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Congenital toxoplasmosis has a high impact on human disease worldwide, inducing
serious consequences from fetus to adulthood. Despite this, there are currently no human
vaccines available to prevent this infection. Most vaccination studies against Toxoplasma
gondii infection used animal models in which the infection was established by exogenous
inoculation. Here, we review recent research on potential T. gondii vaccines using animal
models in which infection was congenitally established. Endeavors in this field have so far
revealed that live or subunit vaccines previously found to confer protection against
extrinsically established infections can also protect, at least partially, from vertically
transmitted infection. Nevertheless, there is no consensus on the more adequate
immune response to protect the host and the fetus in congenital infection. Most of the
vaccination studies rely on the assessment of maternal systemic immune responses,
quantification of parasitic loads in the fetuses, and survival indexes and/or brain parasitic
burden in the neonates. More research must be carried out not only to explore new
vaccines but also to further study the nature of the elicited immune protection at the
maternal-fetal interface. Particularly, the cellular and molecular effector mechanisms at the
maternal-fetal interface induced by immunization remain poorly characterized. Deeper
knowledge on the immune response at this specific location will certainly help to refine the
vaccine-induced immunity and, consequently, to provide the most effective and safest
protection against T. gondii vertical infection.
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INTRODUCTION

Toxoplasma gondii is an obligate intracellular protozoan parasite and the etiologic agent of
congenital toxoplasmosis. T. gondii is considered one of the most successful parasites worldwide,
infecting over 30% of the human population, with high associated disease burden (1, 2).
Seroprevalence varies greatly from region to region, ranging from approximately 30% in the
American, European, and Asiatic regions, to more than 60% in the African continent (3, 4). The
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disease is potentially dangerous in women who become infected
during pregnancy, as it can lead to transplacental transmission of
the parasite upon primary infection or re-infection with highly
virulent strains (5, 6). The incidence of congenital toxoplasmosis
varies according to the timing of infection during pregnancy. The
transmission rate is greater in the final stages of pregnancy, but
the severity of infection is greater in early gestation (7). In the
more severe cases, hydrocephalus, chorioretinitis, and cerebral
calcification may occur, according to the parasite’s brain and
ocular tropism (5). An association between congenital infection
and the development of neurological and psychiatric disorders
later in life, including schizophrenia, Alzheimer’s disease, bipolar
disease, and even suicidal tendencies has also been suggested
(8, 9).

Innate and adaptive immunity determines protection against
T. gondii infection. An effective immune response must control
parasite growth while avoiding immunopathology. In both mice
and humans, the IL-12- IFN-g axis is the main immune
mechanism responsible for parasite control. Protection
mediated by IFN-g produced by NK and Th1 cells induces the
expression of immunity-related GTPase and/or guanylate-
binding proteins, indoleamine-2,3-dioxygenase, and NO
production. TNF-a has also been associated with host
protection, as highlighted in patients with defective IFN-g
signaling (10). TGF-b, IL-6, and IL-23 promote the production
of IL-17 that may also play a host protective role in
toxoplasmosis by avoiding excessive IFN-g-dependent
inflammation (11). T cells producing IL-10, which include T
regulatory cells and Foxp3-T-bet+ Th1 cells, can limit excessive
inflammation driven by T. gondii (12). A regulatory role for IL-4,
and IL-27 in minimizing host tissue injury due to exacerbated
inflammation has also been shown (10, 13). A good vaccine
candidate would thus induce not only IL-12 and IFN-g, but also
counterbalancing cytokines such as IL-4, IL-10, and IL-27 (14).

It is important to note that there are no licensed human
vaccines able to prevent toxoplasmosis (15). The lack of effective
treatment makes the development of a vaccine against congenital
toxoplasmosis one of the main objectives in the management of
this disease. Here, recent findings in vaccination approaches to
congenital toxoplasmosis using animal models of vertical T.
gondii infection will be reviewed and the possible implications
in the quest for a vaccine protecting from congenital
toxoplasmosis will be discussed.
IN VIVO MODELS TO STUDY
CONGENITAL INFECTION

In the study of toxoplasmosis, animal models are used to better
understand the disease pathology and the immunological
mechanisms induced by infection, as well as to assess the
effectiveness of experimental vaccination. However, no single
animal model has, so far, been able to mimic all clinical
symptoms and signs developed by humans in response to T.
gondii infection (16). For congenital toxoplasmosis, the murine
model is commonly used as it allows a short pregnancy period
Frontiers in Immunology | www.frontiersin.org 2
and mimics features of human congenital toxoplasmosis, namely
the co-localization of inflammatory cells and necrosis at the
maternal-fetal interface after primo-infection during pregnancy
(17). Further, primo-infection confers resistance to maternal
fetal transmission throughout later infections (16). However,
the immune response to T. gondii in mice and humans presents
distinct features and this should be adequately considered
(18, 19).

Most vaccination studies in congenital infection reviewed here
used Kunming, BALB/c, Swiss OF1, and CBA/J mice. No study
was found using the C57BL/6 mouse strain. This might be due to
excessive susceptibility to disease exhibited by T. gondii infected
C57BL/6 mice. In contrast, BALB/c mice present higher resistance
to infection, more closely resembling humans, rendering this
strain more suitable for vaccination studies in congenital
infection models (20–22). In murine congenital toxoplasmosis,
C57BL/6 mice exhibited higher abortion rate compared to BALB/c
due to exacerbated proinflammatory cytokines such as TNF-a
(23). Mouse strain differences inmajor histocompatibility complex
haplotypes (e.g., H-2b, H-2d, H-2k for C57BL/6, BALB/c, and
CBA/J, respectively), and therefore, antigenic presentation, could
explain different susceptibility to T. gondii infection and induced
immunopathology (20).

Other animal models can be used such as sheep, rats, guinea
pig, or hamster (24–28). Rats and sheep are widely used in
studies addressing drug effectiveness to T. gondii (18). Rats have
placental development and hemochorial placentation identical to
humans (29). In sheep, congenital toxoplasmosis is very similar
to what occurs in humans (15). Thus, sheep is an adequate
animal model to study congenital toxoplasmosis, not only
because it shares important aspects with the human infection,
but also because it directly contributes to the study of new disease
control measures in livestock, also severely affected by T. gondii
(15). There are well established models of toxoplasmosis in
pregnant sheep that provide a starting point for the
preparation and testing of new vaccines (15).
VACCINES IN VERTICAL INFECTION

This section aims to describe the vaccines already tested in
congenital infection models, and to reveal the gap of analysis
concerning immune cells and related mechanisms induced by
immunization at the level of maternal-fetal interface as wells as
in the neonates. Literature research was performed through a
PubMed search, using the query “[(Toxoplasma gondii) AND
(vaccine)] AND (congenital toxoplasmosis [title/abstract])”. The
results presented pertain to studies using pregnant mice where
protection and immune responses of pregnant mice and their
offspring was evaluated.

Live-Attenuated Vaccines
Live-attenuated vaccines have been the most studied in the
context of congenital transmission (Table 1). These vaccines
consist of parasites with reduced virulence but are nevertheless
capable of inducing an immune response (36). Alternatively,
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TABLE 1 | Live-attenuated vaccines tested in vertical Toxoplasma gondii infection models.
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parasite load.
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mice.
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attenuated virulent strains can also be used, albeit, in this case,
the attenuation must be complete to ensure that the vaccine will
not cause the disease (37). These vaccines present several
advantages, such as using whole parasites, meaning that
multiple antigens are available simultaneously. Live vaccines
also do not usually require repeated immunizations or the use
of adjuvants. However, a concern in using this type of
vaccination is the possibility of reversing the parasite to a
virulent state causing infection (36). Moreover, live vaccines
are not recommended to be used in immunocompromised
hosts. Toxovax®, the only licensed vaccine for toxoplasmosis,
administered to avoid abortion in sheep, is a live-attenuated
vaccine, using the strain S48 tachyzoites, originally isolated from
an aborted lamb in New Zealand (14). This vaccine is not
licensed for humans due to the possibility of parasite reversion
to its virulent form (38). Moreover, it has a short shelf life and
does not lead to full parasite elimination (14).

Live-attenuated vaccines may be produced by gene targeted
approaches. Such is the case of a modified RH strain lacking two
genes, respectively encoding micronemal protein 1 (MIC1),
which associates to MICs 4 and 6, rendering them active, and
MIC3, a micronemal protein necessary for host cell invasion and
MIC8 function. The double deletion of these genes (Dmic1-3)
resulted in the loss of function of these five proteins. Female
Swiss OF1 mice immunized with Dmic1-3 strain exhibited higher
levels of IFN-g and IL-2 and a smaller number of brain cysts
compared to non-immunized mice when infected with T. gondii.
Also, all pups born from immunized animals survived compared
to 64% of non-immunized mice. Moreover, 55% of the pups born
from immunized mice did not present brain cysts and those with
brain cysts exhibited a 91% reduction of cyst burden (30). This
vaccine was also tested in Bizet, Romanov, and Solognot ewes,
using the same experimental design but adapted to the ewes’
pregnancy length. It showed to be effective by both subcutaneous
(sc) and intraperitoneal (ip) routes, inducing protection against
abortion, a higher rate of viable lambs and a decrease of brain
parasite cysts in the lambs born from vaccinated ewes (31). Wang
et al. attempted immunization before pregnancy with a live
attenuated vaccine, using tachyzoites of the RH strain with a
deletion of the dense granule protein 17 (GRA17) gene (Dgra17)
that had previously shown to protect mice from lethal infection
(32). The deletion entailed a defective parasitophorous vacuole
(PV) and decreased intravacuolar tachyzoite proliferation, due to
interference with protein transport across the PV membrane. Ip
immunization with Dgra17 strain elicited the production of Th1-
type response cytokines, IL-12, and IFN-g, as well as of IL-10 in
Kunming mice (32). Thereafter, the same authors have tested
this vaccine against vertical transmission using both acute and
chronic infection models. No maternal clinical signs of infection
and abortion were found and the litter sizes of viable neonates in
immunized and RH inoculated dams were higher. In both
models of infection, pups presented a higher survival rate.
Maternal spleen T. gondii-induced cytokine production was
evaluated at day 18 of pregnancy, 6 days after infection with
Pru strain. Higher levels of Th1-type cytokines IFN-g, IL-12, and
IL-2, and of IL-10 were detected. Significantly lower parasite
T
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burden was found in the brain of immunized dams. Further,
partial protection was observed, concerning brain parasite load
in the progeny of these animals (32). Recently, a live-attenuated
vaccine of the RH strain was engineered to harbor a deletion of
Gra17 and of novel putative transporter 1 (NPT1) gene, encoding
a selective arginine transporter (33). The virulence of this strain
(RHDgra17Dnpt1) was completely attenuated in vivo. The brain
cyst burden of immunized dams was significantly lower and no
abortions were observed compared with non-immunized
infected mice. All pups born from immunized infected mice
had about 15 times fewer brain cysts than non-immunized
infected mice pups (33).

A live-attenuated vaccine using tachyzoites of the Pru strain
with a deletion of the calcium-dependent protein kinase 2
(CDPK2) gene (Dcdpk2) was also developed by Wang et al.
(34). CDPKs harbored by T. gondii are required for cell
invasion and gliding motility and are important virulence
factors. Specifically, CDPK2 prevents accumulation of
amylopectin to toxic levels in the cell, that would cause the
parasite to be morphologically defective and unable to form
cysts. Therefore, these parasites were incapable of establishing
chronic infection since they were not able to form tissue cysts.
Dam brain cyst burden was, in average, 43 times lower than that
of non-immunized challenged dams. Splenocytes from
immunized dams produced higher levels of IFN-g, IL-2, IL-12,
and IL-10 compared with non-immunized mice when stimulated
in vitro with soluble tachyzoite antigen. These results indicated
that this vaccination approach led to a balanced pro- and
counter-inflammatory maternal response, useful to control
infection but also to avoid potentially harmful excessive
inflammation. Pups from non-immunized infected mice
harbored in average 919 ± 339 brain cysts, whereas only 41.4%
of the pups from immunized infected mice harbored cysts,
averaging 60 ± 33 cyst per brain (34). Recently, Wang et al.
created a live-attenuated vaccine from the T. gondii RH strain
with a deletion of the tyrosine kinase-like 1 (TKL1) gene
(RHDtkl1) (35). Vaccinated Kunming mice remained without
clinical signs of infection and showed significant decrease in
brain cyst burden 30 days after delivery. No abortions occurred
and litter size was unaltered in immunized mice when infected,
while all non-immunized infected mice suffered abortions. A
decreased brain cyst load was observed in the pups from
immunized infected dams indicating reduced vertical
transmission (35).

Recombinant Protein Vaccines
Recombinant T. gondii surface antigen 1 (rSAG1) protein (39)
was assessed in two models of congenital infection (Table 2).
Haumont et al. immunized Dunkin-Hartley guinea pigs
subcutaneously (sc) with rSAG1 three times at 3-week intervals
and intradermally challenged 3 weeks after breeding (25).
Vaccination induced protection against maternal-fetal
transmission as assessed by the brain parasite load in the live
pups. However, the SAG1-specific IgG levels in newborn pups
did not correlate with protection, while cellular responses were
not evaluated (25). In another study, BALB/c and CBA/J mice
(H2d and H2k background, respectively) were sc immunized
Frontiers in Immunology | www.frontiersin.org 5
twice with rSAG1 (40). A reduction of 50% of maternal-fetal
transmission in BALB/c, but not in CBA/J mice, was observed.
Protection found in immunized BALB/c mice correlated with a
maternal increase in rSAG1-specific IgG1 and a decrease in
rSAG1-specific IgG2a. IFN-g and IL-10 levels were increased in
serum and in supernatants of T. gondii lysate antigen (TLA)-
stimulated splenocytes obtained from vaccinated animals. In
contrast, the immunized CBA/J mice showed no protection
and significantly increased serum IL-10 and IL-4 levels.
Further, no differences were observed concerning serum
IFN-g or IFN-g levels in the supernatants of TLA ex-vivo
stimulated spleen cells from both rSAG1-vaccinated or control
CBA/J animals. These observations suggest that the Th1-/Th2-
type responses induced by the immunization used were
affected by the host genetic background, such as the major
histocompatibility complex, leading to the different outcomes
after immunization (40).

DNA Vaccines
DNA vaccines are among the most promising in T.
gondii research. These vaccines have numerous advantages
such as ease of development, low-cost production, stable
storage, and shipping. More than 50 vaccine variants have
been experimentally produced and tested and have shown
positive results in their protective capacity using exogenous
infection models (36, 37). Vaccination with a DNA plasmid
encoding SAG1, which previously showed to protect BALB/c
mice against infection with the avirulent Beverly type-2 strain,
upon intra-muscular immunization with PltPASAG1 plasmid,
was tested in a congenital infection model. However, maternal-
fetal transmission was not reduced as compared to sham-
immunized control mice (41)

This observation led to the conclusion that different immune
mechanisms could mediate protection in adult-acquired
infection and congenital parasite transmission (41). Another
approach was performed by Mevelec et al. combining DNA
plasmids encoding SAG1, T. gondii dense granule antigen 4
(GRA4) and murine granulocyte-macrophage colony-
stimulating factor (GM-CSF) (42). The survival rates of pups
from immunized infected dams was significantly higher
compared to non-immunized infected dams. These results
indicate that DNA plasmid multiantigen vaccine works better
than a single antigen vaccine (42). Further studies are however
necessary to highlight the suitability and efficacy of this type of
vaccines in vertical infection.

Exosome Vaccines
Exosomes are nano-sized vesicles released by most eukaryotic
cells (14). These vesicles can contain a wide variety of molecules,
such as proteins, lipids, and nucleic acids, able to activate cellular
and humoral responses altering the outcome of parasite
infections (45).They can transfer mRNA, miRNA, and proteins
between cells, representing a communication path between cells,
necessary for immune homeostasis (14, 45). Studies showed that
immunization with exosomes released from T. gondii-pulsed
dendritic cells (DCs) induced protection against congenital
toxoplasmosis, associated with IFN-g and IL-10 responses in
February 2021 | Volume 11 | Article 621997
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TABLE 2 | Non-live vaccines in vertical Toxoplasma gondii infection models.
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the pups (43). This vaccine, when administered before
pregnancy, provided strong fetus protection against infection.
Low cyst burden was observed in both immunized dams and
pups delivered from immunized dams (43). This was the first
description, so far, studying immune responses in the offspring
from vaccinated females.

Nanoparticle-Based Vaccines
Advances in research have revealed the use of nanoparticles (NP)
as antigen delivery systems, thus setting the basis for a new type of
vaccines. This antigen delivery system avoids antigen degradation
and increases bloodstream life span, internalization, and
presentation by antigen-presenting cells, such as DCs (14). Di-
palmitoyl phosphatidyl glycerol-loaded nanoparticles (DGNP)
loaded with T. gondii total antigen extract were shown to deliver
parasitic antigens to mucosa after intranasal immunization,
inducing a specific Th1/Th17 response in vivo (46). Further
work has tested the safety and efficiency of DGNP in congenital
toxoplasmosis (44). Placental levels of cytokine production were
analyzed, which revealed no signs of inflammation exacerbation in
immunized mice, even though, there was an increase in IFN-g
concentration. IL-10 and IL-6 levels were significantly raised.
Survival of offspring and dams was 100% and mean litter size
and pup weight was not diminished in infected immunized mice.
The parasite burden on the fetus was 86% reduced from females
immunized with DGNT/TE compared to controls (44).
CONCLUSION

Most of the research work that addresses vaccination using
vertical T. gondii infection models assessed the immune
response to vaccination, determining the IgG isotypes and
cytokines produced in response to parasite antigen stimulation.
Typically, production of IFN-g, IL-2, IL-12, IL-10, and,
occasionally, IL-4 was found elevated in response to
vaccination in non-pregnant mice until 60–70 days post-
vaccination. This might explain why this time-point has been
referred in the achievement of pregnant animals, since the
balance between these cytokines is essential in successful
pregnancy as reported in almost all the studies referred here.

Most reports gather data from acute, chronic, and congenital
infection experiments. However, the immune status during
pregnancy is altered (7), therefore, the data from non-pregnant
mice must be carefully discussed and not directly extrapolated to
pregnancy due its specific immune status.

In two studies using live attenuated vaccines, mixed maternal
Th1-/Th2-type responses were induced, being discussed as Th1
crucial against T. gondii congenital infection and Th2 essential for
pregnancy maintenance (32, 34). Currently, a balance between
several subsets of T cells must be considered such as Th1, Th2,
Th9, Th17, Th22, and follicular Th cells (Tfh) for a successful
human pregnancy (47). Indeed, these T cell subsets contribute to
the immune response occurring at the maternal-fetal interface,
known to be important not only in protecting against infection
and controlling inflammatory response, but also contributing to
T
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immune homeostasis, implantation, decidualization, maternal
immune tolerance and acceptance of the fetus, and
parturition (47).

A heterogeneity in the experimental designs was found in the
studies reported. The difficulty of performing research work with
congenital infection models is very high and may explain the
scarcity of research in this area. It would be useful to choose a
standard experimental design in the study of vaccines, using
congenital models able to get valid and robust results. Murine
models are the most chosen because they offer simplified
logistics, including the facility to monitor physiologic
parameters and the short length of pregnancy. Further, mice
allow experiments with higher animal numbers, availability of
immunological reagents and genetically modified hosts. Mice
were largely validated as an adequate model to study congenital
toxoplasmosis, by reproducing many features of human
infection (21).

None of the vaccines described so far managed to fully protect
against T. gondii vertical transmission, even if providing multi-
antigenic stimulus. The lack of more effective vaccination
approaches may be a consequence of the scarce knowledge on
the host protective immune molecular and cellular mechanisms
operating at the maternal-fetal interface, specifically at decidua
and placenta. Indeed, only one work testing nanoparticles
containing T. gondii total extracts, analyzed the cytokine
profile in placentas from vaccinated dams (44). This study
found that a reduction in IFN-g and an increase in IL-6 and
IL-10 production was associated with protection against vertical
transmission and ocular toxoplasmosis in the offspring (44).
Determining the type of immune response at maternal-fetal
interface that can correlate with protection will be useful to
refine vaccination approaches, by selecting adjuvants that could
Frontiers in Immunology | www.frontiersin.org 8
adequately polarize T cell responses, thereby leading to
protection against congenital infection. On the other hand, it
would be also important to understand the immune response
developed in the pups born from vaccinated dams and infected
during pregnancy. To our knowledge, only one study analyzed
the immune response in surviving pups born from vaccinated
dams, having found a mixed Th1- and Th2-type response
associated with a high survival rate, high weight mean, and low
cyst brain burden (43). The development of adaptive fetal
immune responses are observed in neonates exposed to an
infection environment in uterus but not necessarily infected
themselves (48). Thus, it will be worthy to get new insights
into how T cell responses and related mediators operate in
fetuses and in neonates. Novel vaccine design formulations and
delivery systems can also be improved, concerning parasite
antigen determinants and elicited immune mechanisms
involved in protection against T. gondii vertical infection (36).
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