4 66.76 1

43 Thymol 150.221 3.342 1 1 20.228 1
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Table 2   (continued)

44 Ubelleferone 162.144 1.511 1 3 50.43 0

45 d-Carvone 150.221 2.513 0 1 17.071 1

46 Kaempferol 286.239 2.172 4 6 111.12 1

47 Raubasine 352.434 3.414 1 5 54.56 2

48 Anthole 148.205 3.096 0 1 9.23 2

49 Aristolene 204.357 4.837 0 0 0.0 0

50 Boswellic acid 456.711 6.789 2 3 57.52 1

51
Chlorogenic 

acid
354.311

− 0.4

53
6 9 164.74 5

52
Sequiterpenela

c-ctone
264.321 0.336 1 4 63.60 0

53 Silybin 482.441 1.465 5 10 135.14 4

54 Withanolide D 470.66 4.153 2 6 96.36 2
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Table 2   (continued)

55 Zerumbone 218.34 4.204 0 1 17.07 0

56 Asculetin 178.13 1.021 2 4 70.66 0

57
Allylpyrocatec

hol
150.17 1.998 2 2 40.45 0

58 Ascabio 212.28 3.703 0 2 26.30 4

59 Aurapten 298.32 5.568 0 3 39.44 6

60
Barcelonic 

acid A
320.27 2.359 4 7 116.45 5

61 Bilobol 318.51 7.843 2 2 40.45 13

62

Benzyl 

glycopyranosid

e

270.21
− 0.4

32
4 6 99.38 4

63 Chrysin 254.21 2.943 2 4 70.66 1

64 Cinchonine 294.38 3.028 1 3 36.35 3

65 Butin 272.256 1.711 3 5 86.98 1
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Table 2   (continued)

66 Emodin 270.24 3.008 3 5 94.82 0

67 Genistein 270.24 2.268 3 5 90.89 1

68 Isorhamnetin 316.25 1.99 4 7 120.35 2

69
Kaemperol-3-

glucoside
448.38 0.125 7 11 190.27 4

70 Lochnericine 352.44 2.988 1 5 54.09 3

71 Raubasine 352.44 3.414 1 5 54.56 2

72 Vindiline 456.59 2.601 1 8 88.54 6

73 Curcumin 368.35 2.303 2 6 93.06 8

74 Ellagic acid 305.14 0.943 4 8 141.33 0
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Table 2   (continued)

75 Flavopiridol 401.86 3.455 3 6 94.13 2

76
Indole-3-

cabinol
147.17 1.426 2 2 36.01 1

77 Linalool 154.23 3.213 1 1 20.22 4

78
Haloginated 

mono terpene
328.45 4.826 0 0 0.0 4

79 Oleanolic acid 456.71 6.725 2 3 57.52 1

80 Parthanolide 248.32 2.089 0 3 38.88 0

81 Resveratrol 228.27 2.986 3 3 60.68 2

82 Sulforafan 177.24 1.146 0 0 29.435 5

83 Ursolic acid 456.711 6.789 2 3 33.0 1

84 Biochanin A 284.267 2.804 2 5 79.90 2
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Table 2   (continued)

85 Catharanthine 336.435 3.987 1 4 45.33 3

86 Z-PICEID 390.388 1.199 6 8 139.83 5

87 Alpinetin 270.284 2.664 1 4 55.76 2

88 Arbutin 272.253
− 0.8

08
5 7 119.60 3

89 Carvone 150.221 2.513 0 1 17.07 1

90 Luteoin 286.239 1.974 4 6 111.12 1

91 Morin 302 1.881 5 7 131.35 1

92 Syrengic acid 198.174 1.204 2 5 75.99 3

93
Benzyl 

benzoate
212.248 3.703 0 2 26.305 4

94 Lusianthridine 242.274 2.04 2 3 49.69 2
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corresponding references clearly uncloak which are all under 
clinical trails.

To confirm the binding mode of natural substrate, dock-
ing was performed on the GPR120 model; natural substrate 
docking revealed that the amino acids Ile50 in orange, Phe88 
in yellow, Ala91 in salmon, Gly122 in green, Ile191 in red, 
Asn215 in magenta, Asp275 in cyan, Arg280 in orange, 
Phe289 in salmon, Ile295 in yellow, Ile297 in spiltpea, 
Ile300 in salmon, Ile301 in yellow, and Phe325 in deep-
salmon color (Fig. 5) played vital role to in binding the natu-
ral substrates and except Asn215, Asp275, and Arg280 all 
hydrophobic amino acids.

4 � Conclusion

In this study, we have developed a three-dimensional 
structure of GPR120 receptor through homology mod-
eling using delta opioid 7tm receptor (PDB ID: 4N6H) as 
a template. The generated model was assessed by several 
validation tools like Procheck, Errat, whatif, ProSA 2007, 
and Verify 3D. All above-mentioned tools revealed that 
the model is reliable. This model was also submitted to 
PMDB server (PDB: PM0079568) for public assessment. 
From the available scientific literature, 100 natural com-
pounds have been selected and 89 compounds followed 

Table 2   (continued)

95 Piperine 285.343 3.332 0 4 38.77 3

96 Anabasine 162.236 0.449 1 2 24.91 1

97 Isoferulic acid 194.186 1.249 2 4 66.76 3

98 Phloretin 274.272 2.656 4 5 97.98 4

99 Pinostrobin 270.284 3.132 1 4 55.76 2

100 Santin 344.319 3.0 2 7 98.36 4
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Table 3   Binding energies of 
docked natural compounds 
calculated by AutoDock

S. no. Compound name CID no. Lowest binding energy 
(kcal/mol)

Inhibition 
constant (μM/
mM)

1 Guggulsterones E 6439929 − 4.44 73.25
2 Capsacian 1548943 − 4.42 553.27
3 (-)Epicatechine 72276 − 4.57 447.16
4 Euenol 3314 − 3.8 308.86
5 Flavonoid 5317287 − 5.05 16.30
6 Gingerol 442793 − 3.86 20.13
7 Isoeugenol 853433 − 5.4 110.45
8 Limonene 22311 − 6.17 29.84
9 Quercetin 5280343 − 4.41 583.29
10 Cinnamyl acetate 5282110 − 6.05 36.67
11 Daidzein 5281708 − 5.25 141.64
12 Evodimine 151289 − 5.0 215.46
13 Paradol 94378 − 3.99 11.90
14 Yakuchinone-A 133145 − 4.35 651
15 Artemisine 68827 − 5.24 144.17
16 Carvacrol 10364 − 6.15 30.87
17 Catharanthine 197771 − 5.48 96.85
18 Phenolic steroid 439726 4.71 354.94
19 Tabersonine 20485 − 5.53 88.58
20 Citral 643779 − 4.95 235.43
21 Caffeine 2519 − 3.41 3190
22 Rhein 10168 − 4.7 359.53
23 Rubiadin 124062 − 4.53 477.98
24 Taxifolin 439533 − 4.68 373.32
25 Tyrosol 10393 − 4.63 400.67
26 Viscidulin 11 5322059 − 5.35 120.69
27 Wogonin 5281703 − 5.27 137.15
28 3-Hydroxyflavone 11349 − 5.07 192.3
29 Formononetin 5280378 − 4.39 608.88
30 Galangin 5281616 − 4.78 315.78
31 Isofraxidin 5318565 − 4.21 818.78
32 Kojic acid 3840 − 4.56 457.88
33 Luvangetin 343582 − 457 446.42
34 Maltol 8369 − 4.2 829.62
35 Naringenin 932 − 4.84 284.29
36 Osthol 10228 − 4.87 268.85
37 Pinocembrin 68071 − 5.25 141.93
38 Thymol 6989 − 3.5 320
39 Ubelleferone 5281426 − 5.98 41.05
40 d-Carvone 16724 − 5.63 75.18
41 Kaempferol 5280863 − 4.42 75.18
42 Raubasine 441975 − 5.13 173.58
43 Anthole 637563 − 4.1 991.37
44 Aristolene 530421 − 5.41 107.8
45 Sequiterpenelacctone 338659 − 5.58 81.2
46 Silybin 31553 − 6.87 9.12
47 Withanolide D 161671 − 6.19 78.71
48 Zerumbone 5470187 − 3.7 1860
49 Asculetin 5281416 − 4.51 496.78
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the rule of five. These 89 natural compounds were docked 
with GPR120 receptor and the following four compounds 
have exhibited the highest binding energy levels in the 

order as CID: 31553 > CID: 161671 > CID: 22311 > CID: 
10364, which infers the favorable rank score, docking 
score, and hydrogen-bonding energies. Furthermore, 

Table 3   (continued) S. no. Compound name CID no. Lowest binding energy 
(kcal/mol)

Inhibition 
constant (μM/
mM)

50 Allylpyrocatechol 292101 5.09 185.5
51 Ascabiol 2345 − 4.51 496.78
52 Barcelonic acid A 10358625 − 3.73 18.60
53 Bilobol  5281852 − 2.97 1.86
54 Benzyl glycopyranoside 188977 − 4.24 782.76
55 Chrysin 5281607 − 4.81 297.75
56 Cinchonine 90454 − 4.89 260.15
57 Butin 92775 − 5.57 82.55
58 Emodin 3220 − 4.62 409.35
59 Genistein 5280961 − 5.64 73.25
60 Isorhamnetin 5281654 − 4.96 0.21
61 Kaemperol-3-glucoside 5282102 − 4.42 571.91
62 Lochnericine 11382599 − 5.19 156.7
63 Raubasine 441975 5.11 179.54
64 Vindiline 260535 − 5.92 45.74
65 Curcumin 969516 − 5.06 196.36
66 Flavopiridol 5287969 − 3.98 1210
67 Indole-3-cabinol 3712 − 3.53 2600
68 Linool 6549 3.53 2590
69 Haloginated mono terpene 11493622 − 4.45 544.66
70 Parthanolide 6473881 − 4.92 248.68
71 Resveratrol 445154 − 5.76 59.59
72 Sulforafan 5350 − 4.82 290.63
73 Biochanin A 5280373 − 4.96 232.7
74 Catharanthine 197771 − 5.58 0.22
75 Z-PICEID 10178463 − 5.72 63.73
76 Alpinetin 4053302 − 4.92 245.55
77 Arbutin 440936 − 5.04 202.08
78 Carvone 7439 − 5.27 137.55
79 Luteoin 5280445 − 5.76 60.28
80 Morin 5281670 − 4.3 705.91
81 Syrengic acid 10742 − 3.27 4030
82 Benzyl benzoate 2345 − 6.41 19.92
83 Lusianthridine 442702 − 3.72 1.88
84 Piperine 638024 − 4.59 432.06
85 Anabasine 2181 − 5.69 67.14
86 Isoferulic acid 736186 − 5.8 80.97
87 Phloretin 4788 − 3.72 1890
88 Pinostrobin 73201 − 5.29 132.4
89 Santin 5281695 − 4.91 251.48
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more hydrophobic interactions were observed in the bind-
ing pocket of the GPR120. These four drugs are under 
clinical trials and thereby help promising therapeutics for 
colorectal cancer.
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Fig. 5   a Docking conformation of natural compound of Sylibin on 
G-protein coupled receptor 120 homology model. b Docking con-
formation of natural compound of Withanolide on G-protein cou-
pled receptor 120 homology model. c Docking conformation natural 
compound of limonene on G-protein coupled receptor 120 homology 

model. d Docking conformation of natural compound of carvacrol 
on G-protein coupled receptor 120 homology models. Built model of 
G-protein coupled receptor 120 is represented in cartoon and 60% of 
electrostatic surface. Ligands are represented by ball and stick and the 
residues interacting with are represented by stics

Table 4   High score-binding 
energies of docked natural 
compounds calculated by 
AutoDock

Docked molecule Compound Cid no. Cluster rank Cluster 
number

Binding energy 
(kcal/mol)

RMSD (Å)

Silybin 31553 1 3 − 6.87 0.49
Withanolide D 161671 1 3 − 6.19 0.82
Limonene 22311 2 41 − 6.17 0.13
Carvacrol 10364 1 19 − 6.15 0.65
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