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Although Cisplatin (DDP) is a widely used first-line chemotherapy medication,

DDP resistance is one of the main causes of treatment failure in advanced lung

cancer. Therefore, it is urgent to identify DDP sensitizers and investigate the

underlying molecular mechanisms. Here we utilized DDP-resistant organoids

established from tumor biopsies of patients with relapsed lung cancers. In this

study, we identified Solamargine as a potential DDP sensitizer through

screening a natural product library. Mechanically, Solamargine induced G0/

G1-phase arrest and apoptosis in DDP-resistant lung cancer cell lines. Gene

expression analysis and KEGG pathway analysis indicated that the hedgehog

pathway was suppressed by Solamargine. Moreover, Gli responsive element

(GRE) reporter gene assay and BODIPY-cyclopamine binding assay showed that

Solamargine inhibited the hedgehog pathway via direct binding to SMO protein.

Interestingly, Solamargine and DDP showed a synergetic effect in inhibiting

DDP-resistant lung cancer cell lines. Taken together, our work herein revealed

Solamargine as a hedgehog pathway inhibitor and DDP-sensitizer, which might

provide a new direction for further treatment of advanced DDP-resistant lung

cancer patients.
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Introduction

Lung cancer is the leading cause of death worldwide and accounts for around 18.4% of

total cancer-associated death in 2018 (Bray et al., 2018; Siegel et al., 2020). Despite the

progress in novel targeted treatment regimens, chemotherapy, especiallyCisplatin-based

treatment, is still the first-line treatment for relapsed and advanced lung cancer patients.
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However, the development of Cisplatin resistance is almost

inevitable and results in treatment failure (Kaur et al., 2014;

Sun et al., 2016). Thus, it is urgent to find biomarkers and targets

to predict and overcome Cisplatin resistance.

Patient-derived organoids (PDOs) have been exploited as

novel and effective preclinical models in drug response tests and

personalized therapy design (Fusco et al., 2019; Maru and Hippo,

2019). Comparing with broadly used cancer cell lines, PDOs

more closely represent the heterogeneity and histomorphology of

patient tumors (Kizilkurtlu et al., 2018; Fusco et al., 2019; Maru

and Hippo, 2019). Drug screening based on the PDOs has

recently been used as a practical strategy for drug discovery of

cancer therapies (Li et al., 2016; Kondo and Inoue, 2019; Li and

Izpisua Belmonte, 2019; Rowe and Daley, 2019).

In this study, to discover agents that can overcome Cisplatin

resistance, we performed a drug screen with a natural product

library on PDOs from Cisplatin resistant lung cancer patients

(PDOsCR) and found Solamargine was one of the top compounds

that the PDOsCR were sensitive to. Solamargine is a steroidal

alkaloid glycoside, naturally produced in plants of theSolanaceae

family, and can also be extracted from a traditional Chinese

medicinal herb, Solanum nigrum L. Solamargine has been

reported to have various anti-cancer effects, such as inhibition

of cell proliferation, migration, invasion (Kuo et al., 2000; Sani

et al., 2015; Fekry et al., 2018), and induction of apoptosis ((Kuo

et al., 2000), (Xie et al., 2015; Zhang et al., 2018)). Many studies

have shown that Solamargine is involved in the regulation of

signaling pathways in a variety of cancers, such as suppression of

prostaglandin E2 pathway and inhibition of

Stat3 phosphorylation (Zhou et al., 2014; Chen et al., 2015;

Xiang et al., 2016; Fu et al., 2019). However, most of the

studies only used long-term passaged cancer cell lines to test

the function of Solamargine in vitro. So far, the response of PDOs

generated from primary tumors of lung cancer patients to

Solamargine is rarely reported, and the mechanism of the

sensitivity of the PDOsCR to Solamargine is still unknown.

The sonic hedgehog (SHH) signaling pathway has been

intensively studied in cancers. The SHH pathway has an

essential role in the control of cell destination in embryonic

tissues and is critical in cell differentiation during tissue

development (Robbins et al., 2012; Brechbiel et al., 2014).

Although the SHH pathway is inactivated in adult tissues

under normal circumstances, dysregulation of the SHH

signaling pathway closely links with tumor development and

progression (Pasca di Magliano and Hebrok, 2003; Lauth and

Toftgard, 2007; Lospinoso Severini et al., 2019). Accumulating

evidence indicates that the SHH pathway could be responsible for

drug resistance such as platinum-based chemotherapy (including

Cisplatin) resistance in non-small cell lung cancer (Barr et al.,

2013; Giroux Leprieur et al., 2016; Ishiwata et al., 2018; Dwivedi

et al., 2019). Discovering novel agents to sensitize Cisplatin is

valuable for drug discovery and clinical practice (Zhang and

Hung, 1996). In this study, we aimed to explore the underlying

mechanism of the anti-cancer function of Solamargine and

determine whether it is suitable for therapeutic sensitizer in

Cisplatin-resistant lung cancer.

Materials and methods

Tissue processing and organoid culture

Lung cancer organoids were derived from surgical samples or

transbronchial biopsies of lung cancer patients at Beijing Chest

Hospital, Capital Medical University, Beijing, China. The study

was approved by the Ethical Committee of Beijing Chest

Hospital, Capital Medical University (Trial No. 48, 2018).

Patients participating in this study were all consented. Fresh

tumor tissues were washed with cold PBS, cut into small pieces,

washed with Advanced DMEM/F12 (Thermo Fisher Scientific,

Waltham, MA, United States of America; containing 1×

Glutamax, 10 mM HEPES and antibiotics) and digested with

collagenase (Sigma-Aldrich, St Louis, MO, United States of

America; Cat. No. C9407, 2 mg/ml) for 1–2 h at 37°C.

Dissociated cells were washed twice with fresh medium

(containing 2% fetal calf serum, FCS) and pelleted by

centrifugation (400 g, 4 min), then seeded into 10% (v/v)

growth factor-reduced Matrigel (Corning Inc., Corning, NY,

United States of America) supplied with Advanced DMEM/

F12 at 37°C for 30 min in 24-well low binding plate. After

Matrigel solidified, each well was filled with 500 μl complete

human organoid medium (HOM), which was Advanced

DMEM/F12 supplemented with additives as described by

Lampis et al. (Lampis et al., 2017) and Loredana et al. (Puca

et al., 2018). The medium was changed every 3 days. When the

size of the organoid reached up to 200–500 μm in diameter (in

about 1 week after plating), organoids were dissociated and

passaged weekly using TrypLE Express (Gibco, Grand Island,

NY, United States of America). The PDOs (2 × 106 cells/tube,

passage 3) were stored in the Recovery Cell Culture Freezing

Medium (Gibco) at −80°C before the drug screening.

Histology and imaging

Tissue and organoids were fixed in 4% paraformaldehyde

followed by dehydration, paraffin embedding, sectioning and

standard H&E staining. H&E staining images were taken with

Olympus DP73. A bright-light microscope (LEICA, Wetzlar,

Germany) was used for organoids bright field imaging.

Compound screening

A collection of 1,121 natural products were obtained from

MedChemExpress (Shanghai, China). The natural product
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library was reformatted into 96-well plates with a concentration

of 3.3 μM for automated robotic screening. The cells were also

treated with equal volume (0.1%) of DMSO as negative control

and 1 μM Staurosporine (MCE, shanghai, China) as a positive

control. Plate-to-plate normalization and assay quality control

were calculated according to the controls. Cell viability assay was

performed using a commercially available luminescence

detection reagent (CellTiter-Glo #G9683, Promega, Madison,

WI). Briefly, Pt-001 organoids were processed as described

earlier and plated in a 96-well low binding assay plate with

6,000 cells per well in 50 μl 10% growth factor reduced Matrigel.

An additional 40 μl culture medium without Matrigel was added

above. Organoids were maintained in the medium described

earlier for 48 h and 10 μl culture medium comprised of 33 μM

natural products were added to each well to receive a final

concentration of 3.3 μM. After 5 days of treatment,

50 μLCellTiter-Glo was added into each well and

bioluminescence was measured by FLUOstar Omega (BMG).

Assay quality and robustness were evaluated with signal window

(SW) and Z factor (Zhang et al., 1999). Triplicate wells treated

with Staurosporine (1 uM, service as positive control) and vehicle

solution (DMSO) were employed as bottom wells and top wells,

respectively. The assay showed the signal windows (SW) were

much larger than 10 and the Z factor values were between 0.5 and

1, which indicates the assay was qualified for high-throughput

screening (Supplementary Figures S1A,B).

Cell lines and cell culture

Human lung cancer cell lines, Calu-1, Calu-3, NCI-H1299,

NCI-H838, LTEP-S, NCI-H1650, NCI-H1975, NCI-H226, NCI-

H460, NCI-H520, NCI-H820, PC-9 and SW1573 were purchased

from the American Type Culture Collection (ATCC; Manassas,

VA, United States of America). Calu-1 cells were cultured in

McCoy’s 5a Medium (Gibco), SK-MES-1 and SW1573 cells were

cultured in DMEM medium (Gibco) supplemented with 10%

FCS, and the other cancer cell lines were maintained in RPMI-

1640/1641/1,642 medium (Gibco) supplemented with 10% FCS

(Gibco) and 1% penicillin-streptavidin (Gibco). All cells were

cultured at 37°C in 5% CO2.

Cell viability assay and foci assay

NCI-H460 (0.75 × 103 cells/well) and NCI-H1299 (0.75 × 103

cells/well) cell lines were seeded into 96-well plates and treated

with vehicle or Solamargine for 1, 3, and 5 days. After incubation,

cells were examined as described above for cell viability assay. As

for the foci assay, NCI-H460 (2 × 103 cells/well) and NCI-H1299

(2 × 103 cells/well) were seeded into 6-well plates and treated with

Solamargine for 3 days, then colonies were fixed and stained with

crystal violet solution.

Analysis of cell cycle arrest and apoptosis

Cell cycle and apoptosis were detected as previously

described (Shi et al., 2018). Cells were cultured and treated

with DMSO and Solamargine (2.5 μM or 7.5 μM) in both

NCI-H460 and NCI-H1299 for 48 h followed by single

staining with PI (Betotime) for cell cycle analysis, and dual

staining with PI and Annexin V-FITC (Betotime) for

apoptosis analysis with NovoCyte3130 flow cytometer.

Western blot analysis

Western blot analysis of whole-cell protein lysates was

performed using primary antibodies (1:1,000 dilution) against

PARP (#9542; CST), Cleaved Caspase-3 (#9661; CST), CylclinD1

(#2978; CST), p21 (#2947; CST), β-actin (#60008-1-Ig,

Proteintech).

RNA-seq analysis

NCI-H460 and NCI-H1299 cells were incubated with DMSO

or Solamargine (2.5 μM or 7.5 μM) for 48 h. Total RNA was

extracted using TranZol™ UP Plus RNA Kit. RNA was sent to

BGI (Beijing, China) for sequencing and analysis. Briefly, total

RNA was fragmented, and mRNA was enriched using oligo (dT)

magnetic beads, followed by cDNA synthesis. Double-stranded

cDNA was purified and enriched by PCR amplification, after

which the library products were sequenced using BGIseq-500.

The heatmap of differentially expressed genes (DEGs) (log2FC ≥
1, p ≤ 0.001) and KEGG analysis (log2FC ≥ 1, p ≤ 0.05) in NSCLC

cell lines were performed by the BGI, using the Dr. TOM

approach, a customized data mining system from BGI.

Altered (upregulated or downregulated) expression of genes

was expressed as log2FC, which represents log-transformed

fold change (log2 FC � log2[B] − log2[A], while A and B

represent values of gene expression for different treatment

conditions).

Gli responsive element reporter gene
assay

GRE reporter gene assay was conducted in NIH3T3-GRE-

Luc cells according to the methods described before (Lu et al.,

2014; Lu et al., 2017). Briefly, NIH3T3 cells (CRL-1658, ATCC)

were transfected with GRE reporter plasmids and selected with

400 ng/ml hygromycin for 3 weeks. Stable clones were isolated

for assay development. The cells were re-suspended in assay

medium (0.5% serum-containing DMEM) and seeded in 96-well

plates. Testing compounds accompanied with 50 nM SAG

(ABIN629346) were added to the assay medium. Cell plates
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were incubated at 37 °C for additional 48 h. Then 40 ml/well of

luciferase media (Bright-Glo, Promega) was added. The plate was

incubated at room temperature for 5 min under gentle shaking.

Luminescence signal was measured with a plate reader

(FLUOstar Omega, BMG). The IC50 of compounds was

calculated based on the inhibition of luminescence signaling.

BODIPY-cyclopamine binding assay

A fluorescence-based BODIPY-cyclopamine binding assay

was conducted to evaluate the binding of Smo agonists/

antagonists according to methods described before (Yang

et al., 2015; Lu et al., 2017). Briefly, U2OS-Smo cells, stably

overexpressing human Smo protein, were maintained in DMEM

with 4 mM L-Gln, 1.5 g/L sodium bicarbonate and 4.5 g/L

glucose, supplemented with 100 ng/ml puromycin and 10%

FBS. BODIPY-cyclopamine was purchased from Toronto

Research Chemicals and dissolved in methanol. U2OS-Smo

cells were cultured for 48 h in a 96-well-plate and fixed with

4% paraformaldehyde (PFA). After staining with DAPI (5 mg/

ml), cells were incubated for 2 h at room temperature in PBS

containing 100 nM BODIPY-cyclopamine and testing

compounds for competitive binding. After incubation, the

cells were washed 3 times with PBST (PBS buffer supplied

with 0.05% Tween-20). The fluorescence images were

captured and analyzed by Arrayscan. Vismodegib was used as

a reference compound to normalize the data. IC50 values were

calculated with GraphPad Prism.

Dual drug combination assay

NCI-H1299 and NCI-H460 cells were plated in 96-well plates

and treated with various concentrations of Cisplatin or/and

Solamargine, either alone or in combination for 72 h. Cell

viability was determined as described above. Surface plot and

heatmap of the Excess over the Highest Single Agent (EOHSA)

were used to represent the difference in cell growth inhibition

between the combination treatment and the most effective single

compound at the corresponding concentration (Borisy et al.,

2003; Simmons et al., 2014). The dose-effective curve of

Cisplatin/Solamargine with the existence of Solamargine/

Cisplatin was generated with GraphPad Prism. The

combination index (CI) was calculated as described before by

Chou Talay. CIs of <1, = 1, and >1 indicate synergism, additive

effect, and antagonism, respectively (Chou, 2010).

Statistical analysis

Data statistical analysis was performed using Prism 6.4. The

Solamargine IC50 values were analyzed using nonlinear

regression (curve fit). The 95% confidence interval was

calculated. The difference in IC50 values between organoids

and lung cancer cell lines was analyzed using the non-

parameter Mann-Whitney U test. Cell cycle and apoptosis

data were analyzed withone-way ANOVA. p < 0.05 was

considered statistically significant.

Results

Derivation of the PDOsCR models

To perform anti-tumor drug screening using clinically

relevant models for lung cancer, tumor organoids were

derived from fresh tumor tissues of six lung cancer patients,

obtained from surgery. The detailed patients’ information was

shown in Table 1 and Supplementary Table S1. Tumor organoids

were cultured in Matrigel supplemented with culture medium.

These PDOs resembled their parental primary tumors in

histopathological features and therapeutic resistance. In

representative cases, the histology of the primary tumor from

patient Pt-001 showed partially differentiated adenocarcinoma

and the organoids derived from this tumor exhibited a solid

growth pattern (Figure 1A). Pt-001 was derived from a 62-year-

old patient, who received four cycles of pemetrexed plus Cisplatin

treatment and quickly progressed. Consistently, Pt-001 showed

Cisplatin resistance in cell viability assay with IC50 above 60 μM

and maximal inhibition rate of 28% (Figure 1B). Organoids

derived from Pt-003 demonstrated cystic structures, which

recapitulated the glandular structures of the primary tumor

(Figure 1A). Further, Pt-003 showed Cisplatin resistance as

well (Figure 1B). The other four PDOs were not Cisplatin

resistant. Pathological and pharmacological characterization

demonstrated the establishment of clinically relevant models

for compound screening assay development.

Solamargine inhibited cell growth in PDOs
and lung cancer cell lines

Next, we performed cell viability assay using PDOsCRto find

novel anti-tumor natural products (Supplementary Figures

S1A,B). A single concentration of 3.3 μM was used as primary

screening with a library of 1,121 natural products. In the

screening, we defined the effective threshold as ≥ 50%

decrease in cell viability in comparison to the vehicle control.

One of the effective anti-tumor natural products, Solamargine

(Supplementary Figure S2A), an alkaloid natural product,

displayed >90% of cell viability inhibition in the primary

screening (Figures 1C,D), so we further validated the anti-

tumor effects of Solamargine on additional PDOs and

multiple lung cancer cell lines. PDO from Pt-001 together

with additional five lung cancer organoids derived from
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different patients were treated with Solamargine with serial

dilution. Among the six PDOs, Pt-013 was resistant to

Solamargine, with IC50 above 10 μM. Pt-001, Pt-003, Pt-006,

Pt-009, and Pt-017 were all sensitive to Solamargine with IC50 of

1.6, 4.1, 3.9, 3.2, and 4.0 μM, respectively (Figures 1E,F).

To further assess the anti-tumor capability of Solamargine,

we tested 13 lung cancer cell lines with Solamargine. The IC50 of

Solamargine in NCI-H1299, NCI-H460, NCI-H1650, NCI-

H520, NCI-H1975, LTEP-S, NCI-H838, PC-9, Calu-3, Calu-1,

NCI-H820, NCI-H226, and SW-1573 cells were about 0.6, 1.4,

2.3, 0.7, 0.4, 0.4, 2.8, 2.0, 0.7, 2.2, 0.6, 0.7 and 0.5 μM, respectively

(Figures 1G,H).

To further investigate the effect of Solamargine on Cisplatin-

resistant models, we selected Cisplatin-resistant cell lines, NCI-

H1299 and NCI-H460 (Barr et al., 2013; Xu et al., 2014)

respectively. Cell proliferation was inhibited for both NCI-

H1299 and NCI-H460 cells under treatment with 1.25 or

2.5 μM Solamargine compared with vehicle control in a dose-

FIGURE 1
Solamargine is a potential anti-tumor agent in Cisplatin-resistant cells. (A) Representative histologyof primary lung cancer tissue and their
tumor-derived organoids. Left and middle images are the morphology of Pt-001 and Pt-003 primary tumor tissues and their derived organoids by
H&E staining. Right images are the Pt-001 and Pt-003-derived organoids in bright-field. Original magnification ×200, scale bar 200 μm. (B) The
dose-response curve of Cisplatin to Pt-001andPt-003 organoids. N = 3. (C) The treatment scheme of drug screening using lung cancer patients
derived organoids. (D)Morphological change of lung cancer patients derived organoids when treated with DMSO or 3.3 μM Solamargine for 5 days.
(E–H) The dose-response curve of Solamargine was evaluated in thirteen lung cancer cell lines and six lung cancer patient tumor-derived organoids,
respectively. Cell lines and organoids were treated for 5 days.
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FIGURE 2
Solamargine significantly inhibited cell growth in NCI-H1299 and NCI-H460 cells. (A,B) The dose-response curves and IC50 values of
Solamargine in NCI-H1299 and NCI-H460, respectively. N = 3. (C,D) Cell proliferation suppression in NCI-H1299 and NCI-H460 with the treatment
of Solamargine at the concentration of 1.25 and 2.5 μM for 5 days. N = 3. (E–H) Solamargine inhibited the colony formation in NCI-H1299 and NCI-
H460 cells at the concentration of 1.25 and 2.50 μM for 7 days. Cells were stained with crystal violet solution at the endpoint. N = 3. One-way
ANOVA was used for statistical tests. *p < 0.05.
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FIGURE 3
Solamargine induced G1/G0 arrest and apoptosis in NCI-H1299 and NCI-H460 cells. (A–D) Flow cytometry analysis of cell cycle by PI staining
in NCI-H1299 andNCI-H460 cells with treatment of DMSO or Solamargine for 48 h. N = 3. (E–H) Flow cytometry analysis of apoptosis analysis by pI/
Annexin V-FITC staining in bothNCI-H1299 andNCI-H460 cells with treatmentof DMSOor Solamargine for 48h.N= 3. (I–L)Cell cycle and apoptosis
markers (cyclinD1, p21, PARP, cleaved-PARP and cleaved-caspase 3) analysis by western blot for NCI-H1299 and NCI-H460 cells with
treatment of DMSO or Solamargine for 48 h β-Actin was used as a loading control. N = 3. One-way ANOVA was used for statistical tests.*p < 0.05,
**p < 0.01, ***p < 0.001.
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dependent and time-dependent manner (Figures 2A–D).

Consistently, Solamargine decreased colony formation capacity

in both cell lines in a dose-dependent manner (Figures 2E–H).

The results demonstrated an anti-proliferation function of

Solamargine in Cisplatin-resistant lung cancer cell lines.

Solamargine induced cell cycle arrest and
apoptosis in cisplatin-resistant lung
cancer cell lines

To understand the mechanism of anti-proliferation activity

of Solamargine, cell cycle and apoptosis analysis were conducted

in NCI-H1299 and NCI-H460 cells. The cell cycle was analyzed

by DNA content measurementwith flow cytometry. Increased

percentage of cells in G0/G1 phase and decreased percentage of

cells in G2/M phase was observed for NCI-H1299 with the

treatment of Solamargine (Figures 3A,B), while in NCI-H460

cells, a significant decrease of G2/M phase and accumulation of S

phase implied DNA replication dysregulation (Figures 3C,D).

We also investigated whether Solamargine could induce

apoptosis in lung cancer cells. With flow cytometry analysis of

Annexin V and propidium iodide in Solamargine-treated NCI-

H1299 and NCI-H460 cells, we found both low (2.5 μM) and

high (7.5 μM) doses of Solamargine significantly increased early

and late apoptosis/necrosis in NCI-H1299. NCI-H460 cells were

more resistant to Solamargine-induced apoptosis and a

significant increase of apoptotic cells was only observed in

high dose treatment (Figures 3E–H). We further confirmed

the anti-proliferative and pro-apoptotic effects of Solamargine

by measuring critical proteins involved in these processes. By

western blot, 48-h treatment of Solamargine downregulated

CyclinD1 and upregulated P21, cleaved PARP, and Caspase3

(Figures 3I–L). Together, our data indicated that the drug

sensitivity caused by Solamargine to NCI-H1299 and NCI-

H460 was related to decreasing proliferation and inducing

apoptosis.

Solamargine altered genome-wide gene
expression in cisplatin-resistant
lungcancer cell lines

To further reveal the underlying molecular mechanism,

RNA-seq analysis was performed to profile transcriptomes in

both NCI-H1299 and NCI-H460 with the treatment of lower

dose (2.5 μM) and higher dose (7.5 μM) of Solamargine. We

identified 257 differentially expressed genes (DEGs) (log2FC ≥ 1,

p ≤ 0.001) in NCI-H1299with 2.5 μMSolamargine treatment and

1,013 DEGs (log2FC ≥ 1, p ≤ 0.001) with 7.5μMSolamargine

(Supplementary Figures S2A,B). 115 interactions of DEGs

(log2FC ≥ 1, p ≤ 0.001) were identified in NCI-H1299 with

both treatments (Supplementary Figure S2C). The number of

DEGs identified in NCI-H460 was less than that in NCI-H1299,

which might be caused bythe sensitivity difference between the

2 cell lines (Supplementary Figures 2D–F). KEGG analysis of the

DEGs (log2FC ≥ 1, p ≤ 0.05) showedthat pathways in

cancerwerethe most significantly enriched pathways in the

treated cells. (Supplementary Figure S2G).

Solamargine inhibited hedgehog signaling
pathway by targeting SMO

Based on our KEGG analysis that pathways in cancer were

the most significantly enriched pathways in Solamarg treated

cells and the Hedgehog pathway is associated with cancer and

several hedgehog signaling pathway inhibitors such as

vismodegib and sonidegib have been developed for cancer

treatment (Ooft et al., 2019). Furthermore, in silico molecular

docking data predicted that Solamargine, Solasonine and

Tylophorine were good candidates to target CSCs by

modulating the hedgehog pathway through binding to the

sonic hedgehog, smoothened and GLI proteins (Mayank and

Jaitak, 2016), which promptedus to further analyze the effect of

Solamargine on hedgehog signaling pathway. GREreporter gene

assay was performed to study the regulation of GLI by drugs.

GLI-reporting plasmid, GRE-pGL4.26 plasmid was generated by

inserting GLI-responsive element into the promoter region of

pGL4.26 plasmid carrying luciferase gene. NIH-3T3 cells were

transfected with the GRE-pGL4.26 plasmid and transfected

clones were tested for signal intensity and quality. In general,

about 10-fold luciferase activitycould be observed under

treatment of smoothened agonist (SAG, Supplementary Figure

S3B). The half-maximal effective concentration (EC50) of SAG

was 73.19 nM in GRE reporter gene assay (Supplementary Figure

S1C). The luminescent signal induced by SAG was significantly

inhibited by the treatment of two doses of Solamargine and

vismodegib (Supplementary Figure S3C) (GDC-0449), an FDA-

approved SHH pathway inhibitor, as the positive control

(Figure 4A). Further analysis showed Solamargine and

vismodegib inhibitedhedgehog signaling in GRE gene reporter

assay with IC50 of 2.66 and 0.13μM, respectively (Figure 4B). As

GLI1 can transcriptionally regulate itself, wemeasured GLI1 gene

expression as an alternative readout for SHH signaling activation.

By RT-qPCR, SAG-induced gene expression of GLI1 was

decreased by treatment of VismodegibinNIH-3T3 cells

(Supplementary Figure S1D), which was consistent with the

GRE reporter gene assay. To further understand the target of

Solamargine in the SHH pathway, we used BODIPY-

cyclopamine, a fluorescent derivative of cyclopamine that

inhibited hedgehog signaling by binding directly to SMO (Lu

et al., 2014; Lu et al., 2017) (Supplementary Figure S3D). As

previously reported, vismodegib can directly bind to SMO and

competitively remove BODIPY-cyclopamine from SMO (Lu

et al., 2017), which leads to decreased fluorescent signal
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(Figure 4C). In U2OS cells, the fluorescent signaling of

BODIPY-cyclopamine wasalso suppressed by Solamargine

(Figure 4C), suggesting the inhibitory binding of

Solamargine to SMO.

Solamargine synergized with DDP in DDP-
resistant cells

Next, we investigated if Solamargine could sensitize DDP-

resistant lung cancer cells to DDP. NCI-H1299 and NCI-H460

cells were treated with the serial diluted DDP with the existence

of various concentrations of Solamargine for 72 h. Chou-Talalay

method was employed to quantitatively evaluate the synergy

effect of Solamargine with DDP. The excess over the highest

single agent (EOHSA) was used to describe the difference in cell

growth inhibition between the combination treatment and the

most effective single compound at the corresponding

concentration. Surface plots and heatmap were used to

visualize the EOHSA of Solamargine and DDP (Figures

5A–D). In DDP-resistant cells, Solamargine sensitized the cells

to DDP. A significant left shift of the dose-response curve was

FIGURE 4
Solamargine inhibited the Hedgehog signaling pathway by direct binding to smoothened protein. (A) NIH3T3 cells stably transfected with
GRE2-pGL4.26 were plating 15,000 cell/well into 96-well-plates in the assay medium and treated with DMSO (0.1%), vismodegib or Solamargine
(1 and 5 μM). Gli responsive element (GRE) reporter gene assay was used tomeasure the SHH pathway activity. N = 3. (B) The dose-response curve of
Solamargine and vismodegib in NIH3T3 cells which were stably transfected with GRE2-pGL4.26. (C) 2 × 104U2OS cells were seeded into each
well, then fix the cells DAPI: nuclear staining (the left lane) the next day, or add BODIPY-Cyclopamine (100nM, the middle lane) and Solamargine
(7.5 μM) or vismodegib (3 μM) co-incubated for 2 h at RT, then measure the fluorescence signal intensity using a confocal microscope. Scale bar
200 μm.One-way ANOVA was used for statistical tests.*p < 0.05.
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observed for DDP with the presence of Solamargine, together

with a decrease of IC50 for DDP (Figures 5E,F,I,J). On the other

hand, with the existence of DDP, the efficacy of Solamargine was

also significantly increased (Figures 5G,H,K,L). Thus, these data

suggested the synergistic effects of Solamargine and DDP, which

was evidenced by CI value (Table 2).

Discussion

Cisplatin-based chemotherapies have been the standard of

care for many types of cancers, including lung cancer. However,

the quick emergence of resistance and systemic toxicity dampens

its applications in the clinic. Therefore, identifying Cisplatin

synergistic sensitizers is of great clinical significance.

Accumulating evidence has indicated that aberrant activation

of stem cell-related pathways contributes to Cisplatin resistance,

but inhibition of stem cell pathways sensitizes cell response to

Cisplatin (Tian et al., 2012; Ahmad et al., 2013; Seidl et al., 2020).

In our study, we investigated the Cisplatin resistance issue by

performing natural compound screening using patient-derived

tumor organoids models derived from Cisplatin-resistant

primary tumors. The major advantage of using patient-derived

tumor organoids is the effective preservation of the main

FIGURE 5
Synergy effects of Solamargine and Cisplatin on cell viability of NCI-H1299 and NCI-H460. (A–D) The surface plot and heatmap show the
Excess over the Highest Single Agent (EOHSA) of Solamargine and Cisplatin combination in NCI-H1299 and NCI-H460 cells. (E–H) The dose-
response curve of Solamargine/Cisplatin in the presence of Cisplatin/Solamargine in NCI-H1299 cells. (I–L) The dose-response curve of
Solamargine/Cisplatin in the presence of Cisplatin/Solamargine in NCI-H460 cells.

TABLE 1 Characteristics and clinical history of all patients included in the PDOs.

PDO
number

Gender Pathological
pattern

Age Tissue
type

Lymphatic
metastasis

T N M Stage

Pt-001 male Adenocarcinoma 62 surgery sample 10/24 4 2 1 IV

Pt-003 male Adenocarcinoma 60 surgery sample 0/2 1 0 1 IV

Pt-006 female adenocarcinoma 72 surgery sample 0/39 1b 0 0 IA

Pt-009 male adenocarcinoma 50 surgery sample 0/15 2 0 0 IIA

Pt-013 female adenocarcinoma 50 surgery sample 0/8 1 0 0 IA

Pt-017 male squamous carcinoma 37 surgery sample 3/32 3 2 0 IIIB
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behavioral characteristics of the primary tumors, which is more

clinically relevant than cancer cell lines.

Natural products are a group of chemical compounds, which

are naturally found in plants, characterized by large diversity and

abundance and rich resources for anti-cancer drug screening.

One of the benefits of natural products is that they are commonly

identified as multi-target drugs and might hit several targets at

the same time, producing promising therapeutic effectsduring

cancer treatment (Koeberle and Werz, 2014). Moreover,

phenotype induced by multi-targeting natural products could

provide valuable information about drug combinations (Zheng

et al., 2014; Sanchez et al., 2019). Previous studies have reported

that Solamargine assumes an anti-tumor effect on a variety of

tumor types (Xie et al., 2015; Zhang et al., 2018; Fu et al., 2019);

however, the role of Solamargine in Cisplatin-resistant lung cells

andmechanism of action have not yet been fully investigated (Liu

et al., 2004; Shiu et al., 2007; Liang et al., 2008). Herein, we

successfully established Cisplatin-resistant organoids to evaluate

the efficacy of natural products to suppress tumor growth.

Among 1,121 natural products, Solamargine was found to be

a top hit in reducing cell viability of Cisplatin-resistant PDOs.We

further investigated the mechanism of Solamargine anti-tumor

function and found Solamargine can induce cell cycle arrest and

apoptosis in Cisplatin-resistant tumor cell lines. Pathway analysis

showed Solamargine affected the SHH pathway. Previous

in silico molecular docking studies indicated that Solamargine

might be an inhibitor of the SHH pathway (Mayank and Jaitak,

2016; Yang et al., 2016; Butt et al., 2018).

We further investigated the function of Solamargine in

regulating the SHH pathway and found that Solamargine was

competitivelybound to SMO with cyclopamineindicating that

SMO protein might be a target of Solamargine. Drug

combination study confirmed the synergetic effect of Cisplatin

and Solamargine in Cisplatin-resistant cell lines. Despite the

importance of the SHH pathway in stemness and neoplasia,

clinical development of vismodegib has failed in several cancer

types except for basal cell carcinoma (Chen et al., 2017).

However, targeting cancer stem cells by inhibiting the SHH

pathwayhas been found to improve drug resistance (Giroux-

Leprieur et al., 2018; Subramaniam et al., 2018). In many tumor

types, the SHH signaling pathway has been reported to crosstalk

with other critical molecular signaling pathways involved in

cancer, such as RAS/RAF/MEK/ERK, PI3K/AKT/mTOR,

EGFR, and Notch (Liu et al., 2006; Riobo et al., 2006; Morrow

et al., 2009; Wall et al., 2009; Lauth, 2011; Mangelberger et al.,

2012; Das et al., 2013). Numerous preclinical studies have

revealed that the combination of some chemicals with SHH

inhibitorsresults in improved anti-tumor efficacy and survival

in animal models (Wang et al., 2012). Multi-target drugs,

simultaneously blockingmultiple crucial pathways, become the

trend of best-in-class drug development (Lu et al., 2012). Multi-

target compounds for the hedgehog and PI3K/AKT/mTOR have

been reported previously (Yang et al., 2015).

Taken together, natural productsform a huge multi-target

chemical library for synergetic study and multi-target leading

drug identification. By establishing clinically relevant PDO

models, high-throughput screening assay and RNA

sequencing, we demonstrated Solamargine could be

considered as a potential therapeutic agent and sensitizer of

Cisplatin for Cisplatin-resistant lung cancer.

TABLE 2 Combination index (CI) of Solamargine and Cisplatin in H1299 and H460.

Cell lines Solamargine dose
(nM)

Cisplatin dose
(nM)

Mean growth
inhibition (%)

Dose of
solamargine alone
with same
inhibition (nM)

Dose of
cisplatin alone
with same
inhibition (nM)

CI

D1 D2 X DX1 DX2

NCI-H1299 3,704 100,000 90.21 59,680 5.13719E+14 0.06

3,704 33,333 76.81 40,209 7.84882E+13 0.09

3,704 11,111 23.99 8,477 47,697,255,698 0.44

1,235 100,000 ＜10 4,448 2,216,814,353 0.28

1,235 33,333 ＜10 559 115,047 2.50

1,235 11,111 ＜10 326 8,827 5.05

NCI-H460 3,704 100,000 97.52 53,410 9.47082E+16 0.07

3,704 33,333 97.48 53,205 9.39261E+16 0.07

3,704 11,111 97.24 52,095 8.95715E+16 0.07

1,235 100,000 92.10 38,925 3.15471E+16 0.03

1,235 33,333 87.99 33,692 1.37157E+16 0.04

1,235 11,111 70.99 22,669 4.36952E+14 0.05
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In summary, we successfully established Cisplatin-resistant

PDOs together with lung cancer cell lines to confirm the anti-

cancer biology behavior of Solamargine, such as growth

inhibition, G1/G0 phase arrest and apoptosis induction.

Moreover, we unveiled Solamargine exhibited lung cancer

suppression by targeting SMO in the hedgehog signaling

pathway. Although further investigations should be done to

verify whether SMO is the key target in lung cancer, our data is

of great value forpromising combination therapy and would

provide a possible solution for the improvement of

individualized therapeutic and prognosis of lung cancer in

the coming days.
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