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Abstract
This paper deals with one of the key problems of e-healthcare which is the security. Patients are worried about the confi-
dentiality of their electronic medical record (EMR) which could be used to expose their identities. It is high time to revisit
the confidentiality and security issues of the existing telehealth system. Intruders can perform sniffing, spoofing, or phishing
operations effortlessly during the online exchange of the EMR using a digital platform. The EMRmust be transmitted anony-
mously with a high degree of hardness of encryption by protecting the authentication, confidentiality, and integrity criteria
of the patient. These requirements recommend the security of the current system to be improved. In this paper, a neural
synchronization-guided concatenation of header and secret shares with the ability to transmit the EMR with an end-to-end
security protocol has been proposed. This proposed methodology breaks down the EMR into the n number of secret shares
and transmits to the n number of recipients. The original EMR can be reconstructed after the amalgamation of a minimum
k (threshold) number of secret shares. The novelty of the technique is that one share should come from a specific recipient
to whom a special privilege is given to recreate the EMR among such a predefined number of shares. In the absence of this
privileged share, the original EMR cannot be reconstructed. This proposed technique has passed various parametric tests.
The results are compared with existing benchmark techniques. The results of the proposed technique have shown robust and
effective potential.
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1 Introduction

COVID-19 is a serious acute respiratory disease caused by
the form of coronavirus that occurred in Wuhan, China, in
December 2019, and rapidly spreading around the world,
leading to the pandemic of COVID-19 [1,2]. Many countries
are currently affected by the COVID-19 pandemic, which
often endangers public health and also impacts other aspects
of human life, particularly the global economy [3]. Presently,
as the world deals with an unforeseen COVID-19 pandemic
[4], the recent trend of social distancing [5] is to work from
home with lockdowns and travel limitations. Different steps
to deal with and manage COVID-19 have been considered
by various countries. One of the best ways to cope with and
monitor the COVID-19 pandemic is by telehealth systems
[6]. Owing to the increase risk of disease infection by per-
sonal interaction, the regulation of the COVID-19 through
minimizing direct contact is possible by the telehealth sys-
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tem. In December 2019, the “future” of e-healthcare began
[7].

Global COVID-19 is making the first telehealth trial for
millions around the world. Such services provide not only
video visits but also text, e-mail, and smartphone apps and
can extend them to includewearable technology and chatbots
[8]. E-healthcare bridges the gap between individuals, clini-
cians, and healthcare systems, allowing everyone, especially
symptomatic patients, to remain at their home [9] and interact
remotely with doctors, helping to minimize virus transmis-
sion to large populations and frontline medical workers. One
of the significant applications of this system is to monitor the
patients following the hospital release [10], which can also
be used for COVID-19 patients. The quality of e-healthcare
also depends on patients’ data security. The confidentiality
of the patients’ data must be ensured. Telehealth practition-
ers have found this a major challenge [11]. Data security
and confidentiality are the key issues to be addressed before
communicating patients’ data to the health workers.

The rest of this paper is structured accordingly. The back-
ground of the work is described in Sect. 2. Section 3 presents
related works. Sections 4 and 5 discuss the problem domain
and solution domain, respectively. Section 6 deals with the
proposedmethodology, and Sect. 7 represents the session key
generation through the synchronization of the two artificial
neural networks. Section 8 discusses the proposed technique
using an example. Section 9 represents the time complexity
analysis of the proposed technique. Section 10 deals with
results and analysis. In Sect. 11, the conclusion and future
scope are given and references are given at the end.

2 Background

Telehealth must be one of the alternative systems for health-
care and promoting health decision-makingwithin the frame-
work of improving service delivery [12]. In COVID-19, there
is a need for proper medical diagnosis [13] at the right time
so that the patients get exact and concrete medical advice
from physicians, which improves the curable probabilities.
In improving the health systems response to COVID-19,
WorldHealthOrganization (WHO) cited [14] telehealth as an
important service. Telehealth is perhaps the most demanding
part of the e-governance and offers remote patients low-cost
and efficient healthcare. E-healthcare is characterized as all
clinicians utilizing Information and Communication Tech-
nology (ICT) to share relevant information for the diagnosis,
treatment when the distance is a crucial factor in the delivery
of healthcare services. In the hopes of improving individuals
and their communities’ health [15], the prevention of illness
and injury, study and evaluation, and continuing outreach of
healthcare providers.

The US legislation providing data protection and secu-
rity measures for the protection of health information is
HIPAA (Health Insurance Portability and Accountability
Act, 1996). According to HIPAA, ransomware operators
have carried out extensive attacks on healthcare data. Spam
e-mails claiming to provide details of SARS-CoV-2 and
COVID-19 cases were distributed to NetWalker during the
COVID-19 pandemic [16]. Organizationswith a ransomware
can be tempted to pay the fee to reduce downtimes and save
costs. However, Sophos’ survey shows that businesses pay-
ing the bill ultimately invest much more than those who
recover files from backups [17]. SARS-CoV-2 and COVID-
19 research organizations are warned that hackers associated
with the People’s Republic of China (PRC) threaten their
networks [18]. Sophisticated National State hackers have
taken advantage of some vulnerabilities to target govern-
ment and industry entities to obtain entry to one’s systems
and seize confidential information. Online meeting platform
Zoom enters an agreement with NY Attorney General on
security and privacy issues [19]. Corporate e-mail intru-
sion scammers from around the globe threaten hospitals,
COVID-19 research organizations [20]. Advanced Persis-
tent Threat (APT) groups are calling for another joint alarm
from cybersecurity officials in the USA and the UK to thwart
a continuous attempt to target the e-health security system.
[21,22]. Cyberattacks on remote employees has risen dramat-
ically, with application protocols being actively targeted by
remote employees to communicate with business networks
[23]. To strengthen security while operating remotely, the
National Security Agency has provided information security
guides for teleworkers. The guidewaswritten specifically for
US government agencies, and this also applicable for health
professionals who offer telehealth services from their home
computers or smartphones. During theCOVID-19 pandemic,
attacks on healthcare and vital infrastructure by ransomware
were increased. [24]. Apple and Google are developing
contact tracking technologies to track people reportedly con-
tacting COVID-19, but the Electronic Frontier Foundation
(EFF) has cautioned that cybercriminals are misusing this
contact tracing technology [25]. WHO is one of the leading
organizations fighting the COVID-19. WHO confirmed that
hackers tried to access there network by spoofing [26]. There
have been hundreds of attacks on health organizations [27–
30].According to a new report published byProofpoint,more
than a half million e-mails, 300,000 malicious URLs, and
over 200,000 malicious e-mail attachments have been ana-
lyzed recently [31]. Attackers are performing different types
of phishing, spoofing, and sniffing attacks on online meeting
platforms, COVID-19 research organizations, e-healthcare
systems [32–35].
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3 RelatedWorks

Nayak et al. [36] have proposed a technique for storing
patients’ data after encrypting it using Advanced Encryption
Standard and then superimposedwithin a retinal image.Also,
Nayak et al. [36,37] have done a relative analysis regard-
ing the concurrent storage of patients’ diagnosed images in
both frequency and spatial domains. Different types of sig-
nals displaying the rhythm of the heart, signals generated
by the brain, etc. are captured electronically, compressed,
and encrypted. Subsequently, the compressed ciphertext is
embedded in patients’ medical images at the LSB level.
Acharya et al. [38–40] proposed some techniques for trans-
mitting data inside the image keeping the security aspect
intact. Researchers have discussed also the chaos-based
encryption technique. Raeiatibanadkooki et al. [41] have
suggested a chaotic Huffman code for compression and a
wavelet transformation for encryption of ECG signal. The
main objective is to squeeze and encrypt the ECG without
the loss. Lin [42] has described a chaotic encodingmethod of
EEGsignal alongwith a view toward logisticmaps and exper-
imental forms of decomposition. Lin et al. [43] developed
a new encryption scheme. However, the security analysis
was missed out. Ahmad et al. [44] have suggested a secu-
rity investigation to the robustness of the encryption. But a
comprehensive analysis was lacking in that method. Telecare
diagnosis system has emerged as a treatment tool in the e-
health community. Researchers are putting their best efforts
to provide a more flexible system for society. Mulyadi et al.
[45] have proposed how to improve the accuracy of a 12-lead
ECGusingwaveform segmentation of ECG graphs. Liaqat et
al. [46] have designed a framework to establish relationships
between various cardiac patients’ attributes using unsuper-
vised learning techniques. In this technique, a K-means is
applied to derive the hidden relationships among various
patients’ attributes. Capua et al. [47] have suggested a tech-
nique to monitor and assess the ECG signals in real time.
ECG signals are sensed through the sensor and processed by
a personal digital assistant (PDA). The PDA may detect and
diagnose the ECG signals, and call the emergency personnel
in case of abnormalities detected. Patients can also visualize
the ECG clinical signals inside the PDA interface. Murillo-
Escobar et al. [48] have proposed chaotic function-based
enciphering on the ECG/EEG signals. They have proposed a
system on the logistic map-based encryption. Although they
have tried to impose encryption hardness using diffusion of a
chaotic system, still the issue of man-in-the-middle (MITM)
attacks has not been addressed properly. Here, the clinical
ECG/BP/EEG signal of the patients that could be captured
by the intruders for fake or inconsistent purposes. Secured
online transmission of the confidential patients’ data/signals
is major issue. Implementation of their proposed technique
has not been appropriately explained on the real-life applica-

tion systems. Moreover, live sensing of the patients’ signals
and data compression behavior was missing in their work.

4 ProblemDomain

In the e-healthcare system, themain problem is the security of
patients’ EMR during online transmission. The EMR of each
patient is highly confidential. Tomaintain this confidentiality
clause, there needs a highly secured encryption technique
about patient’s data integrity. Intruders are born to sniff the
patients’ confidential information/signals quietly, and they
do distort or manipulate with these. The existing e-healthcare
security system has several drawbacks they are as follows:

– The existing e-healthcare security system may treat the
possibility of willing disclosure of patients’ EMR and
clinical signals for any sort of illegal works.

– Even the patients have no mechanism to resist the disclo-
sure of her/his confidential EMR on a broader scale.

– Lack of data authentication and confidentiality checking
mechanisms exist in the telehealth system. Hence, the
data integrity of the patients cannot be achieved [36,37].

– Leakage of such important clinical signals may lead to
misuse.

– No telehealth system exists in the literature that has a
concept of priority or privileged share.

– In many of the latest e-healthcare protection strategies,
complete encrypted information is stored in a single
medium. Secret data can be exposed if the medium or
key is lost or compromised.

5 Solution Domain

In this proposed work, the above-stated problems have been
addressed. In this proposed neural synchronization-guided
concatenation of header and secret share-based technique,
patient has been treated as a privileged recipient. It is not
possible to intentional sharing of patients’ private EMR and
clinical signals because the original information cannot be
regenerated excluding the concern of the patient. The pro-
posed secret sharing technique offers a scheme where any k
(threshold) number of information shares including the share
of the privileged recipient (patient) can only be able to recon-
struct the original information. No confidential data of the
patient be revealed without any permission of the patient.
Here, data are shared secretly among n number of recipients.
So, there is no risk of losing or corrupting entire data due to
medium or key corruption.

Hence, this proposed security model can be incorporated
with any existing telehealth system as a highly secured online
information transmission module. This would give a new
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dimension to treat the patients carefully without disclosing
their sensitive EMR.

6 ProposedMethodology

In thismethodology, a robust sessionkey is generated through
the synchronization of two artificial neural networks. In dif-
ferent sessions, different session keys are being used for
secured transmission. A mask is generated to generating the
n number of shares of the patient’s EMR. Then each share is
ciphered through the neural session key. A header is formed
by collecting secret information including the session key.
This header is divided into n number of shares using a header
mask. Each header share is concatenated to each secret share.
Finally, these concatenated shares are individually encrypted
using the recipient’s public key.

Proposed Algorithm
Requirement: Patient ′s EMR
Input: Total no. of shares (n), no. of threshold (k)
Output: n number of secret shares of EMR
Method:Mask_Generation( ) helps to generate a secret

mask. The binary form of the EMR is then AND-ed with a
mask to create confidential shares. These partially opened
shares get encrypted using a neural session key. Then the
header shares are concatenated with encrypted secret shares.
Finally, these concatenated shares are distributed to the n
numbers of intended recipients by encrypting them using the
public key of the corresponding recipient.

{/* Session key generation*/}
EncryptionKey[ ] = Call NeuralSessionKey () ;
{/*Secret Mask generation*/}
Mask[nCk−1 ][n] = Call Mask_Generation(

Mask[nCk−1 ][n ] , n , k );
{/*Secret Shares Generation*/} i
Share[n][nCk−1 ] =
Call Secret Share_Generation
(Mask[n][nCk−1 ], EMR[p][q]);
{/*Encryption of Partially open shares*/}
EncryptedShare[i][ j] = Call ShareEncryption
(Share[n][ ], EncryptionKey[ ]) ;
{/*Formation of Header Mask*/}
HeaderMask[i][ j] = Call
HeaderMask_Generation
(EncryptedShare[n][ ]) ;
{/*Public Key Encryption of Encrypted Key with Privi-

lege Recipient’s Public key*/}
PrivilegeEncryptedKey[ ] = Call
PublicKeyEncryption (

EncryptionKey[ ],
PrivilegeRecepient

′
spublicKey);

{/*Header Generation*/}

Header [ ] = {n, k, PrivilegeEncryptedKey[ ],
EncryptedShareSi ze[n]};
{/*Header Share Generation */}
Header Share [n] [k] = Call
Header Share_Generation
(HeaderMask[n] [k], Header [ ]);
{/*Concatenation of Header Shares with Compressed

Share */}
FinalShare[i] [ j] = Call
FinalShare_Generation
(EncryptedShare[n] [ ], EncryptedShareSi ze[n],
Header Share[n] [k]);

{/*PublicKeyEncryptionofEncrypted shareswithRecip-
ient’s Public key*/}

TransmittableFinalShare[i] =
Call PublicKeyEncryption
(FinalShare[n], Recipient

′
spublicKey[n]);

Report n transmittable shares

6.1 Mask Generation

This algorithm for generatingmasks requires two inputs. One
is the number of shares (n) and the other parameter is the
value of the threshold. The Mask

[
nCk−1

]
[n] is determined

depending on the value of (n) and (k). In themask generator,
the number of recipients, i.e., (n), and the minimum number
of shares, i.e., threshold value (k), are placed. The length
of each mask is nCn−k . The proposed work is focused on
masking which uses AND-ing for share generation and OR-
ing predefined minimum number of shares to reconstruct the
original. The beauty of the mask generation algorithm is that
it follows the property of lossless join decomposition with
the effect of data integrity.

A secret EMRmust be transmitted as a sequence of bits 0s
and 1s. This proposed work depends on the masking of the
predefined nnumber of shares and then on successful OR-ing
with the predefined k shares (including privileged shares),
where 2 ≤ k ≤ n is needed to regenerate the originally
transmitted EMR. Shares are created by a mask and each
share has some missing bits that can be recovered by no less
than that exact (k − 1) share. The mask size is nCk−1 in this
technique since certain combinations of bits should be nCk−1

in any bit location.
This mask is AND-ed with the secret EMR to form the

partially opened shares. Thus, 1 in the mask retains the data
at that particular position, whereas 0 in the mask eliminates
the secret bit. This procedure compressed the share by elim-
inating some secret bits which can be recovered at the time
of secret reconstruction by OR-ing any k number of shares
with the help of the mask. So, n number of masks can form n
number of compressed shares. Mask having different 1 and 0

123



Arabian Journal for Science and Engineering (2021) 46:3301–3317 3305

combinations generates different shares. The length of each
mask can be measured as nCk−1 , i.e.,

n!
(k−1)!×(n−k−1)! .

The total number of missing and secret data bits is
n − 1Ck−2 and n − 1Cn−k , respectively. So, the size of each
mask is nCk−1 and the total number of 0’s is n − 1Ck−2 and the
number of 1’s is n − 1Cn−k . In the compressed share, the total
number of bits isn − 1Cn−k , i.e., total number of 1’s present
in the share because 0’s are discarded.

The complete mask generation algorithm is given as fol-
lows.

Algorithm
int Mask_Generation
(Mask[nCk−1 ][n ] , n , k )

Input: Mask[nCk−1 ][ n] , n , k
Output: Mask for each share.
Method: Generate a mask matrix of dimension nCk−1 ×

n having (n − k + 1) number of 1s and (k − 1) number
of 0s in each row. Arranged the row in a predefined order.
Transpose this mask matrix so that each row of this matrix
can represent an individual mask for each share. Now, the
new matrix dimension will be n × nCk−1 after transpose.
Each row size will be nCk−1

1.
P = nCk , Ceiling_Bar , S, NO1 = 3,
k1 = 0, k2 = 0, Mid, i, j

: Integer

2. BI N [n] , I ndex[P], I ndex2[P] : Integer array
3. Mid = Floor( ( 0 + ( P − 1) /2 );
4. For i = Ceiling_Bar to 1 do
5. BI N [ n] ← Decimal2Binary_Convert ( i );
6. Check i f One_Count (BI N [n] ) = NO1
7. I ndex[ k1 + +] ← i ;
8. end i f
9. end f or

10.
I ndex [P] ← ASCSORT ( I ndex [0, Mid])+

ASCSORT ( I ndex [Mid + 1, P − 1]) ;
// ’+’ is the concatenation o
11. i = 0 ;
12. j = Mid + 1;
13. While ( i <= Mid && j <= P − 1 ) do
14. I ndex2[k2 + +] ← I ndex[i];
15. I ndex2[ k2 + +] ← I ndex [ j];
16. increment i;
17. increment j;
18. end while
19. For S = 0 to ( P − 1) do

20.
Mask[S][ ] ← Decimal2Binary_Convert

(I ndex[I ndex2[S]]);
21. end f or
22. Mask [ n] [ P] ← [Mask[P][n]]T
23. ReturnMask [ n] [ P]

6.2 Secret Share Generation

A modular approach concerning shares generation is about
dismantling original EMR into smaller partial ciphered

secrets, with no secret contains complete information. The
essential part of this kind of share generation is that each
share has some sort of features of cohesion as well as cou-
pling. If the EMR (M) may be broken into partial shares
A, B, C, D, and E , then the concept of modularity is
maintained. The biggest advantage of such an application of
modular concept concerning the shares generations is that if
any share is being corrupted during transmission, then that
particular share can be regenerated and retransmitted. The
loss or distortion of shares may happen in the network due to
various reasons like noise, impulse, inversion of bits, etc. The
demerit of applying the technique of modularity on shares
generations is that the time complexities will increase both
at the sender end and reassembly end. The algorithm of gen-
erating secret shares is represented as follows.

Secret Share_Generation(

Mask[n][nCk−1 ] , EMR[p][q])
Input:Mask[n][nCk−1 ] , EMR[p][q]
Output: n secret shares
Method:Generate n number of secret shares by AND-ing

secret Mask[n][nCk−1 ] with the input EMR.
{/*AND-ing of EMRwith SecretMask to generate Secret

Shares*/}
1. Set p = 1, q = 1
2. f or i = 1 to n do
3. f or j = 1 to nCk−1 do

4.
Share[i] [ j] = Mask[i] [ j] &

EMR[p][q]
5. increment j, p, q
6. end f or
7. increment i
8. end f or
The above-stated algorithm can also be performed block-

wise. Here, a secret record is shared among some n recipients
and some of them (k) can reconstruct the record if and only
if among k number of shares one of them should be the priv-
ileged recipient. But less k number of recipients or without
privileged recipient, record cannot be reconstructed. At first
secret record is divided into some blocks and then each block
is divided and shared among n number of recipients. In this
way, each block record is constructed by k number of recipi-
ents, and at the last block, records are combined to construct
a secret records.

6.3 Encryption of Partially Open Shares

The following algorithm represents the steps of encryption
of partially open shares with the synchronized neural session
key.

ShareEncryption(Share[n][nCk−1 ],
EncryptionKey[ ])
Input: Share[n][nCk−1 ], EncryptionKey[ ]
Output: n number of encrypted shares.
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Method: Perform XOR operation between intermediate
encrypted shares and neural synchronized encryption key.

{/*Encryption of Partially open shares*/}
1. f or i = 1 to n do
2. f or j = 1 to nCk−1 do

3.
EncryptedShare[i][ j] = Share[i][ j]

XOR EncryptedKey[ j]
4. increment j
5. end f or
6. increment i
7. EncryptedKey[ ] = EncryptedKey[ ] � j
8. end f or

6.4 Header MaskMatrix Generation

k numbers of nonzero sample bytes are now obtained from
each of the n ciphered shares, and thus, header matrix of
dimension (n × k) is formed. The header mask generation
algorithm is discussed as follows.

HeaderMask_Generation (EncryptedShare[n][k])
Input: Share[n][k]
Output: Header Mask Matrix.
Method:Generate a mask matrix of dimension nCk−1 ×n

have (n − k + 1) number of 1s and (k − 1) number of 0s in
each row. Arranged the row in a predefined order. Transpose
this mask matrix so that each row of this matrix can repre-
sent an individual mask for each share. Now, the new matrix
dimension will be n × nCk−1 after transpose. Each row size
will be nCk−1

{/*Formation of Header Mask Matrix*/}
1. f or i = 1 to n do
2. f or j = 1 to k do
3. HeaderMask[i][ j] = EncryptedShare[i][ j]
4. increment j
5. end f or
6. increment i
7. end f or

6.5 Grant Privilege to the Desire Recipient

In this proposed technique, a concept of the privileged recip-
ient has been introduced for preserving the patients’ EMR.
The original EMR is reconstructed after OR-ing exactly k or
more number of shares (including the share of privileged
recipient). Original EMR cannot be constructed without the
participation of privileged recipient’s share. To implement
this logic, EncryptetionKey[ ] is encrypted using the priv-
ileged recipient’s public key using any public key encryption
[49]. So, the privileged recipients only candecode the encryp-
tion keys of secret shares to get the original EMR.

PublicKeyEncryption (EncryptetionKey[ ],
PrivilegeRecepient

′
spublicKey)

6.6 Generation of Header Shares

The n numbers of header shares are generated by mul-
tiplying the header with the n × k header mask using∑i=0 to n−1

j=0 to k−1 x[i][ j] × Header [ j] Following is the step by
step demonstration of header share generation.

Header Share_Generation(

HeaderMask[n][k], Header [ ])
Input: HeaderMask[n][k], Header [ ]
Output: n numbers of Header shares
Method: generate header shares by multiplying header

mask with header.
{/*Header Share Generation */}
1. f or i = 1 to n do
2. f or j = 1 to k do
3. Header Share[i][ j] = HeaderMask[i][ j] ×

Header [ j];
4. increment j
5. end f or
6. increment i
7. end f or

6.7 Concatenation of Encrypted Shares and Header
Shares

Each header share is concatenated with the corresponding
encrypted share, which forms one complete share. The fol-
lowing algorithm generates the final share.

FinalShare_Generation(EncryptedShare[n][ ],
EncryptedShareSi ze[n], Header Share[n][k])
Input:

EncryptedShare[n][ ], EncryptedShareSi ze[n],
Header Share[n][k]

Output: Concatenated shares
Method: Perform concatenation between encrypted share

and header share
{/*Concatenation of Header Shares with Compressed

Share */}
1. f or i = 1 to n do
2. si ze = EncryptedShareSi ze[i] + k
3. f or j = 1 to EncryptedShareSi ze[i] do
4. FinalShare[i][ j] =

EncryptedShare[i][ j];
5. increment j
6. end f or
7. f or p = j to si ze do
8. FinalShare[i][ j] = Header Share[i][ j];
9. increment p
10. end f or
11. increment i
12. end f or
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6.8 Public Key Encryption of Final Shares

The most important part is to take into account that inter-
mediate encrypted shares are ultimately encrypted with the
corresponding public keys of the designated recipients. Any
public key algorithm can be used for this purpose. In this pro-
posed model, assigning the n number of shares to an exact n
number of recipients can be generalized using a fundamen-
tal mathematical combinational optimization technique. As
discussed in this model, the general form of the problem is
as follows:

There are n number of shares and knumber of tasks in
the problem. Any share can be assigned to any recipient,
provided the constraint key f unction (F) which is defined
as the public key encryption applied based on corresponding
recipients’ public key. It has been designed in such a way
that a recipient will be exactly assigned only a single share
∀shares; F(ni ) = Recipenti (public key) .

Mathematically, the formal mathematical definition of
the linear assignment problem is given two sets, n and r , of
equal size, combined with a key f unction F : n × r →
R.Such kind of assigning a share to the corresponding recipi-
ent is termed as the one-to-one correspondence of shares. The
following steps are represented the encryption of final share.

PublicKeyEncryption
(FinalShare[n], Recipient

′
spublicKey[n])

Input: FinalShare[n], Recipient
′
spublicKey[n]

Output: n number of transmittable shares.
Method: Perform public key encryption of n number of

final shares with the respective recipient’s public key.
{/*Public Key Encryption of final shares with Recipient’s

Public key*/}
1. f or i = 1 to n do

2.
TransmittableFinalShare[i] =
PublicKeyEncryption

(FinalShare[i], Recipient
′
spublicKey[i])

3. increment i
4. end f or
At the recipient end, the objective is to regenerate the orig-

inal EMR. The threshold value of shares is bitwise OR-ed
to get the original EMR as discussed earlier. Three different
fields like frame header, encrypted secret data, and padding
are to be extracted out. The concept of subnetting is applied
to achieve this task. Suppose the recipient wants to extract
the padding field of 16 bytes. It is being done by bitwise
XOR operation. Binary EMR being XOR-ed with another
arbitrary string that contains all 1s of 16 bytes from the least
significant bit position and the rest of the bits are filled with
zeros. The resultant of this operation shows a copy of the
padding field only of length 16 bytes. By repeating the same
operation, other three attributes can also be obtained.

7 Artificial Neural Network Synchronization

A special artificial neural network architecture called TPM
(tree parity machine) is used at patient and caregiver end.
These two TPMs start mutual synchronization with each
other using a common input vector and random synaptic
weights vector. After each step, each TPM exchanges their
final output and uses suitable learning rules to update their
corresponding weights. After full synchronization, both the
TPMs generate identical weight vector. This identical synap-
tic weight vector serves as an encryption key to encrypt the
partially open shares.

TPM is composed of M number of input neurons
for each H number of hidden neurons. TPM has an
only neuron in its output. TPM works with binary input,
xinputu,v ∈ {−1,+1}. The mapping between input and
output is described by the discrete weight value between
−Lrange and+Lrange,weightu,v ∈ {−Lrange,−Lrange
+ 1, . . . , +Lrange}. In TPM uth hidden unit is described
by the index u = 1, . . . , H and that of v = 1, . . . , M
denotes input neuron corresponding to the uth hidden neu-
ron of the TPM. Each hidden unit calculates its output by
performing the weighted sum over the present state of inputs
on that particular hidden unit which is given by Eq. 1.

hiddenu = 1√
M

WE IGHTu .X I N PUTu

= 1√
M

M∑

v=1

weightu,v xinputu,v

(1)

signum(hiddenu) define the output σoutputu of the uth
hidden unit. (in Eq. 2),

σoutputu = signum(hiddenu) (2)

If hiddenu = 0, then σoutputu is set to −1 to make the
output in binary form. If hiddenu > 0, then σoutputu is
mapped to+1, which represents that the hidden unit is active.
If σoutputu = −1, then it denotes that the hidden unit is
inactive (in Eq. 3).

signum(hiddenu) =
{−1 i f hiddenu ≤ 0

+1 i f hiddenu > 0
(3)

The product of the hidden neurons denotes the ultimate result
of TPM. This is represented by τoutput is (in Eq. 4),

τoutput =
∏H

u=1
σoutputu (4)
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The value of τoutput is mapped in the following way (in
Eq. 5),

τoutput =
{−1 i f σoutputu = −1, is odd

+1 i f σoutputu = −1, is even
(5)

τoutput = σoutput1, if only one hidden unit (H = 1) is
there. τoutput value can be the same for 2H−1 different
(σoutput1, σoutput2, ..., σoutputH ) representations.

If the output of two parties disagree,τoutputT PM_A 
=
τoutputT PM_B , then no update is allowed on the weights.
Otherwise, follow the following rules:

TPM be trained from each other using Hebbian learning
rule (in Eq. 6).

weight+u,v

= f n(weightu,v + xinputu,vτoutputΘ(σoutputuτoutput)

Θ(τoutputT PM_AτoutputT PM_B)) (6)

In the anti-Hebbian learning rule, bothTPMs are learnedwith
the reverse of their output (in Eq. 7).

weight+u,v

= f n(weightu,v − xinputu,vτoutputΘ(σoutputuτoutput)

Θ(τoutputT PM_AτoutputT PM_B)) (7)

If the set value of the output is not imperative for tuning given
that it is similar for all participating TPM, then random walk
learning rule is used (in Eq. 8).

weight+u,v

= f n(weightu,v + xinputu,vΘ(σoutputuτoutput)

Θ(τoutputT PM_AτoutputT PM_B)) (8)

If X = Y , then Θ (X ,Y ) = 1 Otherwise, if X = Y then
Θ (X ,Y ) = 0 Only weights are updated which are in hidden
units with σoutputu = τoutput . f n(weight) is used for
each learning rule (in Eq. 9).

f n(weight)

=
{
signum(weight)Lrange f or |weight | > Lrange
weight otherwise

(9)

This mutual synchronization algorithm helps to generate an
encryption key over a public channel. This generated encryp-
tion key is used to encrypt the partially open shares.

8 Example

In this proposed scheme, a mask matrix is generated by call-
ing the following mask generation function.

Mask[nCk−1][n] = Call Mask_Generation(

Mask[nCk−1][n ] , n , k )

The following is a potential set of masks for 5 shares with
a threshold of 3 shares:

Si Mask
Share 1 : 1010101011
Share 2 : 1011110100
Share 3 : 1100011110
Share 4 : 0111001101
Share 5 : 0101110011
One can easily verify that OR-ing can generate all 1s with

three or more shares, but some positions still have 0s with
less than three shares, i.e., they remain missing. Now, each
secret shares are generated by calling the following secret
share generation function.

Share[n][nCk−1 ] =
Call Secret Share_Generation
(Mask[n][nCk−1 ], EMR[p][q])

Take into account that the secret message (M) is RKMVC-
SAS20 and the size of M is 10 bytes. The following shares
are now created by using a logical AND-ing with individual
masks.

Si Mask Shared Message
Share 1 : 1010101011 R0M0C0A020
Share 2 : 1011110100 R0MVCS0S00
Share 3 : 1100011110 RK000SAS20
Share 4 : 0111001101 0KMV00AS00
Share 5 : 0101110011 0K0VCS0020
It can be easily noted from the above shares that each

share includes partial secret data. That is, a secret byte corre-
sponding to one is retained as it is in the mask and the secret
byte corresponding to zero is retained as zero in the mask.
So every share has some bytes missing and can recover these
missing bytes from a collection of specific k shares. Now
all zero bytes corresponding to zero bit are discarded in the
mask, which introduced a special technique of compression.
Therefore, the above shared message becomes a compressed
message.

Si Compressed Message
Share 1 : RMCA20
Share 2 : RMVCSS
Share 3 : RKSAS2
Share 4 : KMVAS0
Share 5 : KVCS20
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All shares now have 30 bytes of total size (< 50). All con-
fidential information is partly open to participants here. To
solve this problem, each share is encrypted by a key. The arti-
ficial neural network-guided session key enables each share
to be encoded. The following function perform the encryp-
tion of partially open shares.

EncryptedShare[i][ j] = Call ShareEncryption
(Share[n][ ], EncryptionKey[ ])

Now, a header mask can be generated using the following
function. This procedure is the same as the mask generation
technique for shares.

HeaderMask[i][ j] = Call
HeaderMask_Generation
(EncryptedShare[n][ ])

Any public key encryption algorithm can be used to
encode the encrypted key with privilege recipient’s public
key with the help of the following function.

PrivilegeEncryptedKey[ ] = Call
PublicKeyEncryption (

EncryptionKey[ ],
PrivilegeRecepient

′
spublicKey);

A header is generated by concatenating some essential
parameters like the n, k, privileged encrypted key, and the
size of the encrypted shares.

Header [ ] = {n, k, PrivilegeEncryptedKey[ ],
EncryptedShareSi ze[n]}

The header share generation procedure is the same as the
secret share generation procedure. The following function
helps to generate the header share matrix.

Header Share [n] [k] = Call
Header Share_Generation
(HeaderMask[n] [k], Header [ ])

Final shares are generated after the concatenation of corre-
sponding header shares with a compressed secret share using
the following function.

FinalShare[i] [ j] = Call
FinalShare_Generation
(EncryptedShare[n] [ ], EncryptedShareSi ze[n],
Header Share[n] [k])

Any public key encryption can be used to generate the
transmittable final share by encoding the encrypted shares

with the corresponding recipient’s public key.

TransmittableFinalShare[i] =
Call PublicKeyEncryption
(FinalShare[n], Recipient

′
spublicKey[n])

9 Time Complexity Analysis

The time complexity of secret share generation technique
may be calculated as i where n denotes the number of shares
prepared for transmission. This time complexity factor will
increase with the increase in the number of shares, and vice
versa. So, here the time complexity is directly proportional
to the number of shares generation. The ability of the exis-
tence of cohesive property in every share is that they are
treated as an independent entity, while the process of encryp-
tion is done. Only the partial ciphered EMRs are present in
the shares to make it hidden from unauthorized access like
intruders, hackers, etc. The good part is that it increases the
total system maintainability factor since logical changes are
done inside any particular domain affect the fewer number
of other modules. Another striking feature is the coupling
feature. It means the degree of inter dependency between the
shares. During the reassembly of the threshold number of
shares, the coupling parameter coexists. The coupling param-
eter can be computed as O (k), where k means the threshold
value of shares. If (k −1) of shares or less than (k −1) num-
ber of shares are combined during the reconstruction phase,
then this would not be feasible. In other words, a minimum
k number of shares is required to regenerate the original
data. In artificial neural network synchronization and ses-
sion key generation technique, initialization of weight vector
takes (number of input neurons× number of hidden neurons)
the amount of computations. For example, if the number of
input neurons (n) = 5 and the number of hidden neurons
(k) = 6 then total numbers of synaptic links (weights) are
(5×6) = 30.Computationof the hiddenneuronoutputs takes
k computations. The generation of the number of input vector
for each k number of hidden neurons takes (n × k) amount
of computations. Computation of the final output value takes
a unit amount of computation because it needs only a single
operation to compute the value. In the best case, the sender’s
and receiver’s arbitrarily chosen weight vectors are identical.
So, networks are synchronized at the initial stage do not need
to update the weight using learning rule. So, in the best case,
the computation complexity can be expressed in the form
of O(initialization of input vector + initialization of weight
vector + computation of the hidden neuron outputs). If the
sender’s and receiver’s arbitrarily chosen weights vector are
not identical, then in each iteration the weight vector of the
hidden unit which has a value equivalent to the value of the
output neuron is updated according to the learning rule. This
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scenario leads to average and worst-case situation where I
number of iteration to be performed to generate the identi-
cal weight vectors at both ends. So, the total computation
for the average and worst case can be expressed as O(Time
complexity in first iteration+(number of iteration × number
of weight updation)). The Mask

[
nCk−1

]
[n] matrix is gen-

erated to generating the share of the EMR. This operation
takes O(nCk−1 × n) amount of time.

10 Results and Analysis

For result and simulation purpose, an Intel Core i7 10th Gen-
eration, 2.6 GHz processor, 16 GB RAM is used. Python
is used for simulation purpose. Comprehensive and needful
security views have been focused to affect acquaintance secu-
rity and robustness issues. The precision of decimal has been
used in arithmetic operations according to the authenticated
IEEE Standard 754. An encryption algorithm should have
outstanding cryptogram pseudorandom properties. The algo-
rithm must also avoid all known attacks on the cryptanalyst.
The following subsections present some security analysis,
performance analysis, and comparisons analysis of the pro-
posed technique.

10.1 Secret Key Space Analysis

Consider n number of cascading encryption/decryption tech-
nique is used to encrypt/decrypt the plaintext with the help
of neural synchronized session key. Then a session key of
length [(number of cascaded encryption technique in bits)
+ (three bits combinations of encryption/decryption tech-
nique index) + (length of n number of encryption/decryption
keys in bits) + (length of n number of session keys in
bits)], i.e., [ 8 + (3 × n) + (128 × n) + (128 × n) ]
bits to [ 8 + (3 × n) + (256 × n) + (256 × n)]
number of bits. So,

[ 8+ (3×n)+ (128×n)+(128×n)]
8

=
(
1 + (3×n)

8 + 16n + 16n
]

= 32n
to

[ 8+ (3×n)+ (256×n)+(256×n)]
8

=
(
1 + (3×n)

8 + 32n + 32n
]

= 64n
numbers of characters.

Consider any single encryption using the encryption key
of size 512 bit which is hypothetically approved and needed
to be analyzed in the context of the time taken to crack a
ciphertext with the help of the fastest supercomputers avail-
able at present. In this technique to crack a ciphertext, the
number of permutation combinations on the encryption key
is 2512 = 1.340780 × 10154 trials for a size of 512 bits
only. IBM Summit at Oak Ridge, USA, invented the fastest
supercomputer in the world with 148.6 PFLOPS, i.e., means
148.6 × 1015 floating-point computing/second. Certainly, it
can be considered that each trial may require 1, 000 FLOPS
to undergo its operations. Hence, the total test needed per

second is 148.6 × 1012. The total number of sec. a year has
= 365× 24× 60 × 60 = 31, 536, 000 sec. Total number of
years for brute force attack: (1.340780 × 10154)/(148.6 ×
1012 × 31, 536, 000) = 2.86109 × 10132 years.

10.2 Information Entropy Analysis

Entropy is ameasure of a random sequence’s unpredictability
or uncertainty. High entropy values mean strong encryption,
while low values mean poor encryption. An index of the data
content is the entropy of a clinical signal. It is measured in
terms of bits per character in a signal. If a character has a very
chance of occurrence, then its data content is very less. Any
document will carry in between 0 and 255 characters. The
entropy value of such a document will be between 0 and 8
bits per character. 8 bits per character denotes equally spread
data values. In total, 1500 encrypted BP signals of 60 s are
obtained using 1500 different encryption keys. The average
entropy value of these 1500 encrypted signals is 7.98. The
encrypted signal unpredictability is 99.75%.

10.3 Analysis of Histogram

Both the initial and encrypted clinical signals are accessed by
the program, and the histogram analysis has been carried out.
If this method is successful, the random pseudovalues should
be displayed with histograms in a uniform distribution. The
encryption algorithm has outstanding statistical characteris-
tics if the histogram is uniform. Figures 1 and 2 show the
histogram of plain and encrypted EMR, respectively. Since
the encrypted EMR histograms are uniform, the approach
proposed is robust against histogram-based statistical attacks.

10.4 Correlation Analysis

Correlation analysis has been used in the encryption algo-
rithm to prove that the encrypted signal is uncorrelated. The
correlation coefficient is used for this analysis to decide
whether the plain signal is not correlated with the encrypted
signal , i.e., how much its amplitude varies. The correlation

Fig. 1 Histogram of frequency distribution spectrum of input source
stream characters
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Fig. 2 Histogram of the frequency distribution continuum of encoded
stream characters using the proposed technique

Fig. 3 Original signal’s floating frequency

Fig. 4 Using the proposed method, the floating frequency of the
encrypted signal

coefficient range is (−1, 1), where 0 does not imply a cor-
relation. The average correlation between plain signal and
EEG signal is 0.0005, BP signal is 0.0007 and ECG signal is
0.0003 in the proposed technique. The findings suggest that
the proposed encryption algorithm generates a cryptogram
that is strongly unrelated to the corresponding plain signal.

10.5 Floating Frequency Analysis

The smoother or smaller curves in the frequency distribution
spectrum indicate that it is more difficult for a cryptana-
lyst to detect the original text bytes, which means a better
level of security. In Figs. 3 and 4, respectively, the floating
frequency of plain and encrypted signals is shown. Well-
distributed floating frequencies demonstrate the ruggedness
of the encryption.

Fig. 5 Autocorrelation of the original signal

Fig. 6 Autocorrelation of the encrypted signal using proposed tech-
nique

10.6 Autocorrelation Analysis

The study of autocorrelation provides data on features such
as periodicity, dependency, and repeated patterns in plain
signal and encoded signal. The autocorrelation is known as
the correlation between the signal and the shifted k posi-
tions themselves. For both a plain signal and an encrypted
signal, the autocorrelation is measured at a bit level. Fig-
ures 5 and 6 show the autocorrelation of plain and encrypted
signals, respectively. The findings show that a plain signal
displays repeated patterns with high positive autocorrelation
values, while the autocorrelation is near zero. As there is no
regularity or repeating pattern on the encrypted signal, the
proposed system of encryption is robust to generate uniform
cryptograms. This is very important to avoid poor encryption
windows that can be used in cryptanalysis in cryptosystems.

10.7 Quality Metrics Analysis

This section performed a quality review of the encoded ECG
signal. It contains the mean square error (MSE), the PSNR,
and the structural similarity index (SSIM). The variance
between both the original signal X and the encoded signal E
of size L can be determined using given Eq. 10.

MSE =
∑L

i=1 ( Xi − Ei ) 2

L
(10)

The larger MSE value is often preferable by the encoding
algorithm. PSNR reflects the ratio of the average pixel value

123



3312 Arabian Journal for Science and Engineering (2021) 46:3301–3317

Table 1 Quality metrices estimation

Clinical signals MSE PSNR (dB) SSIM

ECG [50] 10714.21 7.925 0.0429

EEG [50] 10124.16 8.213 −0.0261

BP [50] 11316.81 7.965 0.0721

to the compressed image as seen in Eq. 11.

PSNR = 10log10

(
MAXP I X2

MSE

)
(11)

The maximum value of pixels in the original signal is
MAXPIX. A method for the evaluation of the quality of the
image is the structural similarity index (SSIM). It includes
the cross-correlation, mean, and standard deviation of the
imagewith the compressed image, asmentioned below using
Eq. 12.

SSIM(X ,Y )

=
(
2μx μy + K1

) ∗ (2σxy + K2 )(
μ2
x + μ2

y + K1

)
∗ ( σ 2

x + σ 2
x + K2)

(12)

Here,μx and σx represents themean and variance of the orig-
inal image, respectively. μy and σy represents the mean and
variance of the compressed image, respectively. σxy is the
cross-correlation between the original image and the com-
pressed image. SSIM is 1 where both images are similar,
while SSIM near zero implies that they differ structurally.
MSE, PSNR, and SSIM these three tests use plain signals
and produce 1500 encoded signals, using 1500 different
encryption keys. To pursue these tests, the original signal
and cryptogram are mapped from (0,1) to [0,255], as quality
indicators for images are MSE, PSNR, or SSIM. Average
MSE, PSNR, and SSIM are indicated in Table 1 between the
plain and encrypted ECG, EEG, and BP signals. The results
show high MSE, small PSNR values, and low SSIM values.
The proposed encryption system, therefore, generates effec-
tive and consistent cryptographic pseudorandoms.

To test any distortion of the initial clinical signal and the
clinical signal obtained, the percentage root mean square dif-
ference (PRD) is used. Using Eq. 13, PRD is computed.

PRD =
√√√√

∑L
i=1 ( Xi − X̂i )

2

∑L
i=1 (Xi )

2
× 100 (13)

Table 2 represents the PRD in received clinical signal with
noise percentage.

10.8 Secret Key Sensitivity

If ECG signals or other clinical signals being encrypted by
two very similar keys, then also they will generate two com-
pletely different cryptograms. The encryption system should
be immunized to several attacks. Two similar keys,maybe the
difference in fewer bits, result in two entirely different cipher-
texts. However, a flip on a single bit between two encryption
keys will generate two cryptograms on a completely differ-
ent scenario. In total, 1500 different encryption keys with
a minimum bit difference are used to generate 1500 differ-
ent cryptograms. The average correlation for BP signal is
0.0069, ECG is 0.0077 and EEG is 0.0040. Thus, intruders
are not able to derive any conclusion on the exact key pattern
to decrypt the signals.

10.9 Plain Signal Sensitivity

Like the secret key sensitivity, the proposed technique should
be resistant to plain signal sensitivity too. Plain signal sensi-
tivity refers to encrypting two almost similar clinical signals
with the same key, and resultant cryptograms are far away
from each other. Two healthy persons belonging from the
same demographic zone and with nearly the same age will
generate their BP signals of similar patterns. There are two
identical BP plain signals are considered, with the value
changed from 115.4 to 115.3 for just 5 s. Simple shifts in
plain signals make the proposed scheme especially sensi-
tive. Moreover, the histogram of two cryptograms encrypted
through the same key is immensely different in its properties.

10.10 Pseudorandom Analysis Under NIST 800-22

For N samples of bit sequences obtained from the opti-
mization algorithm, one p-Value and a threshold value are
evaluated. The value of the threshold is defined using Eq. 14.

Thresholdvalue = (1 − α) − 3

√(
α × (1 − α)

N

)
(14)

Here, α is the value of the significance level. The value of
the significance level (α) is 0.01 for all the statistical tests.
The size of sample bits N is larger than the inverse of α.
In the case of serial test, cumulative sums test, and Ran-
dom excursions test, generating p-Values, Thresholdvalue
should be calculated by considering (M × n) instead of M
bits. True randomness was ensured in the proposed transmis-
sion technique bypassing the fifteen tests contained in that
suite. These tests are very useful for such a proposed tech-
nique with high robustness. A probability value (p-Value)
determines the acceptance or rejection of the weight vector
generated by the whale optimization algorithm. Table 3 con-
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Table 2 PRD in received clinical signal with noise %

Signal PRD (0% noise) PRD (5% noise) PRD (10% noise) PRD (15% noise) PRD (100% noise)

BP [50] 2.55 × 10−16 82.16 137.89 307.34 805.72

ECG [50] 2.87 × 10−14 19829.81 24470.56 48215.93 112137.04

EEG [50] 1.14 × 10−15 397.09 510.73 854.25 3187.45

tains the results ofNISTStatistical tests [51] on the generated
random input vector.

10.11 Chosen Plain Signal Attack

The chosen plain text attack was among the most effective
attacks, as much chaos image encryption algorithms were
broken in recent years. Cryptographic algorithms are well
known to the public. A chosen plain text assault can thus
be applied to find the secret key that other cryptograms may
have used. The only hidden secret is the key, through which
encryption had been achieved. Intruders present silently on
the networkwill test several sets of keys to decrypt the cipher-
text. In the telehealth, attackers try to decrypt the ECG signal
components based on some heuristic keys. The length of the
key size is proportionate to the complexity to resist against
the chosen plain signal attacks. For such a chosen plain sig-
nal attack, the proposed encryption algorithm is robust. Even
a one-bit flip in the encryption key will immensely mod-
ify the generated encoded signal. The proposed encryption
algorithm is extremely reliable for a chosen plain text attack
because of the high reliance on the secret shares used in the
encryption process. Further, each cryptogram relies heavily
on its respective plain signal as regards its secret shares. This
proves the resistant by the proposed technique against the
chosen plain signal attack in the telehealth system.

10.12 Noise Attack

Changes in the shape of the transmitted ECG signals may
mislead the cardiologist to diagnose the disease. Signals are
distorted by the effect of the noise factor, termed as noise
attack. The proposed technique is resistant to the said attack
in the following way. The ECG signal has been distorted by
imnoise( )with noise value 0 as salt and1 as pepper. Three dif-
ferent noise density cases are 0.017, 0.048, and 0.156 scaled
at 2 %, 5 %, and 15 % of noise, respectively. In an ideal sit-
uation, mean square error, MSE should be nil, however, not
realistic that one.MSEbetween original signal and decrypted
signal is 96.43, 422.41, and 1267.54 for 2 %, 5 %, and 15 %
of noise, respectively. Table 8 contains the percentage root
mean square difference, PRD calculated at the different clin-
ical signals received under noise percentage. Using the noise
attack, the information transmitted from patient to doctor or

vice versa may lose. By raising the sampling frequency, this
stated problem of the lost signal may be addressed.

10.13 Occlusion Attack

During the transmission of clinical signals under telehealth,
it obvious that it shall lose data to a certain level. The tol-
erance level of such an ECG signal has been estimated in
the proposed technique against occlusion attack. Signals lost
with higher than 5% is not suited for considerations. ECG
signal has 1000 signal elements between zero and one. Ran-
domly, 20, 50, and 150 elements were selected and defined as
zero. The MSE of recovered ECG signals is 0 for 0 % noise,
118.75 for 2 % noise, 271.91 for 5 % noise, and 1024.48 for
15 % noise. If there is more than 5 % occlusion, it is not
possible to use the signal.

10.14 Encryption/Decryption Time

All test programs for the algorithms have been designed
to demonstrate the overall encryption and decryption time.
Period taken is the difference between the beginning and end
ticks of the processor clock. In milliseconds (ms), times are
measured. The lower the amount of time, the better for a typ-
ical end user. Because the time needed for the CPU clock
ticks, there might be a small difference in actual time. This
variation is minimal and can be disregarded. Using the inter-
face of telehealth, patients can provide their clinical reports
and necessary data for transmission to doctors. The inter-
action time needed is a vital parameter for acceptance or
rejection of any system. The encryption time and decryption
time should be minimized to accept or reject the proposed
system efficiently. The encryption and decryption times of
the proposed technique and current benchmark methods are
shown in Table 4.

10.15 Comparison Analysis

Chaos-based encryption techniques on clinical signals ECG/
EEG, etc. presented in the literature survey section have some
pros and cons within themselves. Security implementations
and further enhancements in the telehealth system are the
most indispensable and sensitive criteria. While encrypting
any patients’ clinical signals, the system should be capable of
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Table 3 NIST statistical test NIST test p value Status

Frequency 0.557287 Success

Frequency within a block 0.580167 Success

Runs 0.517563 Success

Longest run of ones in a block 0.088907 Success

Binary matrix rank 0.680278 Success

Discrete Fourier transform 0.511908 Success

Non-overlapping template matching 0.459784 Success

Overlapping (periodic) template matching 0.221587 Success

Maurer’s “universal statistical” 0.787421 Success

Linear complexity 0.668904 Success

Serial 0.543298 Success

Approximate entropy 0.290176 Success

Cumulative sums 0.696389 Success

Random excursions 0.350933 Success

Random excursions variants 0.234908 Success

Table 4 Comparisons of encryption/decryption time of the proposed technique with benchmark AES and TDES encryption techniques

Source file size
(in bytes)

Proposed technique (in milliseconds) AES technique [52] (in milliseconds) TDES technique [52] (in milliseconds)

Enc. Dec. Enc. Dec. Enc. Dec.

1,925,185 120 142 197 219 393 501

2,498,560 178 184 242 297 532 518

3,790,336 240 251 298 332 897 923

4,883,456 319 322 405 467 964 1051

5,456,704 337 350 487 517 1172 1168

resisting the different attacks on the transmitting component
signals. The proposed system handles the integral features as
compared with other validated techniques of others. A brief
comparative study is given in Table 5.

10.16 Avalanche and Strict Avalanche

A comparison being made between the source and the
encrypted signal, and a shift of bits in the encrypted signal
was observed for a single-bit change in the original signal
for a whole or a very large number of bytes. Subtract the
ratio of the measured standard deviation from the predicted
value of 1.0 to achieve avalanche and a strict scale avalanche.
To measure the bit independence principle, the coefficient
of correlation between the jth and kth components of the
output difference string is required. Table 6 demonstrates
the comparison of the average values of avalanche, strict
avalanche and bit independence between the proposed and
current benchmark encryption techniques.

11 Conclusion and Future Scope

The security of the existing telehealth system is enhanced
using the proposed neural session key generation technique.
Here, a concept of the privileged recipient has also been intro-
duced for preserving the confidentiality of the patient’s EMR.
The original EMR is reconstructed after OR-ing exactly k or
more number of shares. Among these k number of shares, one
should be from privileged recipients. Original EMR cannot
be reconstructedwithout the participation of privileged share.
Telehealth is already rising rapidly. The new standard will be
the forced habits of today. Life in the AC (After Corona) age
will never be the same again. Today’s mandatory preferences
will slowly shift to defaultmode. If face-to-face consultations
is the standard and telehealth is an exception, patients can-
not want to return to the BC (Before Corona) era. Extended
Medicare coverage allows telehealth an efficient way to con-
tinue delivering services for patients. However, procedures
will continue to give priority to patients’ safety and data
protection. Hackers use the COVID-19 crisis to attack with
various viruses in the form of ransomware to steal data and/or
bank malware such as Mustang Panda, Kimsuky, and many
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Table 5 Comparison of the technique proposed with recent techniques noted in the literature

Sl. no. Comparative parameters Proposed technique Ref. [48] 2017 Ref. [41] 2016 Ref [42] 2016 Ref. [43] 2014 Ref. [44] 2011

1 ECG clinical signal Yes Yes Yes No No No

2 EEG clinical signal Yes Yes No No No No

3 BP clinical signal No Yes No No No No

4 UCD clinical signal Yes No No No No No

5 Signal database Physio Bank ATM Physio Bank ATM MIT-BIH UCI KDD NTOU Bonn University

6 Telehealth system Yes No No No No No

7 Live sensing signals No No No No No No

8 Data encryption Yes Yes Yes Yes Yes Yes

9 Data compression No No Yes No No No

10 Secret key space analysis Yes Yes No No No No

11 Histogram Yes Yes No No No No

12 Correlation No Yes No Yes No Yes

13 Autocorrelation Yes Yes No No No Yes

14 Plain signal sensitivity Yes Yes No No Yes No

15 Secret key sensitivity Yes Yes No No No No

16 Entropy analysis Yes Yes No No No No

17 Floating frequency Yes Yes No No No No

18 Chosen plain text attack Yes Yes No No No No

19 Differential attacks Yes No No No No No

20 Mean square error MSE Yes Yes No Yes No No

21 Pick signal-to-noise ratio PSNR Yes Yes No No No No

22 Signal-to-noise ratio SNR No No Yes No No No

23 Structural similarity index SSIM Yes Yes No No No No

24 Power spectral density No No No No No Yes

25 Encryption time analysis Yes Yes No No Yes No

26 Pseudorandomness analysis Yes Yes No No No No

27 AVAL effect Yes No No No No No

28 Strict avalanche effect Yes No No No No No

29 Bit independence test Yes No No No No No

30 Comparative study Yes Yes No No No No

Table 6 Average values of avalanche, strict avalanche and bit independence comparisons

Technique Avg. value of avalanche Avg. value of strict avalanche Avg. value of bit independence

Proposed 0.97189467 0.9687704 0.7569857

AES [52] 0.9999469 0.9996540 0.7211989

TDES [52] 0.9999142 0.9996324 0.7147735

more. Fortunately, the world is a lot different from 1918.
This proposed technique provides a better security approach
to improve the e-healthcare system. The time has come for us
to introduce those tools. COVID-19 provides the chance to
remove all these obstacles. Years ago, telehealth was intro-
duced. COVID-19 has speed up the process only. And the
question now is how far are we prepared to move now?
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