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Causal simulation experiments: Lessons
from bias amplification

Tyrel Stokes1 , Russell Steele1 and Ian Shrier2,3

Abstract

Recent theoretical work in causal inference has explored an important class of variables which, when conditioned on,

may further amplify existing unmeasured confounding bias (bias amplification). Despite this theoretical work, existing

simulations of bias amplification in clinical settings have suggested bias amplification may not be as important in many

practical cases as suggested in the theoretical literature. We resolve this tension by using tools from the semi-parametric

regression literature leading to a general characterization in terms of the geometry of OLS estimators which allows us to

extend current results to a larger class of DAGs, functional forms, and distributional assumptions. We further use these

results to understand the limitations of current simulation approaches and to propose a new framework for performing

causal simulation experiments to compare estimators. We then evaluate the challenges and benefits of extending this

simulation approach to the context of a real clinical data set with a binary treatment, laying the groundwork for a

principled approach to sensitivity analysis for bias amplification in the presence of unmeasured confounding.
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1 Introduction

Causal identification strategies aim to condition on a sufficient set of observables such that the potential outcomes

are conditionally independent of the treatment of interest.1–3 Causal variable selection procedures often assume

that at least one subset of the observed variables forms such a sufficient set.4 The object in causal variable

selection then becomes how to separate variables which are necessary for identification of the causal effect
from those variables which are extraneous4,5 in the interest of reducing estimator variance or covariate

dimensionality.4,6

In non-experimental observational studies, we do not have full access to a sufficient set in many realistic

settings, and important confounding pathways remain unblocked.7,8 This is referred to as unmeasured confound-
ing or endogeneity in the statistics and econometrics literatures, respectively. However, applied researchers cur-

rently rely on variable selection techniques such as lasso, step-wise, change-in-estimator selection, and outcome

and/or treatment oriented approaches9 despite violating their underlying assumptions.
Often, variable selection techniques are used to avoid conditioning on negligible confounding pathways with-

out introducing meaningful bias to the estimator. In this paper, we explore how this intuition can break down

under even mild violations of the underlying assumptions. In particular, we build on the work of Pearl10 and

explore how treatment prediction-oriented approaches may inadvertently amplify bias if unmeasured
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confounding pathways remain. We use the lessons from this failure of intuition to better understand the con-

sequences of variable selection in both linear models and partially linear orthogonalized models in the presence of

important unmeasured confounding. We then build a principled approach to simulate from such systems of

equations which may be used to compare the theoretical properties of different estimators, such as accurately

quantifying the change in bias when we modify the causal relationship between a confounder and the treatment,

or for the purpose of sensitivity analysis.
First consider data generated from the following directed acyclic graph (DAG) (Figure 1) and set of structural

equations

Y ¼ ay þ Aba þ Ubu þ �1 (1)

A ¼ aa þ Ucu þ
X10
i¼1

BAVicbavi þ �2 (2)

U ¼ au þ
X10
i¼1

BAViwbavi
þ �3 (3)

where Y is the outcome, A is the treatment of interest, U is an unmeasured variable, BAV refers to 10 different

potential bias amplifying variables that are measured and affect both A and U but have no direct effect on Y, cx is
the coefficient for the effect of the variable on A, bx is the coefficient for the effect of the variable on Y, and �number

is an error term for the corresponding equation. This model contains one confounding path that cannot be

blocked (A U! Y) and 10 confounding paths (A BAV1 ! U! Y; . . .; A BAV10 ! U! Y) that can

be blocked by including the measured BAVi variables in the model. However, including any of these BAVi

might also increase bias (potential bias amplifying variables). Our goal is to find the least biased estimator of

the average causal effect (ACE) of treatment (ba).
By including more of the BAV variables in the model, intuition suggests the remaining unmeasured confound-

ing bias should decrease because more potential confounders have been included in the conditioning set. However,

as demonstrated in the bias amplification literature,10–12 conditioning on confounders may still increase bias. For

example, suppose further the 10 observable variables account for 90% of the variance in the variable U respon-

sible for unmeasured confounding. The blue violin plot in Figure 2 represents the sampling distribution of the

estimator from the true outcome model that includes the treatment and both measured/unmeasured confounding

variables included as regressors. As expected, the estimates are approximately normally distributed around the

true value ba ¼ 0:7. The green violin plot represents the biased estimates from the naive model, the simple

regression of the outcome Y on the treatment A, which does not include any of the confounders (measured or

unmeasured). The red violin plot represents the linear model adjusted for all 10 measured confounders which

account for 90% of the unmeasured confounding. The adjusted model performs much worse than the naive model

both in terms of bias (0.73 compared to 0.43, interpretable as standard deviations) and variance (standard devi-

ation of 0.1 compared to 0.02). In fact, in 4990 of 5000 simulations the adjusted estimate was farther from the

truth than the naive estimate and nearly 65% of the adjusted estimates had the incorrect effect sign.
The purpose of this paper is to explain why model selection intuition fails us in this case and how we can use a

combination of data and simulation approaches to improve model selection. We build upon an emerging theo-

retical literature exploring a class of variables which can amplify existing unmeasured confounding

bias,10,13,14,30,31,32,35 called bias amplifiers. Throughout this text, we will refer to (potential) bias amplifiers as

those variables which, upon their inclusion in a model, (may) increase the absolute bias in the estimation of

particular target parameters relative to a smaller, nested model. In the above example, all 10 BAVs increase the

bias due to the path A U! Y and in fact could also increase the bias of any other variable BAV if it were not

included in the model, since they are all confounders.
The class of bias-amplifying variables is potentially very large and common in practical applications. Bias

amplification occurs when the absolute bias of an estimator for a target parameter is larger than the absolute bias

of an estimator for a competing, nested model. In this text, we define the natural model comparison to be the

naive regression of the outcome (Y) on the treatment (A) and bias amplification will be the additional relative bias

that results from adding additional predictors. Throughout, the goal of model selection in this context will be to
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choose the variables and thus the model which minimizes bias in estimating the true average treatment of effect in

the presence of unmeasured confounding pathways.
We adopt a matrix notation framework to characterize this problem because (1) we can more easily generalize

to a much larger class of directed acyclic graphs and structural equations than previously studied; (2) it offers a

unifying geometric explanation for the amplified bias in the context of least squares estimation; and (3) it offers a

solid foundation for how to build data-informed model selection procedures. Finally, we develop a procedure for

simulating from a more complete parameter space in a way that respects the underlying amplification process. In

addition to lending itself better to articulating and answering causal simulation questions, this procedure helps

explain why some previous studies have incorrectly concluded that applied investigators need not worry about

amplification in practice.15 We evaluate the challenges of implementing this approach with a real clinical example

with binary treatment.

2 Problem formulation

Figure 3 shows a basic directed acyclic graph (DAG) which has both measured and unmeasured confounding. Let

Y represent the outcome and let A be the treatment or variable of interest. Let U be an unmeasured confounding

variable that we cannot include in a regression model, but which has a functional relationship with both Y and A.

The bias amplifying variable (BAV) in this DAG is analogous to U in that it is a cause of Y and a cause of A;

however, we are able to measure BAV and not U. Intuition from currently recommended causal variable selection

techniques would tell us to include BAV in the regression to reduce bias because it is the root of a confounding

Figure 2. Violin plot from simulations from equations (1) to (3). There were 5000 replication with n¼ 5000. The true effect of
interest was ba ¼ 0:7, represented by the blue line. The confounding effects were bu ¼ �0:5 and cu ¼ 0:59. The vector of coefficients
for BAV on U was wbav ¼ f�0:55;�0:45;�0:3; 0:30; :25; 0:20;�0:20; 0:20;�0:15; 0:10g, which in general were larger than the
impact of BAV on A, cbav ¼ f�:1;�:15;�:1; :21;�:2; :3;�:2;�:15;�:2; :075g. U;BAV;A; and Y are all standard normal variables.
The error terms were normally distributed with standard deviations: r1 ¼ 0:93;r2 ¼ 0:07, and r3 ¼ 0:32. All intercepts were set to
0. The code to reproduce the plot can be found in the supplementary materials. The red vertical line represents bba ¼ 0.

Figure 1. Directed acyclic graph (DAG): Meyers (2011) extended to 10 possible bias amplifying variables BAVs.
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path (A BAV ! Y). However, as has been demonstrated,10–12,14 blocking this confounding path can actually

increase or amplify the bias relative to the naive estimator that depends only on A.
Assume that we now restrict the possible models for the DAG in Figure 3 to only linear associations amongst

variables. The data generating model (or causal structural equations) representing Figure 3 under strictly linear

association can be written as

Y ¼ ay þ Aba þ Ubu þ BAVbbav þ �1 (4)

A ¼ aa þ Ucu þ BAVcbav þ �2 (5)

where ay and aa are the intercept terms for Y and A, respectively. As noted above, we use the form bx
throughout this paper to denote true structural coefficients for some variable X on the outcome Y. For example,

the true structural coefficient for U on Y is bu. Analogously, the true regression parameter for some variable X on

the treatment A is represented by cx. The estimates of these parameters by OLS are denoted by bbx ; bcx with

additional superscripts to clarify which set of estimating equations the estimator is derived from. By assumption �1
and �2 are error terms independent of each other we further assume that E½�1jA;U;BAV� ¼ 0 and

E½�2jA;BAV� ¼ 0, and that the error terms have some finite variance r2�1;2 . In simulation experiments, we typically

simulate from normal distributions which are independent from all other variables, but only the above assump-

tions are necessary for the theoretical results to hold.
We also assume that the target estimand is the ACE. In the linear model case, this is simply the ba above in

equation (4) (See Appendix A.3.I for derivation of the ACE). U is unmeasured and thus we cannot identify the

ACE from the observed data if bu 6¼ 0, but we are interested in estimating the quantity with as little bias as

possible.

2.1 Matrix notation and probability limits

To tackle the question of model selection, we must derive properties of different bba estimators, with the restriction

that the estimators be functions of only observed variables, under different assumed conditional regression

models. To this aim, we propose expressing OLS estimates using matrix notation and ideas borrowed from the

partial regression literature. Further, we propose considering also the probability limits of the estimators to extend

our results to more general and realistic cases of bias amplification (see Appendix A.2). For the naive estimator,

we use a simple linear regression to estimate a conditional expectation of the form

E½YjA� ¼ anaivey þ Abnaivea þ t1 (6)

where t1 is the error of the regression term. Unbiased estimation of the naive model by OLS, and thus of the

true conditional expectation E½YjA�, requires the assumption that E½t1jA� ¼ 0. However, this of course is not true

since according to the data generating equation (4), the error will be a function of the confounding terms, resulting

in non-zero bias. The naive estimator bias is a special case of the classic omitted variables problem, where we have

two omitted variables which are related to both the treatment and the exposure, U and BAV.
Let bbanaive be the estimate of ba from the naive model (6). Throughout this paper, we will consider the matrix Z

to be a matrix of all the variables that we include in a regression that are not the variable of interest A, in other

words control variables in a selection on observables approach. In the naive model, Z ¼ 1 where throughout 1 will

Figure 3. DAG: Two confounding paths, where A is the treatment of interest, Y is the outcome, U is an unmeasured variable and BAV
is a measured variable.
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denote an n� 1 vector of 1 s. In matrix notation, applying the Frisch-Waugh-Lovell (FWL) theorem (see

Appendix A.1), we can write bbanaive as
bbanaive ¼ ATM1Y

ATM1A
(7)

where M1 is a centering projection matrix, defined and described in detail in Appendix section A.1. In the case

of linear relationships between all the variables, following Pearl,10 this estimator has the following expectation

E½ bbanaive� ¼ ba þ ðbucur2u þ bbavcbavr
2
bavÞ

1

r2a
(8)

The absolute bias for the ACE then clearly is jðbucur2u þ bbavcbavr
2
bavÞ 1

r2a
j. Now consider the estimates resulting

from further conditioning on the observable BAV variable, i.e. estimating a conditional expectation of the form

E½YjA;BAV� ¼ anaivey þ Abbava þ BAVbbavbav þ t2 (9)

We will denote the resulting estimator bbbav

a which can be written as follows by again applying the FWL theorem

bbbav

a ¼ ATMzY

ATMzA
(10)

where Z ¼ ½1;BAV� and Mz is the annihilator projection matrix of the matrix Z (see Appendix A.1 for details

and properties). Again following Pearl,10 the expectation of dbbava is

E½dbbava � ¼ ba þ ðbucur2uÞ
1

r2a � c2bavr
2
bav

(11)

In Appendix A.4, we explicitly show Pearl’s derivation and how it relies on the conditional expectation

E½UjA;BAV� being linear in both A and BAV. Pearl’s derivation is limited in that it is cumbersome and does not

generalize well to a broad class of DAGs and functional forms. A simple example where we are unable to use Pearl’s

method is the case of an interaction term in the exposure structural equation between U and BAV. This implies that

E½UjA;BAV� is nonlinear in A and BAV. This cannot be represented by an unbiased least squares projection of the

form U ¼ au þ Afa þ BAVfbav þ �3 as required by Pearl’s derivation method (see Appendix A.4 for details), where fi
represents the true regression coefficient for variable i. If we impose further strict distributional assumptions over all

the variables, we may still be able to directly solve the conditional expectation and find an expression for bias in

terms of the underlying parameters. However, in many applied cases, these distributional assumptions will not be

justified, particularly assuming a distribution for the unmeasured confounding which will always be untestable.
In contrast, if we consider the probability limits, we do not need to assume that E½UjA;BAV� is linear, nor do

we have to make any additional distributional assumptions to find meaningful limiting expressions for our

estimators in a broad class of clinically relevant circumstances. In addition to giving rise to a meaningful inter-

pretation, the closed form asymptotics we derive allow us to more easily harness domain knowledge about the

underlying causal process for the purpose of model selection.
Since we are still interested in the finite sample expectation of the estimators and the bias directly, we report the

expectations when appropriate and feasible. The probability limit facilitates insight under weaker assumptions

than those necessary to derive exact forms of the expectations. Additionally, in some cases, like the linear model of

Pearl,10 the probability limits for bbnaive

a and bbbav

a are precisely equal to their expectations (see Appendix A.7).

3 Treatment variance explained and amplifying effects for strictly linear models

In this section we examine the probability limits of the estimators to better understand the mechanics and root

causes of bias amplification. First, notice the denominator of equation (11) (r2a � c2bavr
2
bav) gets smaller as the
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causal edge BAV ! A increases in strength. This is because when we specify the functional form of a system of

random variables and conditional independence assumptions, we are also determining a formula for its variance.

Under the structural equation we specified for the exposure (equation (5), with the corresponding DAG shown

later in Figure 7(a)), r2a � c2bavr
2
bav is precisely equal to the remaining residual treatment variance in A after having

adjusted for BAV in a regression model. When we assume that all the variables are standardized, this term

becomes 1� c2bav as presented in Pearl10 (under the assumption of standard normal, here we drop the distribu-

tional requirement), because the variance of standard normal variables is equal to 1 (r2a; r
2
bav ¼ 1).

In order to visualize this phenomenon, we use ideas from partial regression plots.16 By the FWL theorem, we

can always pre-multiply an estimating equation by the residual-making variables of a set of regressors and get the

same estimates (see Appendix A.1 for further details). For example, the following two regression equations

produce the same numerical ordinary least squares estimates of bbanaive
Y ¼ ay þ Aba þ t1 (12)

M1Y ¼ M1Aba þ t1 (13)

Equation (13) is the model for a simple linear regression of a modified outcome, M1Y, on a modified

treatment, M1A (see Appendix A.1). There is no intercept term as the mean of the modified treatment must be

equal to zero.

Y ¼ ay þ Aba þ BAVbbav þ t2 (14)

MzY ¼ MzAba þ t2 (15)

Similarly equations (14) and (15) above produce equivalent ordinary least squares estimates of bba, where Z ¼
½1 BAV� is a column of 1 s and the BAV variable. Equation (15) is a single variable regression on a transformed

set of variables. The modified Y is produced by taking the residuals from regressing Y on a column of 1 s

and BAV. In other words, the dependent variable is the residual vector resulting from regressing Y on an

intercept column and BAV. The independent variable is the residual vector resulting from regressing A on a

column of 1 s and BAV. Another way to think of the residuals is in the context of orthogonalization techniques,

where ATMz for example is the part of A orthogonal to linear combinations of the control variables A. We

then regress the orthogonalized outcome on the orthogonalized treatment, which is implicitly the mechanics of

what happens whenever we use least squares estimation. See section 4.2 for more general orthogonalization

techniques.
Since we have reduced the multi-variable regression problem to a simple linear regression for two linearly

transformed variables, we can easily visualize the amplification process via a partial regression plot. In Figure 4

the left subplot visualizes the naive regression equation (13), whereas the blue subplot on the right visualizes the

regression equation (15) that includes BAV. The data were simulated from a special case of equations (4) and (5),

with n¼ 1000. Details can be found in the appendix (Appendix section A.13).
The unbiased ACE is the slope of the black line (ba ¼ 0:2) in these plots. The slope of the blue line (equal to the

OLS estimator from the amplifying model) is clearly farther away from the true slope (in black) compared to the

slope of the red line from the naive model, and thus the conditional estimator is more biased.
Note first that including BAV in the model reduces the variance in the adjusted treatment, which can be seen by

comparing the relative sparsity of points along the x-axis in red compared to the relative density of points along

the x-axis in blue. However, if we inspect the spread of points vertically along the y-axis, we can see that the red

and blue samples are similarly dispersed in this dimension because conditional on the treatment, linear combi-

nations of BAV explain very little of the variance in the outcome. Most importantly, including only BAV does not

change the variance in Y due to U, the unmeasured confounder.
When we add the BAV to the regression model, the bias is 0.14 larger in absolute terms (or approximately 65%

greater in relative terms) than the naive estimate, even though it blocks a confounding path between the treatment

A and the outcome Y. More simply, trying to block a confounding path with weak response association can

amplify bias in causal effect estimation because it increases the proportion of treatment association due to

unmeasured confounding on unblocked paths.
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The magnitude of bias amplification can be potentially very large. From equations (8) and (9), the absolute bias
of the BAV estimator will be larger than the absolute bias of the naive estimator whenever

jBiasðbbbav0
a Þj

jBiasðbbnaive

a Þj
¼ r2a

r2a � c2bavr
2
bav

 !
jbucur2uj

jbucur2u þ bbavcbavr
2
bavj

 !
> 1 (16)

We can rewrite the first term on the right side of the equal sign as ð1�R2
AjBAVÞ�1, which is the inverse of 1

minus percentage variance explained in A adjusting for BAV

jBiasðbbbav0
a Þj

jBiasðbbnaive

a Þj
¼ 1

1�R2
AjBAV

 ! jbucur2uj
jbucur2u þ bbavcbavr

2
bavj

 !
> 1 (17)

Notice that the first term must always be greater than or equal to 1. The more strongly the control variables
predict the treatment, the larger the magnitude of the term, increasing monotonically11 and hyperbolically in the
treatment variance explained by BAV.

We now examine the second term after the equal sign. If bu ¼ 0 or cu ¼ 0, then there is no unmeasured
confounding and bbbav will be unbiased. If bu 6¼ 0 and cu 6¼ 0 then there is unmeasured confounding, so by manip-
ulating equation (17), we can write the second term as

jBiasðbbbav0
a Þj

jBiasðbbnaive

a Þj
¼ 1

1�R2
AjBAV

 !
1

j1þ gsgnðbuÞsgnðcuÞsgnðbbavÞsgnðcbavÞj
� �

> 1 (18)

Figure 4. In both panels, the unbiased ACE (ba ¼ 0:2) is shown by the dotted black line. In the left panel, the red dots represent the
centered treatment (MiA) plotted against the centered outcome (MiY) and the estimated slope bbnaive

a is shown with the bolded red
line. This represents the equivalent regressions in equations (12) and (13). In the right panel, the blue dots represent the modified
treatment (MzA) plotted against the modified outcome (MzY). The solid blue line represents the treatment estimate from the
equivalent regressions (14) and (15).
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where sgnð�Þ is equal to þ1, �1, and 0 if the argument is positive, negative, and equal to 0, respectively, and g is
defined as the ratio of the absolute strength of the confounding path through BAV ðjbbavcbavr2bavjÞ to the absolute

strength of the confounding path through U ðjbucur2ujÞ.

g ¼ jbbaycbayr
2
bayj

jbucur2uj

The second term depends on the signs of the structural coefficients for the two confounding paths. This is a

dimensionless quantity that does not depend on the scale of the data, which can make it useful for

sensitivity analysis. If cbav ¼ 0, then BAV does not affect A, so it has no effect on the bias because g¼ 0 and

R2
AjBAV ¼ 0. In the special case that bbav ¼ 0, BAV is a true instrumental variable under the DAG in Figure 3. If

there are no interactions as in the structural equations (4) and (5), then including an instrumental variable will

always increase bias in the presence of unmeasured confounding.3,10,14 We can see this clearly in equation (16)

since by definition an instrumental variable does not explain variance in the outcome except through the treat-

ment and must correlate with the treatment. A strong instrument in this case must be a strong amplifier since

it will strongly predict variance in the treatment making the first term in equation (16) large and the second term

exactly 1.
In the case that none of the structural coefficients are equal to 0, note that sgnðbuÞsgnðcuÞsgnðbBAVÞsgnðcBAVÞ

will be equal to þ1 if there is an even number of positive signs for the structural coefficients and it will be equal to

�1 if there is an odd number of signs. We have defined g in terms of absolute values, so it must be non-negative. If

0 � g < 1, then the confounding path through U is stronger than the path through BAV. If g > 1, then the

confounding path through BAV is stronger than the path through U. When g¼ 1, the strengths of the two

confounding paths are equal.
We can use equation (18) to characterize all possible confounding structures that lead to bias amplification.

First assume that there are an even number of positively signed structural coefficients. This implies that the second

term of equation (18) is equal to ð1þ gÞ�1 and bias amplification will occur when ð1�R2
AjBAVÞ�1 > ð1þ gÞ or

equivalently when R2
AjBAVð1� R2

AjBAVÞ�1 > g. So if there is an even number of positively signed structural coef-

ficients, the larger amount of treatment variance explained by BAV, the greater the range of possible g values that

will lead to bias amplification.
Next assume that there is an odd number of positively signed structural coefficients, so that the second term

will be equal to j1� gj�1. In this case, if 0 < g � 1 (i.e. if the confounding path through U is stronger than the

confounding path through BAV), then there will always be bias amplification. If g > 1, then there will be bias

amplification if ð1� R2
AjBAVÞ�1 > ðg� 1Þ, similar to the case when g > 1.

In Appendix A.5 we further re-express g in terms of only correlations (or partial correlations if desired) and

the coefficients of determination and free of model parameters. This is a dimensionless quantity that does

not depend on the scale of the data, which can make it useful for sensitivity analysis. Additionally, the

different ways of expressing the quantity can reveal portions of the unknown quantity which are estimable, i.e.

functions of only observed data. Depending on the application parameters, it may be easier to express

domain knowledge through correlations or percentage variance explained. This allows one to move more

easily from one to the other, which should be very useful to applied researchers. We expand on these ideas in

sections 5 and develop principled ways to simulate from such systems of equation. In Appendix A.5, we

discuss exploiting the fact that correlations and variances are sufficient for determining the whole system of

equations.
In summary, variable selection approaches which aggressively target confounding paths with strong associa-

tions with treatment and weak associations with outcome are at greater risk of bias amplification as they are

much more sensitive to the assumption that a full sufficient set is measurable. Adding controlling variables

in proportion to their ability to predict the treatment in linear models is only guaranteed to be bias reducing

if the resulting selected variables satisfy ignorability assumptions. When this is not the case, we have shown

that unmeasured confounding bias may be severely amplified since the treatment variance term increases

both monotonically and hyperbolically. It is often not possible or extremely unlikely to select a sufficient

set in many non-experimental settings, i.e. most investigators are not willing to assume their

observational study is equivalent to a randomized trial. Thus the potential for bias amplification must be con-

sidered carefully.

Statistical Methods in Medical Research 31(1)10



4 Generalizing to a larger class of causal models

In sections (1) to (3), we showed examples of bias amplification under two different DAGs, each with linear

structural equations in both the coefficients and variables and probability limit results under the DAG in Figure 3

and linear structural equations. In section 4.1 we extend bias amplification to the class of structural functions that

are additive in the outcome and whose target causal effect is represented by ba. In other words, we consider

structural equations of the form

Y ¼ ay þ Aba þ f1ðUÞ þ f2ðBAVÞ þ �1 (19)

A ¼ aa þ gðU;BAVÞ þ �2 (20)

We require minimal assumptions of treatment structural equation (20), in fact it is completely general except

that it must be decomposable into a function of U and BAV (i.e. the E½AjU;BAV� ¼ aa þ gðU;BAVÞ) and an error

term orthogonal to this function (�2 : E½�1ji;U;BAV� ¼ 0). For the outcome equation, we require more structure

and assumptions on top of an orthogonal decomposition into the conditional expectation and error term

(�1 : E½�1ji;A;U;BAV� ¼ 0). Specifically we require that the outcome equation (19) is additive in functions of

A, U, and BAV (ruling out interaction effects for example) and that the causal effect of interest is a single

parameter ba (
@E½YjA;U;BAV�

@A ¼ ba).
In section 4.2, we again consider the same structural setting, but extend the results and intuitions developed in

sections 3 and 4.1 to more general orthogonalization techniques beyond least squares, namely a specific case of

Neyman-Orthogonalization in partially linear models as used in double debiased approaches like in

Chernozhukov et al.17 We show that in both settings, we can decompose bias amplification into a component

due to covariance between the treatment and the outcome through the confounding paths and a second term

which is a ratio of marginal treatment variance to residual treatment variance after adjusting for other covariates.

We can always estimate the residual treatment variance and should report these estimates in observational studies,

particularly if variable selection was in part determined by strength of treatment prediction. As the remaining

treatment variance decreases, the potential for bias amplification increases and any inferences about the causal

effect depend more strongly on the assumption that unmeasured confounding is negligible. Further, similar to the

earlier setting, we can directly estimate correlations, coefficients of determination, and conditional expectations

composed only of observable variables. While the entire confounding pathways cannot be identified, some of the

components can be. These estimable quantities, in turn, place restrictions on what the total confounding pathways

can be. In section 5 we show how to use these principles and perform simulations to test the performance of

competing estimators. In section 6 we apply these ideas to a real clinical data set.

4.1 Generalized bias amplification in least squares

If f2ðBAVÞ is known or can be well approximated (say by an appropriate basis expansion that grows in dimension

as n!1) up to a constant of proportionality and intercept, then in the limit there will not be any bias due to

misspecification of f2ðBAVÞ (for a look at the case when f2ðBAVÞ is misspecified see Appendix section A.9.1). In

such a case, we again can compare two feasible OLS estimators, the first being the Naive estimator (bbnaive

a ) as

before and the second the OLS estimator resulting from including f2ðBAVÞ or its approximation (bbjf2ðbavÞa ). Under

any DAG, it can be shown that under structural equations (19) and (20), there will be bias amplification when

jBiasðbbbav0
a Þj

jBiasðbbnaive

a Þj
¼ 1

1�R2
Ajf2ðBAVÞ

 !

� jCORðA; f1ðUÞÞ � CORðA; f2ðBAVÞÞCORðf1ðUÞ; f2ðBAVÞÞj
jCORðA; f1ðUÞÞ þ CORðA; f2ðBAVÞÞjj

� �
> 1

(21)

where j ¼ rf2ðBAVÞr
�1
f1ðUÞ. In the above expression, we assume the case that there is in fact bias in the naive

model, i.e. Biasðbbnaive

a Þ 6¼ 0.

Bias amplification is decomposed into two terms, the ratio of remaining variance in the treatment once the

control variables are projected out, and the remaining covariance between the outcome and treatment through the
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confounding pathways. Just like in the linear case, the first term ð1�R2
Ajf2ðBAVÞÞ�1 is the ratio of remaining

treatment variance once we have projected out linear combinations of the control variables, which is just a
constant in the naive case and f2ðBAVÞ in the adjusted case. This first term must be greater than 1 and is a
hyperbolic function increasing as f2ðBAVÞ linearly explains more variance in the treatment.

Now consider the second bias term jCORðA;f1ðUÞÞ�CORðA;f2ðBAVÞÞCORðf1ðUÞ;f2ðBAVÞÞj
jCORðA;f1ðUÞÞþCORðA;f2ðBAVÞÞjj

� �
which is the ratio of the covari-

ance between the outcome and treatment remaining through the uncontrolled confounding pathways. The numer-
ator of this expression (jCORðA; f1ðUÞÞ � CORðA; f2ðBAVÞÞCORðf1ðUÞ; f2ðBAVÞÞj) is the magnitude of the
correlation between the treatment and f1ðUÞ once we have projected out linear combinations of BAV. When
f1ðUÞ and f2ðBAVÞ are uncorrelated, or independent as they would be under the DAG in Figure 3 and equation
(17) in section 3, then the numerator reduces to simply jCORðA; f1ðUÞÞj since BAV does not linearly explain any of
the shared variance in the treatment A and f1ðUÞ.

In general, when there is correlation between f1ðUÞ and f2ðBAVÞ, adjusting for f2ðBAVÞ reduces the confound-
ing bias of f2ðUÞ when the signs of the correlations CORðA; f2ðBAVÞÞ and CORðf1ðUÞ; f2ðBAVÞÞ are the same.
Otherwise, this adjustment may further increase the confounding bias. As a simple example, if all of the corre-
lations are positive (i.e. CORðA; f1ðUÞÞ;CORðA; f2ðBAVÞÞ;CORðf1ðUÞ; f2ðBAVÞÞ > 0 then the second term in the

amplification expression will be less than or equal to 1 ( jCORðA;f1ðUÞÞ�CORðA;f2ðBAVÞÞCORðf1ðUÞ;f2ðBAVÞÞjjCORðA;f1ðUÞÞþCORðA;f2ðBAVÞÞjj
� �

� 1). In this

case, we reduce bias in two ways. First we remove the bias due to CORðA;BAVÞ directly and then we reduce the
remaining covariance between A and f1ðUÞ through the part of this correlation explained by BAV.

There will be amplification, on the other hand, if the first term (which is always greater than one) is bigger than
the reciprocal of the second term (which in this case is less than one). If CORðA; f1ðUÞÞ and CORðA; f 2ðBAVÞÞ are
opposite signed, then when we adjust for BAV and remove bias due to the confounding path A BAV ! Y we
may increase bias since CORðA; f1ðUÞÞ and CORðA; f2ðBAVÞÞ would no longer be partially cancelling each other
out as they do in the naive model. Similarly, projecting out linear combinations of BAV may increase or decrease
the remaining covariance between the treatment and f1ðUÞ as seen in the numerator of the second term. Overall,
this second term may be greater than or less than 1, meaning it may contribute to increasing or decreasing the bias
relative to the naive estimator. By estimating the correlations and variances which are functions of observables
and eliciting domain knowledge about the remaining unobserved quantities in the relative bias expression, we can
make informed predictions about the plausibility of bias amplification.

Even in the most general case, where there are interactions and non-separability of U and BAV in the data
generating model equation, the second term of the bias term will always be proportional to 1�R2

AjZ, where Z ¼
½i; hðBAVÞ� and hðBAVÞ are whatever function of BAV that we include in a regression. As can be seen in the
appendix (section A.9.1), this is even true when we have misspecified f2ðBAVÞ. However, there will be an additional
bias term due to misspecification, but this will also be amplified with respect to the denominator term. The overall
lesson is that when using OLS for causal effect estimation, unmeasured confounding bias (and remaining misspe-
cification bias) will be amplified hyperbolically with respect to how well the controlling variables linearly explain
variance in the treatment, i.e. the magnitude ofRAjZ, where Z is all of the variables that are not A that we include in
our OLS regression. Further, it is important to note that the amplifying factor (ð1�R2

Ajf2ðBAVÞÞ�1) is always a
function of only observables and can always be estimated by running the regression A on f2ðBAVÞ. We can use these
estimates for sensitivity analysis or in a model selection procedure. In a case like the simulation in Figure 2, our
potential controls explain the large majority of the treatment variance. When this occurs, we should require more
confidence that there is no unmeasured confounding after adjusting for our controls before we trust these estimates.

When there are causal pathways between U and BAV, we showed that this may help make the first term
smaller. However, this will open up an additional pathway for f2ðBAVÞ to explain variance in the treatment (for
example BAV ! U ! A as in the DAG in Figure 1, but in general the path could be indirect or the direction of
causation may be reversed) and thus make the second hyperbolic term larger. This was the source of the dramatic
bias amplification in Figure 2 simulated under linear structural equations from the DAG in Figure 1. In that
specific case, BAV was a very good proxy for the unmeasured confounding U and this has two effects. First, it
means that including BAV eliminates the large majority of the unmeasured confounding through its path to the
outcome. Second, this means that BAV linearly explains nearly as much variation in the treatment as including
both BAV and U, which is nearly all of the variation in the treatment in that simulation case. So the little

unmeasured confounding remaining was amplified significantly, more than 25 times
�
ðð1�R2

AjBAVÞr2aÞ�1 ¼

ðr2a �
X10

i¼1 ðcbavi þ cuiwbaviÞ2r2baviÞ�1 ¼ ð1� 0:96015Þ�1 ¼ 25:09725
�

under the DAG in Figure 1 and linear
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structural equations (1) to (3)). This is because the potential amplifier linearly explained more than 96% of the

variance in the treatment.

4.2 Bias amplification in more general semi-parametric models

In the beginning of this paper, we considered bias amplification in the context of linear expectations and linear

models. In section 4.1 we extended this to when the structural models are non-linear when the estimator is

ordinary least squares. Here we show proof of concept for bias amplification in more general semi-parametric

orthogonalization methods. We plan to further develop this work in the future. We again consider the underlying

structural equations to be represented by equations (19) and (20).
In the case that f 2ðBAVÞ is unknown, one might turn to more general semi-parametric estimators for the causal

effect estimation. A reasonable semi-parametric estimator for these structural equations is Robinson’s Double

Residual Regression (DRR hereforth)18 when the outcome is hypothesized to be linear in the treatment (or well

approximated by a partial linear function). In section 3 we showed via the FWL theorem that we can think of

multiple regression as simple regression of the outcome and treatment once linear combinations of the control

variables (which may be non-linear functions themselves as shown in section 4.1) have been projected out. In other

words, we orthogonalized the outcome and treatment with respect to the subspace spanned by the linear combi-

nations of all the control variables we included in our regression model (Z) and then perform simple linear

regression on the orthogonalized variables. The coefficient of interest in DRR, just like in multiple linear regres-

sion, is the result of a least squares estimate of an orthogonalized outcome and treatment, but we orthogonalize

with respect to a more general subspace using the expectation operator.
Considering some arbitrary random variable Y and collection of controls X1; . . . ;Xn (each with finite variance),

the conditional expectation E½YjX1; . . . ;Xn� is the projection of Y onto a closed subspace of L2 consisting of all

Borel functions /ðX1; . . . ;XnÞ : Rn !R, see for example Brockwell and Davis.19 This is the heart of the familiar

result that the conditional expectation is the function of X1; . . . ;Xn which minimizes the mean-squared error

(argminf:Rn!R; Borel E½ðY � f ðX1;X2; . . . ;XnÞÞ2� ¼ E½YjX1;X2; . . . ;Xn�). The set of linear functions is a strict

subset of all Borel functions, making conditional expectation a more general projection than the projections

implicit in least squares estimation. In other words, if it turns out that the conditional expectations for both Y

and A are in fact linear in the same variables, the DRR estimator will be equivalent to OLS in the probability

limit.
The first step of DRR is to estimate the conditional expectations, i.e. the projections, E½YjBAV� and E½AjBAV�.

We can use our favorite non-parametric estimator(s) as long as it is consistent as n!1. It is common to use a

conditional density estimator, but one may choose to use modern regression tree models or machine learning

techniques like neural networks as in the context of Chernozhukov et al..17 Now we construct our orthogonalized

outcome and treatment, ~Y ¼ Y � bE½YjBAV� and ~A ¼ A� bE½AjBAV�. Finally, we perform least squares of the

modified outcome (~Y) on the modified treatment (~A) to get our semi-parametric estimator denoted bbsemi
.

Bias amplification will occur in the probability limit when

jBiasðbbsemiÞj
jBiasðbbnaive

a Þj
¼ 1

1� VARðE½AjBAV�Þ
r2a

 !
� jE½COVðA; f1ðUÞjBAVÞ�j
jCOVðA; f1ðUÞÞ þ COVðA; f2ðBAVÞÞj
� �

> 1

Once again, we can decompose this relative bias expression into two components. The first term is the ratio of

remaining treatment variance once the controlling variables have been projected out of the treatment and the

second term jE½COVðA;f1ðUÞjBAVÞ�j
jCOVðA;f1ðUÞÞþCOVðA;f2ðBAVÞÞj
� �

is the ratio of confounding covariances remaining through the outcome

paths U! A! Y and BAV ! A! Y. The first term again always contributes to amplification, since

ð1� VARðE½AjBAV�Þ=r2aÞ�1 � 1. This is the direct analogue of the results developed in the previous sections. In

this case, R2
AjBAV is the variation of the treatment explained by linear combinations of BAV (or hðBAVÞ if we have

included a different function of BAV in our regression), and VARðE½AjBAV�Þr�2a is the total variation explained by

fluctuations in BAV.20 As before, the first term increases hyperbolically as BAV explains more treatment variance.
When we project out BAV, the term COVðA; f2ðBAVÞ drops from the second component and COVðA; f1ðUÞÞ

becomes E½COVðA; f1ðUÞjBAVÞ�. Depending on the signs of the bias and the direction of the correlation

COVðE½AjBAV�;E½f1ðUÞjBAV�Þ, the second term may be greater or less than 1. This is similar to the first term
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in the expression in equation (21) since the biases from the two confounding paths may partially cancel each other
out and thus by projecting them both out, one may increase bias.

In other words, the underlying mechanics of bias amplification extends to more general orthogonalization
methods, both explicit as in the case of DRR and implicit like that in OLS. In particular, the partially linear
regression set-up is the basis for more complicated causal machine learning techniques such as Double Machine
Learning residuals on residuals regression,17 which has become a popular approach for dealing with regulariza-
tion bias in high dimensional settings. Even in these more complicated settings where we orthogonalize in more
sophisticated ways, variables which predict large amounts of variance in the treatment may significantly increase
bias if confounding pathways remain. Once again, the hyperbolic remaining treatment variance term is entirely a
function of observed variables and thus can be estimated (non-parametrically if desired) to see if one is at risk of
bias amplification with respect to priors or sensitivity analysis over expected levels of unmeasured confounding.
Similarly, we can use the mean-squared error of our resulting model to evaluate the extent to which unmeasured
confounding is possible through the outcome path since no interaction implies that remaining variation must
either be independent error or unmeasured confounding. A full treatment of this framework is beyond the scope
of this article and will be the subject of future work.

5 Causal simulation experiments: the case of bias amplification

In our experience, simulating bias amplification is challenging in a number of subtle, but important ways. Our
context of interest is assessing the potential for bias amplification in an analysis of an observational study in which
we have measured several independent variables and the outcome but there might be an unmeasured confounder.
We are interested in evaluating the feasible estimators we have developed in the previous sections, bbnaive

a and bbbav0
a

for example, with respect to possible data sets generated by a class of DAGs and structural equations. In this
section, we show that if we constrain certain aspects of the simulated data (in particular, the marginal variances of
observed quantities), we are better able to articulate and answer causal questions about the effect of bias ampli-
fication on proposed estimators. While we discuss the example of bias amplification simulations specifically, this
section has implications for simulating data to test causal estimators more broadly. Now, consider the challenge of
determining the effect of increasing unmeasured confounding on bias amplification in Figure 5(a). We might, for
example, be interested in how large an unmeasured confounder must be, with fixed amplifying variables, to cross
some threshold of bias in the adjusted model as part of a sensitivity analysis. To answer such a question, we must
define clearly what is meant by the strength of an unmeasured confounder. In Figure 5(a), there are two edges
which determine the overall bias due to the unmeasured confounding path through U: the edge from U to A and
the edge from U to Y. The bias due to the unmeasured confounding path through U in the naive model is simply
the product of the weight of these two edges, scaled by the variance of the treatment as shown in equation (7). The
extent to which bias can become amplified, however, is not symmetric with respect to the weight of the edges
U! A and U! Y, since amplification is the result of variance explained in the treatment as discussed in section 3.
There is more potential for amplification of a strong unmeasured confounder (in the sense the product of the
confounding edges is large) when the strength is due to U being a strong cause of Y compared to a strong cause of
A. This is because when U is a strong cause of A, the BAV can only explain a small amount of the variance of A,
limiting the possible amount of bias amplification. Thus, to answer a causal question about the effect of increased
unmeasured confounding on bias amplification, we should only vary one of the confounding edges, holding all
other edges fixed.

As an example, suppose we are interested in the change in bias amplification when we increase the strength of
the edge from U to A, holding all else constant. This notion of intervening on a single edge of our DAG while
holding the others fixed should be familiar to causal inference practitioners since it is the principle behind coun-
terfactual analysis more broadly. Here we want to ensure that our results from varying a single edge are not
confounded by variations in other edges as the result of unintended consequences or induced associations.

Because the goal is to increase the strength of a single edge, holding all else constant, we must specify a metric
by which we measure the strength of the edge. In a fully linear system, we might consider the strength of the edge
as the regression coefficient itself, cu, or the proportion of variance explained by U,

c2ur
2
u

r2a
and the sign of cu. It is

tempting to see the two measures as equivalent with different scalings, but this is only true in the context of
simulating a single equation. In the context of a system of linear equations, especially with the potential for bias
amplification, we argue the relevant quantity is the proportion of variance explained by each child node of the
parent variable. This can be seen most easily by examining the bias formula in equation (11), where the denom-
inator is the remaining variation in A unexplained by the potential bias amplifying variables.
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Consider the implications of treating the coefficients themselves as the relevant measure of edge strength in a

simulation trying to determine the effect of increasing the causal association along the path from U to A. If we

want to increase cu to cu
0 > cu without changing any other parameters, we must also increase the total variance

in the treatment, A, since r2a ¼ c2ur
2
u þ c2bavr

2
bav þ r2�2 . A treatment with a larger variance is in some sense a different

intervention, and thus this simulation is not compatible with the class of experiments which generated the

original data with parameter cu. Further, from the previous sections we know this implies the total amount of

variance explained from the bias amplifier BAV is reduced, since
c2bavr

2
bav

ðr2aÞ0
has been reduced. Although we have not

changed the parameter cbav we have decreased the extent to which BAV amplifies the bias as seen by examining

equation (11). The increased variance in A in turn modifies the total variance of Y. Therefore, the relative

proportion of variance of Y that is explained by BAV is modified by changing the causal effect of U! A, as

are the measured proportion of variance of BAV ! A; A! Y; U ! Y, and BAV ! Y and their associated covari-

ance terms.
We can see in Figure (5(b)) that by modifying a single coefficient and leaving all other coefficients unchanged

we have inadvertently modified the relative proportion of variance explained by the four other edges

(BAV ! A; BAV ! Y; U! Y, and A! Y) represented by the wavy arrows. Data generated by the second set

of structural equations are not compatible with the constraints of the experiment which generated the first data

and by intervening on a single edge we have modified all of the competing effects of interest. Comparing the

distribution of estimates produced under cu and c0u gives us a confounded and thus biased estimate of the impact of

increasing the unmeasured confounding through its causal pathway to the treatment on the estimators or func-

tions thereof. We will show that this bias can result in under-estimating the impact of bias amplifying variables.
In general, when we vary one of the regression coefficients along a causal pathway, this has upstream and

downstream effects on the proportion of variance explained by all variables going into or out of the varied node.

In order to keep the proportional effects of the other edges constant, we need to use the error terms of the

structural equations (�1 and �2) to absorb the shocks to the marginal variances.
In Figure 5(c), if we change cu and simply adjust the structural error term �a such that the total variance in A

remains constant, we can isolate the effect of modifying U! A. In Figure 6(a) we visualize the consequences of

failing to hold the variance of the treatment when we modify cu. In red, for Figure 6(a), we simulate bias ampli-

fication where cu ¼ 0:3. In green, we simulate bias amplification where cu is increased to 0.55 holding all other

parameters constant, thus allowing the total variance of the treatment to grow from 1 to 1.21. This has the

downstream effect of also increasing the variance of the outcome from 1 to 1.02. This also then impacts the

relative proportions of variance explained of the treatment and the outcome that are explained by U and BAV,

respectively. Notice that the bias increases from 20% (0:36�0:30:3 Þ to 43% ð0:43�0:30:3 Þ. In blue, we increase cu from 0.3 to

0.55, but re-normalize the variance in the treatment to remain constant at 1. The bias now increases further to

67% (0:5�0:30:5 ) with respect to the original simulation in red. We do this by decreasing the variance of the indepen-

dent noise term, �a to �0a, allowing it to absorb the increase in variation from U. When we do not fix the variance,

we underestimate the impact of the amplifier on both the bias and the variance because the unfixed variance case

simulates a different kind of intervention due to the change in variance of the treatment variable. In the simulation

Figure 5. Causal diagrams where (a) represents the underlying causal structure. In addition to the usual causal pathways, we
explicitly show the pathway of the independent error terms, �a; �u; �bav; �y . (b) The simulation experiment where we change strength
of the edge U! A (shown in bold red) and do not renormalize the variance of the treatment (A). All edges which have been
inadvertently modified are symbolized as squiggly arrows. All parameters which have been modified (inadvertently or intentionally) are
shown in red along the edges. (c) Intervening on U ! A, where the variance of the treatment is fixed. To do so, we modify the
variance of the noise term �a, visualized by the squiggly arrow. Notice no other edges are inadvertently modified.
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above, by not keeping the variance fixed in A we implicitly reduced the amount of variance that BAV accounts for

in the treatment from 36% to 30%. In effect, we were comparing the distribution of

Pð bba jcu0; cbav; bu; ba; bbavÞ
to

Pð bba jcu; cbav; bu; ba; bbavÞ
when a more fair causal counterfactual would be to compare the distribution of

Pð bba jðU! AÞ0;U! Y;BAV ! A;BAV ! Y;A! YÞ

to

Pð bba jU! A;U! Y;BAV ! A;BAV ! Y;A! YÞ

Therefore, our simulation experiment results in green are distorted because when we increased the unmeasured

confounding through U ! A, we also decreased the strength of the bias amplifying variable through the pathway

BAV ! A. Notice that this bias will impact decisions and conclusions we might make about the merits of different

estimators in this context. For example, below we compare the conditional estimator, bbbav0
a , to the naive estimator,bbnaive

a with respect to their bias in the same three simulation set ups.
In Figure 6(b) we show the direct comparison of the bias for the conditional and the naive estimators. When we

increase the unmeasured confounding through cu but fail to renormalize the treatment variance, we do not capture

the full extent to which the conditional estimator amplifies the bias. If we compare the green and red plot, it would

seem that nearly doubling the unmeasured confounding coefficient only has a small impact on the relative bias of

the naive and conditional estimator, since the relative bias only increased from 0.07 to 0.09 (29%). By comparing

the green density plot to the blue, we see the relative bias doubles (from 0.07 to 0.14). Therefore, the decision to

use the naive or conditional estimator is in fact much more sensitive to the amount of unmeasured confounding

than it would appear under the improper simulation with floating variance. It is extremely important to do these

kinds of simulations properly particularly in the context of sensitivity analysis where we are testing the perfor-

mance of estimators with respect to untestable assumptions such as unmeasured confounding.

Figure 6. (a) Simulation results from the experiment of intervening on the edge U! A. The ground truth, ba ¼ 0:2, is visualized by
the black vertical line. In red we visualize the baseline bias amplification. Green shows the results of the conditional estimator in the
case where we increase the weight of the edge, but fail to fix the variance of the treatment, allowing it to grow. In blue, we show the
bias when we increase the weight of the edge but now hold the variance constant so the variances remain compatible with the original
data. (b) Simulation results from the same experiment as (a) but the outcome is the difference in absolute bias between the
conditional estimator bbbav0

a and the naive estimator bbnaive

a . A value greater than zero (black vertical line) indicates that the conditional
estimator was more biased than the naive estimator. Parameter values: ba ¼ 0:2; bu ¼ 0:3; bbav ¼ �0:05; cbav ¼ 0:6.
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To properly simulate bias amplification and answer questions of clinical concern with respect to the merits of

potential estimators, we must think of the structural equations as an interconnected system. While we typically

specify such equations from the perspective of determining their conditional means, the structural equations along

with our independence assumptions determine the variances of the variables in the system. Above, this necessitates

increasing the strength of the edge U ! A while holding all other edges constant, which requires us to re-

normalize the variances to maintain the strength of the edge BAV ! A.
In Appendix section A.10, we consider the properties of a simulation experiment aiming to vary the strength of

the edge BAV ! A. We show that in the case that we fail to fix the variance of the treatment that the bias of the

conditional estimator bbbav0
a is invariant to cbav; 8cbav 2 ð�1;1Þ, but that the naive estimator is strictly increasing

in cbav. It is clear from the theory we developed in section 3 that if we increase the edge from BAV ! A that

amplification should strictly increase, but if we allow the variance in A to increase as the parameter increases, the

amplification effect is precisely cancelled out.
In general terms, simulating linear systems of location-scale family random variables requires first fixing the

variances of the variables in the DAG. The relevant quantity determining the strength of the various edges are

ratios of variances and covariances of the upstream parent nodes to the variance of the child node in determining

the edge’s strength. Since the effects are relative, in a simulation context we can normalize the variances to 1 or set

them to the expected/observed variances of the data in a particular context. For simplicity we will demonstrate the

normalized approach. In Figure 3, this means that r2u ¼ r2a ¼ r2bav ¼ r2y ¼ 1.
The second step is to be explicit about independence and conditional independence assumptions. Given the

independence assumptions, we can specify the covariance matrix of each child variable Ychild in terms of the matrix

of k arbitrary parent variables which form the edges going into the child variable, Ychild .

Ychild ¼ Xparentbparent þ �child

VarðYchildÞ ¼ bTparentVarðXparentÞbparent þ Varð�childÞ

ry2
child
¼ 1 ¼ ½ b1 b2 . . . bk �

1 r1;2 . . . r1;k
r1;2 1 . . . r2;k
..
.

rj;2 . .
. ..

.

rk;1 rk;2 . . . 1

266664
377775

b1
b2
..
.

bk

26664
37775þ r2�c

The diagonal of all the parent covariance matrices is 1 since we have normalized all variables pictured in

the DAG. The covariances themselves will be determined by the independence assumptions, the edges

connecting the child nodes, and their structural equations. Essentially we are choosing the proportion of

the child variation that the variances and the covariances of the parent variances explain. The error terms,

�’s are the only non-normalized variances, and they absorb the shocks when we increase and decrease the

strength of the edges of the non-error variables. This maintains the strength of all other relations visualized

on the DAG.
Since all variance terms must be non-zero (or equivalently that bTparentVarðXparentÞbparent � 1 ¼ r2child), the var-

iance equations define bounds on the simulation parameter space. In the above example, conditional on holding

the strength of the edges U! Y;BAV ! A;BAV ! Y;A! Y; cu 2 ð�0:893; 0:893Þ defines the feasible range.

That is, the edge U! A can explain up to 79.75% of the variation in A (
c2ur

2
u

r2a
¼ c2u

1
) since the edge BAV ! A

explains 20.25% of the variation already. In general, the extent to which an edge can explain variation in the child

node is constrained by the other child nodes and the covariance structure between those variables. A parameter,

however, such as cu may be constrained by more than one set of inequalities. In this particular case, cu has to

satisfy the following inequalities

jcuj � ð1� c2bavÞ
1
2

cu �
1� b2a � b2u � b2bav � 2babbav

2babu
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where conditional on the strength of the particular edges (U! Y; BAV ! A; BAV ! Y; A! Y) in the above

simulation, only the first inequality was binding.
The nuance here is that the extent to which we can simulate unmeasured confounding depends upon not only

how much amplifying we have simulated, but also on the true effect of the treatment on the outcome A! Y. Since

this is an interdependent system of equations, all of the parameters are competing for shares of fixed variances. If

the treatment, independent of U and BAV, explains the large majority of the outcome variance (i.e. the edge

A! Y), it means the weight of the edge U ! Y must be relatively small, opposite signed, or the structural

equations contain an effect modifier. This in turn constrains cu.
Consider again the above simulation experiment where we are interested in varying the strength of U ! A

conditional on all other pathways. Suppose that the pathway A! Y explains 64% of the variance in Y, i.e. that

ba ¼ 0:8. Now both constraints on cu are binding and the simulation parameter space is cu 2 ð�0:893; 0:3916Þ.
In summary, when simulating linear location-scale family systems of equations, we start by identifying the

DAG and the independence assumptions between variables. Second, our simulation experiment should attempt to

answer a causal question about how a proposed estimator behaves in response to an intervention on the weights of

causal DAG. Just like experimental design, properly estimating the relevant counterfactual requires that the

difference in distributions between our intervention(s) and the control is the effect of the intervention(s) them-

selves. As demonstrated in this section, simulating linear systems of equations requires varying one of the edges of

the DAG holding all else constant, and matching the means and variances of the simulated variables with that of

the target observational study we are trying to mimic. This allows us to generate simulations whose distributions

are proper counterfactuals. Third, conditional on the other edges, the covariance matrices impose bounds for the

parameter space that we can simulate and thus the extent to which we can vary the edge of interest. For a specific

realization of the experiment and accompanying valid parameters, the variables are constructed in the down-

stream direction, that is from parent nodes to child.
In the example of simulating the proper intervention in Figure 5(c), we first simulate U and BAV

independently with variance 1, respectively. Given cu and cbav, the variance of the error term �2 from equation (5)

is implied and can be simulated. Having U, BAV and �2 allows us to simulate the treatment A. Conditional

on the already simulated variables, their associated parameters, and ba, bbav, and bu, the variance of the error

term �1 is implied and can be simulated. Finally, since all of the child variables for the outcome have

been simulated, we can simulate the outcome. To be clear, we can fix proportions of variance

explained by each edge in any order we’d like as long as we respect the underlying constraints.

However, given an admissible set of weights of the edges we must proceed from parent to child nodes to conduct

the simulation.
While this method requires us to calculate inequalities and make explicit the implied variance formulas for our

variables, the benefits are that we can view our simulation as a well-defined causal experiment matching the

constraints of our target study and we get sets of parameter bounds. When we do not keep the variance fixed,

there are no defined bounds beyond heuristics, and more importantly, we are no longer matching the data to our

target observational study. In many small systems, such as the one in Figure 5(a), it is often computationally

inexpensive to simulate a discretized approximation to all possible parameter configurations. In extremely large

systems, we can use domain knowledge to make refinements on these bounds and simulate a reasonable subset of

the parameter space. This method allows us to make refinements over edges with strong priors while simulating

the entirety of edges with greater uncertainty.
An alternative, but equivalent way of developing a causal simulation for linear systems of equations would be

to work with correlation (or covariance) matrices and variances directly as opposed to parameters. In the

Appendix section A.5, we discuss representations of regression coefficients and linear structural parameters in

terms of partial correlations, correlations, and coefficients of determination. In some cases, it may be easier to

elicit domain knowledge using partial correlations or correlations, compared to the parameters themselves,

depending on the clinician and the application at hand. There are still constraints on the system, which are

implied by the constraints of a non-singular correlation matrix. One of the potential benefits of working directly

with the correlation matrix is that, as shown in section A.5 much of the pairwise correlation matrix can be directly

estimated form the observed data. Further, there exist methods to augment the estimable portion of the matrix to

a non-singular full correlation matrix as well as methods to add noise to a valid correlation matrix to represent the

uncertainty inherent in the estimation process. Additionally, sometimes causal DAGs may imply further restric-

tions on correlation matrices (or partial correlation matrices) and thus the underlying regression parameters and

causal effects.
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6 Simulating bias amplification from a real data set

Here we conduct a data simulation for an observational study. We want to consider a medical example with

realistic amounts of variance in the treatment and the outcome. Further, we specifically consider the case of a

binary treatment which is common in medical applications, biostatistics, and epidemiology. The difficulty, in

general, when working with real data in the spirit of plasmode simulation21,22 is that you do not know the true

underlying parameter values. In this section, we start with a randomized controlled trial (RCT) and modify it

appropriately, so that we can take the intention to treat (ITT) estimate as the true underlying effect for the

foundation of our simulations.
In our simulation experiment, we keep the treatment data unchanged (thus fixing their variance), and then

simulate unmeasured confounding (U) and bias amplifiers (BAV) in order to modify selected covariates (X) and

the outcome (Y) to produce a synthetic observational experiment. In order to precisely control the relationships

between the simulated variables and the real variables, we treat the binary treatment, A, as though it comes from a

latent probit model.

A ¼ 1ðA� > 0Þ

¼ 1ðaa þ Ucu þ ~Xc~x þ �2 > 0Þ

where ~X ¼ X
r0 þ BAV, and r0 is a scaling variable such that X and ~X have the same population variance. All of

the latent variables (U, BAVn�k; �2, and hence A� ¼ aa þ Ucu þ BAVcbav þ �2 > 0) are set to come from normal

distributions. The details of the how the simulation is performed are in Appendix section A.11.
For this paper, we use data from Helle et al.,23,38,39 a published RCT with 294 participants and relatively

balanced distribution of covariates. While the researchers examined many outcomes, we will focus on the effects

of an e-Health intervention in infants on child eating behaviors. The researchers gave the parents in the treatment

group access to a “monthly age-appropriate video addressing infant feeding topics together with corresponding

cooking films/recipes,” and the outcome was eating habits of the child at a later point in time. In the observational

study that we want to create (target observational study), we want to estimate the effect of the treatment on

emotional overeating as measured by the Child Eating Behavior Questionnaire (CEBQ).

6.1 Unbiased ITT model

Our foundation is the unbiased ITT effect from the RCT data regressing the treatment on the outcome (Y	A)
shown in the first column of Table 1.

In column 1 of Table 1, we see that the ITT estimate is 0.14. As this is an RCT, we do not expect baseline

covariates [Child Food Neophobia Score (CFNS), Child Feeding Questionnaire (CFQ) subscale pressure, and Age

of mother (Agemother)] to be associated with exposure. We thus assume that the experimental data are generated

from the causal DAG in Figure 7(a), where X represents the matrix of all three covariates (CFNS,CFQ, and

Agemother) after they have been individually standardized to have mean 0 and variance 1. To verify that these

variables are not bias amplifiers, that is explain only a negligible proportion of the treatment variance, we also

present the results of the regression of the treatment on the three covariates in column 3 in Table 1. We can see

that jointly and individually the three covariates explain very little of the variance in the treatment, R2 ¼ 0:009.
This should be expected in a truly randomized experiment set-up since proper randomization breaks the causal

association from the covariates to the treatment. Since these covariates do not cause A and we have assumed that

the ITT estimator is unbiased, when we estimate Y	Aþ CFNSscore þ CFQpressure þ Agemother the expectation and

probability limit of bba remains unchanged regardless of the strength of association between the covariates and the

outcome. However, actual results may vary due to final sample variation. In our RCT data, the unadjusted model

estimates a treatment effect of 0.144 and the adjusted model estimates 0.137. Since simulation experiments

performed in section 6.2 all condition on covariates, we consider the covariate adjusted results from the RCT

as the gold standard for determining bias due to unmeasured confounding in our simulated data.

6.2 Biased model simulations

Our objective is to simulate data according to the DAG in Figure 7(b). To produce the simulations, we took

10,000 bootstrap replications of the original outcome, treatment and covariates. From each bootstrap sample of
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the treatment, Abootstrap, of size n¼ 294 we simulated the latent variable A� using the procedure outlined in the
Appendix (section A.11). Next, conditional on the drawn latent samples of A� and the bootstrapped covariates, we
drew samples for the unmeasured confounding, U, and bias amplifying variable, BAV. The modified random

control variables, ~X ¼ X
r0 þ BAV, were produced by adding the bias amplifying variables to a scaled version of the

original control variables. Linear combinations of the unmeasured confounding and modified covariates were
then added with reasonable values to the outcome such that the following DAG and equations hold (see simu-
lation results).

~Y ¼ ay þ Aba þ ~Xb~x þ Ubu þ �1 (22)

Table 1. Clinical data regression table.

Model ITT ITT Cond. A

A 0.144 (0.053) 0.137 (0.053) –

CFNS – 0.007 (0.005) �005 (0.007)

CFQ – 0.058 (0.036) 0.036 (0.040)

Agemother – 0.008 (0.006) 0.009 (0.007)

R2 0.018 0.045 0:009

Note: Each column represents a different regression. Column 1 is the unbiased Intention to Treat (ITT) model, regressing the outcome on the

treatment. Column 2 represents the unbiased conditional ITT model with three covariates conditioned on. The third column represents the regression

of the treatment on the three regressors. The row names are the independent variables, where A is the treatment, CFNS is the Child Food Neophobia

Score, CFQ is the Child Feeding Questionnaire pressure subscale, and Agemother is the age of the infant’s mother. The relevant standard errors are

displayed in brackets.

Figure 7. Causal diagrams. (a) DAG representing the original experiment data. (b) DAG with the modified data (see Appendix A.11
for details). (c) represents intervening on the causal DAG in (b) by changing the strength of the edge ~X ! A without holding the latent
treatment variance A� constant. The edges which have been modified inadvertently are shown as squiggly arrows. Parameters which
have been changed are shown in red. (d) The intervention on the edge ~X ! A while holding the latent variance constant.
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A� ¼ aa þ Ucu þ ~Xc ~X þ �2 (23)

A ¼ 1fA� > 0g (24)

In section 6.1 we showed that the true treatment effect was 0.137 conditional on the covariates X. In the
bootstrap simulation pictured below, the unbiased model conditional on both the modified covariates, ~X , and the
unmeasured confounding U is 0.136 as expected. The naive model estimator had an average estimate of 0.234 in
the simulations and thus an absolute estimated bias of 0.097, or a relative bias of 1.8 standard deviations
(0:234�0:1370:053 ) with respect to the unbiased estimate in section (6.1).

When we further condition on the modified covariates, the absolute bias (E½jbbj~xa � 0:137j�) more than doubles
to 0.225, and the relative bias increases to 4.3 standard deviations (0:36�0:1370:053 ) with respect to the unbiased estimate
in section 6.1. The simulations confirm that bias amplification can be significant even when constrained to
problems of realistic variance. Further, we see that bias amplification is potentially a problem for binary out-
comes. This underscores the theoretical points made in sections (3) and (4) where we showed that the phenomenon
behind bias amplification does not require specific distributional assumptions of the variables in the model.

More importantly, by combining the methodology outline in the appendix (see Appendix A.11) to simulate
measured confounding using real data and the principles for simulating systems of equations in section 5, we can
produce realistic and complete simulations of parameter spaces which match the underlying characteristics of the
data. Investigators who choose covariates based on the assumption of no unmeasured confounding can now
evaluate the amount of bias amplification that would occur if this assumption does not hold.

Finally, in the Appendix (section A.12) we consider an example of a causal simulation experiment with a binary
treatment variable under the DAG in Figure 7(b) and structural equations (22) to (24). The experiment involves
modifying the strength of the edge ~X1 ! A and evaluating the impact on the naive and conditional estimators.
With binary treatment (A), we show that if we fail to hold the variance of the latent treatment (A�) constant and
increase c ~x1 , then it is possible to decrease the amount of observed treatment variance (r2a) explained by ~X1 .
Further, the increased treatment variance also decreases the strength of the edge U! A. As a result of performing
the causal simulation experiment improperly, it appears as though that varying the strength of the potential
amplifiers has a negligible or negative impact on the resulting bias amplification. The improper and proper
approaches to intervention are shown in Figure 7(c) and (d), respectively and the results from these simulations
are visualized in Figure 10 of the Appendix section A.12. This of course leads to improper inferences regarding the
relative merits of the naive and conditional estimators as well. This highlights once again the importance of
comparing simulations with comparable properties and ensuring that when we intervene on the edges of our
causal diagram that we are not inadvertently varying the edges we mean to keep fixed. Just as in the experimental
context, our simulation results become muddled or meaningless if we are not evaluating well-articulated
counterfactuals.

7 Discussion

Causal model selection techniques have largely been developed under the assumption that a sufficient set of
variables is available to create ignorability. When a sufficient set is not available or when a causal variable
selection technique does not correctly identify the sufficient set, we are at risk of bias amplification. In the first
simulation in section 1, we showed that even under mild perturbations of the usual assumptions, conditioning on a
set of jointly strong proxy variables for A in OLS led to a very biased estimator (0.73 standard deviations on
average). Further, most current causal variable selection techniques are likely to include this set of variables since
they are significant predictors of the outcome and the treatment as well as variables which cause large changes in
estimates when included sequentially.

Under threat of bias amplification, treatment-oriented selection techniques for regression analyses using con-
tinuous exposure regimes should be used cautiously unless one has strong priors that a sufficient set is available
and likely to be identified. We showed in section 3 that it is precisely the amount of variance in the treatment
explained by the observables in our model which is responsible for bias amplification. Similarly, we can see that a
significant change in estimate is not sufficient to suggest that overall bias is decreasing since this could be the result
of further bias amplification.

These results call for new techniques to be developed for observational studies which can accommodate
unmeasured confounding to help researchers choose reasonable and least-biased methods. We suggest to first
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identify the most plausible causal DAG. From the DAG and basic structural equation assumptions, an expression
for asymptotic bias can often be derived. Further, we suggest to estimate the always-identifiable amplification
term in observational settings and to assess the risk of bias amplification. With a measure for amplification and a
limiting bias expression, a sensitivity analyses can be performed. One reasonable sensitivity analysis approach
would be to estimate the amount of unmeasured confounding required in the spirit of E-values7 to determine the
strength of confounding associations required to “explain away the treatment effect”7 and to make principled
inferences from the data. This would require, as we have shown, properly simulating the unmeasured confounder
so that (1) the properties of the original data are respected and (2) other competing effects, i.e. edges of the DAG,
are not inadvertently altered. In such a set-up, large effects when the controls jointly explain little of the treatment
variance lend credibility to results as being robust to unmeasured confounding, particularly in cases when suitable

Figure 8. Here we compare three estimators for ba from the structural equations in equations (22), (23), and (24). In red, the results
of the unbiased and infeasible estimator are shown, centered at the true value ba ¼ 0:137 (shown by the vertical black line). In green,
the replications for the naive estimator (bbnaive

a ) is shown and in blue the replications for the conditional estimator (bbj~X ) is shown.
Simulation details: Bootstrap replications¼ 10,000. ba ¼ 0:137; bu ¼ 0:15; b~x ¼ ð0:10;�0:15;�0:10Þ; COVðA;UÞ¼ 0.25,
COVðA; ~XÞ ¼ ð0:22; 0:15; 0:13Þ.

Figure 9. Control treatment estimators. Black line represents the true underlying parameter ba ¼ :1377. N¼ 10,000 simulation
replications.
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priors can be placed on the variables along the unmeasured confounding pathway. Alternatively, one could follow
the approach of Carnegie et al.8 and use the underlying structural equations and the data to generate
candidate values of the unmeasured confounding. As we showed in section 5, it is important that any such
simulation method take into account the asymmetry of bias amplification with respect to the weight of the
edge U! A and U ! Y.

Ultimately, simulation experiments must aim to produce data from which we can draw causal conclusions to
questions about estimators or functions. This means having well-defined interventions on the edges of the causal
graphs and holding the other edges constant. In linear systems of equations, this requires keeping the moments of
the variables, in particular variance, fixed when modifying the weight of the DAG’s edges. If we allow the
treatment variance to vary incidentally as we increase confounding effects, the intervention arm of our simulations
will no longer match the target observational study in the control arm. As a further consequence, the additional
variance in the exposure may absorb much of the amplifying effect. This leads to systematic underestimation of
bias amplification and may be an explanation for why the threat of bias amplification has not been appreciated as
a concern for applied researchers.15 Fixing the variance of the variables has the additional benefit of defining the
feasible parameter space. By constraining the underlying parameters by the implied variance equations, it is
computationally and conceptually easier to simulate the entire range of plausible treatment effects and biases.
This leads to more representative simulations and more principled inferences.
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Appendix 1

A.1 Matrix notation and FWL theorem

Throughout this paper, we make use of matrix notation to concisely represent estimates and as a way of con-

sidering the geometry of the least squares. Here is a quick guide for understanding the notation in this paper.
Let A be the n� p matrix of treatment variables. For illustrative purposes, consider that A is a single binary

n� 1 vector.

An�1 ¼

1
1
0
1
..
.

0

266666664

377777775
There are n rows of data, each with a 1 or 0 representing the observation being treated or not.
Another piece of notation that is used is annihilator and orthogonal projection matrices. Let PX be the orthog-

onal projection matrix of X, an n� k matrix, and MX the annihilator or residual-making matrix of X

PX ¼ XðXTXÞ�1XT;

MX ¼ I � PX ¼ I � XðXTXÞ�1XT

A projection matrix maps each point to the nearest point in the subspace spanned by the columns in X, SðXÞ.
The annihilator matrix maps each point to the orthogonal complement of SðXÞ; S?ðXÞ. The predicted outcome in

ordinary least squares is bY ¼ Xbb ¼ XðXTXÞ�1XTY ¼ PXY, which we can think of geometrically as “dropping a

perpendicular”24 from the outcome vector into the subspace spanned by the covariates in the regression. The

orthogonal complement to the space spanned by the regressors S?ðXÞ is where the fitted residual vector, b�, lives.
We can see that the residual vector b� ¼ Y � bY ¼ Y � Xbb ¼ Y � PXY ¼ ðI�PXÞY ¼ MXY is just the projection of Y

into the subspace orthogonal to SðXÞ.
By definition, we can always then decompose Y uniquely into its projection onto SðXÞ and S?ðXÞ

Y ¼ PXY þMXY

Orthogonal projection matrices have two important properties, they are symmetric and idempotent. This

means that PX ¼ PT
X and PXPX ¼ PX and that these same two properties are equally enjoyed by MX. Further,

any matrix in the subspace spanned by X is annhilated when operated on by MX, since it is by definition orthog-

onal to SðXÞ.
We also appeal to the Frisch-Waugh-Lovell (FWL) theorem to construct the matrix notation regression

estimates as well as for visualizing the 2 dimensional plot of a single regression in the context of a multivariable

regression. Suppose we construct an arbitrary partition of Xn�k ¼ ½X1n�k1 ;X2n�k2 �, where k1 þ k2 ¼ k. The FWL
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theorem states that the following two regressions, equations (25) and (27), produce numerically equivalent
estimates of the vector bb2 as well as numerically equivalent residuals.

Y ¼ X1b1 þ X2b2 þ � (25)

MX1
Y ¼ MX1

X1b1 þMX1
X2b2 þMX1

� (26)

¼ MX1
X2b2 þMX1

� (27)

What this says in words is that it is numerically equivalent to regress Y on the columns of X1 and X2 simul-
taneously as it is to first regress both Y and X2 on the columns of X1 separately, then save the respective residuals,
MX1

Y andMX1
X2, and regress the former on the later. By simply pre-multiplying both sides of equation (27) by XT

2

and rearranging, we get the general matrix notation formulation for the vector of coefficient estimatesbb2 ¼ ðX2MX1
X2Þ�1X2MX1

Y. Using the idempotency and symmetry properties, we can rewrite the coefficient
estimate

bb2 ¼ ðXT
2MX1

X2Þ�1XT
2MX1

Y (28)

¼ ðMX1
X2ÞTðMX1

YÞ
ðMX1

X2ÞTðMX1
X2Þ

(29)

¼ btx2btybt2x2 (30)

where btx2 and bty are the residuals from the regression of X2 and Y on X1, respectively.
A special case of the above result is when we have a n� k1 matrix of treatment variables, A and a n� k2 matrix

of controlling variables. For example, we are trying to estimate the causal effect of the matrix A on the outcome Y
using a selection on observables strategy by conditioning on Z. The FWL theorem tells us that the estimates of the
causal effect, bba can be obtained by the two following regression equations

Y ¼ Aba þ Zbz þ t1

MZY ¼ MZY þ t1

The second regression is a simple linear regression, with only one dependent variable MZY and a single regres-
sor, MZA. The error term remains unchanged by the projection into S?ðZÞ since it can be represented as MA;ZY
which is already contained in the subspace S?ðZÞ. Another way we can write the estimate bba is to apply the well-
known bb ¼ ðXTXÞ�1XTY to the second regression equation above.

bba ¼ ðMZAÞTðMzYÞ
ðMZAÞTMZA

¼
1
n ðMZAÞTðMzYÞ
1
n ðMZAÞTMZA

The numerator 1
n ðMZAÞTðMzYÞ can be seen as the dot product of the residuals from the regression of the

treatment on the control variables, A	Z, and the residuals from the regression of the outcome on the control
variables, Y	Z, scaled by 1

n. If a column of ones is included in the matrix Z, both sets of residuals will be centered.
We can then think of the dot product in the numerator as an estimator for the covariance of the two residuals,

26 Statistical Methods in Medical Research 31(1)



COVð�a; �yÞ. In general terms, we will have bias due to unmeasured confounding if the covariance is a function of

U. The denominator can be seen as numerically equal to the sum of squared residuals.
An important special case of the annhilator matrix is Mi, where 1 is a n� 1 vector of ones. This is sometimes

called the centering matrix because it de-means the matrix it operates on, since

M1X ¼ X � 1ð1T1Þ�11TX ¼ X � 1
n

Xn

i¼1 xi ¼ X � �X
Using the symmetry and idempotency properties combined with the convergence in probability properties

discussed in the next section, this implies

1

n
X1M1X2 ¼ 1

n
ðX1 � �X1ÞðX2 � �X2Þ (31)

¼ 1

n

Xn
i¼1
ðx1i � �X1Þðx2i � �X2Þ (32)

!p E½ðX1 � E½X1�ÞðX2 � E½X2�Þ (33)

¼ COVðX1;X2Þ (34)

When X1 ¼ X2, the last line becomes VarðX1Þ.
For a more complete and technical treatment of projection and annihilation matrices as it pertains to OLS, see

Econometric theory and methods by Davidson and MacKinnon.24

A.2 Convergence in probability

Throughout the paper, we use the notation plimn!1 to mean the limit in probability. Specifically, if

plimn!1Yn¼Y, then

limn!1PðjYn � Yj > �Þ ¼ 0; 8� > 0

Alternatively we can write plimn!1Yn¼Y as Yn!p Y or simply plim. Throughout this paper, all probability limits

are as n!1.
Below are a few important properties of Probability limits used throughout the paper. Suppose Xn!p X and

Yn!p Y, then

Xn þ Yn!p X þ Y (35)

XnYn!p XY (36)

Xn

Yn
!p X

Y
(37)

where the third line is just a special case of the second and holds whenever the denominator is well defined.

These properties are well known and follow from the Continuous Mapping Theorem.
Another useful theorem we use in this paper is the Weak Law of Large Numbers (WLLN). Here we consider a

set of standard assumptions. Suppose we take the sample average of random variables fX1;X2; . . . ;Xng, such that

Xi’s are independent and identically distributed (iid) and E½Xi� ¼ m < 1, i.e. the expectation is finite then

1

n

Xn
i¼1

Xi!p E½Xi� ¼ m: (38)
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In the paper, whenever specified we assume that the error terms are coming from a normal distribution. In light

of the WLLN, we can see that normal error terms are not required for the results to hold, and that in fact we just

need the error terms to come from an identical and independent distribution. The above results can be weakened

further such that we can replace the iid condition with pairwise independence (see Chung25 for details).
Further, some probability limit results do not always have a closed-form expression, for example the proba-

bility limit of a sum of iid cauchy random variables since they do not have finite expectations. Sometimes we

express the resulting limit as a function of random variables. These random variables tend to their respective

probability limits, provided they exist.

A.3 Derivations continued

Below are derivations, extensions, proofs, and alternate forms of the equations presented in the main text.

A.3.1 Average causal and average partial effects

Throughout this paper, we consider linear models with continuous exposures and as such a natural causal

estimand of interest is the average partial effect (APE). Under the linearity assumptions, the APE coincides

with the ACE. Below we show the derivation of the APE under the various DAG and structural equation

assumptions. Implicitly, we further assume standard regularity conditions such as existence and boundedness

of the estimators in L1, so that the derivative operator can freely move inside the expectation integral.
Average partial effects for equations (4) and (5)

APEs ¼ @E½YjA;U;BAV�
@A

¼ @E½ay þ Aba þ Ubu þ BAVbbav þ �1jA;U;BAV�
@A

¼ ba

When we allow for BAV to be a n� k vector and for bBAV to be potentially a zero vector, we can see that the

above derivation holds for all of the DAG’s and structural equations which assume there is no interaction term.bbnaive

a in equation (7)

bbnaive

a ¼ ATMzY

ATMzA
(39)

¼ ba þ bu
ATM1U

ATM1A
þ bbav

ATM1BAV

ATM1A
þ ATM1�1

ATM1A
(40)

¼ ba þ bu

1
n

Xn

i¼1ðai � �aÞðui � �uÞ
1
n

Xn

i¼1 ðai � �aÞ2
þ bbav

1
n

Xn

i¼1ðai � �aÞðbavi � �bavÞ
1
n

Xn

i¼1 ðai � �aÞ2
þ

1
n

Xn

i¼1ðai � �aÞð�1i � ��1Þ
1
n

Xn

i¼1 ðai � �aÞ2
(41)

A.4 Derivation of Pearl (2011) result

Here we will explicitly follow Pearl’s derivation,10 to show the advantages of considering the probability limit over

strictly expectations. We will derive the expectation for bbbav0
a from estimating (9), which is the APE conditional on

the treatment, A, and the BAV variable.

E½bbbav0
a � ¼

@E½YjA;BAV�
@A

¼ @E½ay þ Aba þ Ubu þ BAVbbav þ �1jA;BAV�
@A

¼ ba þ bu
@E½UjA;BAV�

@A
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We must find the expectation of U conditional on A and BAV. Pearl solves this challenge by supposing the true
underlying relationship between U, A, and BAV is linear and writing this functional form as a linear regression
equation

U ¼ au þ Afa þ BAVfbav þ �3

Using this equation in addition to the two structural equations for Y and A, respectively, we can express the
regression coefficients, fa and fbav in terms of the structural coefficients ba, bu, ca, cu by equating expressions for
the covariances under the two sets of structural equations.

COVðU;AÞ ¼ E½AU� � E½A�E½U�
¼ E½ðaa þ Ucu þ BAVcbav þ �2ÞU� � E½ðaa þ Ucu þ BAVcbav þ �2Þ�E½U�
¼ cuðE½U2� � E½U�2Þ
¼ cur

2
u

Equivalently

COVðU;AÞ ¼ E½AU� � E½A�E½U�
¼ E½Aðau þ Afa þ BAVfbavÞ� � E½A�E½ðau þ Afa þ BAVfbavÞ�
¼ faðE½A2� � E½A�2Þ þ fbavðE½ABAV� � E½A�E½BAV�Þ
¼ far

2
a þ fbavðCOVðA;BAVÞÞ

¼ far
2
a þ fbavcbavr

2
bav

where the last line follows analogously from our derivation of COVðA;UÞ. Putting these together, we have

fa ¼
cur

2
u � fbavcbavr

2
bav

r2a
: (42)

Similarly, putting the two steps together for succinctness

COVðU;BAVÞ ¼ 0 ðindependenceÞ (43)

¼ E½UBAV� � E½U�E½BAV� (44)

¼ E½ðau þ Afa þ BAVfbavÞBAV� � E½ðau þ Afa þ BAVfbavÞ�E½BAV� (45)

¼ faCOVðA;BAVÞ þ fbavVarðBAVÞ (46)

¼ facbavr
2
bav þ fbavrbav (47)

Now we have two equations for the two new regression coefficients in terms of the structural equations.
Combining

fa ¼
cur

2
u

r2a � c2bavr
2
bav

(48)

fbav ¼
�cucbavr2u

r2a � c2bavr
2
bav

(49)
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Returning to the task of finding the partial effect of A on E½YjA;BAV� and thus E½bbbav0
a �.

E½bbbav0
a � ¼

@E½YjA;BAV�
@A

(50)

¼ @E½ay þ Aba þ Ubu þ BAVbbav þ �1jA;BAV�
@A

¼ ba þ
@buE½UjA;BAV�

@A

¼ ba þ bu
@E½ðau þ faAþ fbav þ �1ÞjA;BAV�

@A

¼ ba þ bufa

¼ ba þ bu
cur

2
u

r2a � c2bavr
2
bav

(51)

The approach of Pearl is limited in that it only works when the true underlying form of the conditional
expectation, E½UjA;BAV� is linear in both A and BAV. As a result, the derivation is cumbersome and does not
easily generalize to more complicated cases with more variables or different functional forms. Similarly, we can
find the expectation for the naive estimator bbnaive

a from (6) using this method

E½bbnaive

a � ¼ @E½YjA�
@A

(52)

¼ @E½ay þ Aba þ Ubu þ BAVbbav þ �1jA�
@A

(53)

¼ ba þ
@buE½UjA�

@A
þ @bbavE½BAVjA�

@A
(54)

We assume that the true underlying relationship between U and A is linear, while also assuming a linear
relationship between BAV and A

U ¼ au þ Asa þ �4 (55)

BAV ¼ abav þ Aga þ �5 (56)

Using these two equations (55) and (56), we arrive at the following expressions for the COVðA;UÞ and
COVðA;BAVÞ

COVðA;UÞ ¼ sar
2
a (57)

COVðA;BAVÞ ¼ gar
2
a (58)

Following an analogous process, we can show that COVðA;BAVÞ ¼ cbavr
2
bav in terms of the original structural

coefficients. Combining the four covariance expressions and solving for sa and ga in terms of the structural
equations yields

sa ¼ cur
2
u

r2a
(59)
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ga ¼
cbavr

2
bav

r2a
(60)

Substituting equations (55) and (56) in equation (54) and using equations (59) and (60) yields the following

expectation for bbnaive

a :

E½bbnaive

a � ¼ ba þ bu
cur

2
u

r2a
þ bbav

cbavr
2
bav

r2a
(61)

Note in this derivation we needed to assume two linear relationships in order to derive the expectation, E½UjA�
and E½BAVjA�. These assumptions are not necessary when using probability limits to define limiting expressions in

terms of the structural parameters.

A.5 Correlations, partial correlations, R2 and dimensionless quantities for sensitivity

analysis and simulation

In section 3 we discussed the quantity g ¼ jbbavcbavr2bavjjbucur2uj and mentioned that it is possible to express as a dimensionless

quantity which is useful for sensitivity analysis and simulation studies.

g ¼ jbbavcbavr
2
bavj

jbucur2uj
(62)

¼ qY;BAVjA;UqA;BAVjU
qU;YjA;BAVqA;UjBAV

ð1�R2
YjA;BAVÞ

1
2

ð1�R2
YjA;UÞ

1
2

ð1�R2
UjA;BAVÞ

1
2

ð1�R2
BAVjA;UÞ

1
2

ð1�R2
AjUÞ

1
2

ð1�R2
AjBAVÞ

1
2

(63)

where a partial correlation is defined as the following for general variables Z1, Z2 and p dimensional X

qZ1;Z2jX ¼
E½b�1 b�2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½b�12�E½b�22q
�

(64)

and b�i ¼ argminðb0;bÞ2Rðpþ1Þ ðZi � b0 � XbÞ2, for i 2 f1; 2g. Partial correlations can be expressed as lower corre-

lations by the following recursion formula.26

Consider the partition of Xn�p ¼ ½X1n�ðp�1Þ;X2n�1�.

qZ1;Z2jX1;X2
¼ qZ1;Z2jX1

� qZ1;X2jX1
qX2;Z2jX1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� q2Z1;X2jX1
Þð1� q2X2;Z2jX1

Þ
q (65)

Further, it can be shown that a non-singular partial correlation matrix uniquely determines the correlation

matrix and vice versa.27 To directly express the partial correlations in terms of the correlation matrix, the fol-

lowing formula is convenient, where ~R is a partial correlation matrix, where element ~ri;j ¼ qXi;XjjXfXi;Xj
is the

partial correlation of two variables Xi, Xj partialling out all other variables. Analogously, let R be the correlation

matrix, where elements correspond to the usual correlations.27

~R ¼ �D�1R�1R
�1D�1R�1 (66)

where D�1R�1 is a diagonal matrix, where the elements of the diagonal equal the vector
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðR�1Þp

. Equivalently

we can construct the correlation matrix from a specified partial correlation matrix.

R ¼ D�1� ~R
�1ð� ~RÞ�1D�1� ~R

�1 (67)
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For example, using this relation, or iterative application of the recursion relation we can show that

qY;BAVjA;U ¼
qA;UqU;BAVqY;BAV þ qA;BAVqU;BAVqY;U � qA;UqY;U
� qA;BAVqY;BAV þ q2U;BAVqY;U þ qY;A � q2U;BAV

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q2A;U � q2A;BAV � q2U;BAV þ 2qA;UqA;BAVqU;BAVÞ�
ð1� q2Y;BAV � q2Y;U � q2U;BAV þ 2qU;BAVqY;UqY;BAVÞ

( )vuut (68)

in the case the BAV is a single variable. When U and BAV are independent as is the case in the DAG considered
in section 3, this simplifies

qY;BAVjA;U ¼
qY;A � qA;UqY;U � qA;BAVqY;BAVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� q2A;U � q2A;BAVÞð1� q2Y;BAV � q2Y;UÞ
q (70)

Similarly, when U and BAV are independent we have the following

qA;UjBAV ¼
qA;U

1� q2A;BAV
(72)

qA;BAVjU ¼
qA;BAV
1� q2A;U

(73)

On the other hand, qU;YjA;BAV does not simplify nicely and is easier to handle numerically with the aid of the
matrix relation rather than symbolically.

Two things of note. First, correlations and the variances of the variables determine the entire expression g. We
showed this explicitly with the partial correlations, but it is also true that it is sufficient to fix a correlation matrix
and the variances of the variables to determine the R2 values. It is sufficient to consider the space of valid
correlation matrices, or equivalently a valid partial correlation matrix, and fix the variances of U and BAV
(The variances for Y and A cancel) in order to simulate the entire parameter space for g. Moreover, if we have
a real data set, many of the correlations are estimable and this greatly restricts the parameter space.

R ¼

1 qY;A qY;BAV qY;U
qY;A 1 qA;BAV qA;U
qY;BAV qA;BAV 1 qBAV;U
qY;U qA;U qBAV;U 1

									

									
The bolded correlations are strictly functions of observable and can be estimated from the data. By fixing the

known values, or only considering variables within an estimated range, we can heavily restrict the space of
plausible correlation matrices and thus the range of possible values of g. Similarly, we can estimate r2BAV from
the data.

Notice that the estimable correlations form a valid correlation matrix themselves, call this RY;A;BAV . Assuming
the treatment and outcome are univariate, RY;A;BAV is of dimension ð2þ pÞ � ð2þ pÞ where p is the dimension of
the control variables p. It is well known how to estimate bRY;A;BAV , and in order to do a proper simulation or
sensitivity analysis it suffices to extend this correlation matrix to a valid ð2þ pþ 1Þ � ð2þ pþ 1Þ. There are
existing algorithms that can be implemented to extend ðn� 1Þ dimension correlation matrices to n dimension
correlation matrices28 which can be used instead of solving parameter inequalities. Further, there is work looking
at how to simulate realistic correlation matrices around a given structure29 and finding ways to add noise to
correlation matrices while ensuring the result is still positive definite. Such methods could allow for researchers to
better represent the underlying uncertainty associated with the estimated matrix bRY;A;BAV .
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A.6 Partial correlations and regression coefficients

Here we show the relationship between partial correlations and regression coefficients. Like in the text we dis-
tinguish between true structural coefficients bx and estimates from various regressions. First let us consider an
estimate.

bbx ¼ argmin
b2Rp

ðY� XbÞ2 (74)

bbxi ¼
b�ynfxigb�xnfxigb�2xnfxig (75)

where b�ynfxig ¼ argminb2Rp�1 ðY� ðX n fXigÞbÞ2 andb�xnfxig ¼ argminb2Rp�1 ðXi � ðX n fXigÞbÞ2 are the vector of
residuals from the regression of Y on X excluding the variable Xi and the vector of residuals from the regression of
Xi on X excluding Xi, respectively. This follows directly from the FWL theorem as discussed in section A.1.

bbxi!
p E½b�ynfxigb�xnfxig�

E½b�2xnfxig (76)

¼
qY;XijXnfXig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½b�2ynfxig�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½b�2xinfxig�q (77)

¼ qY;XijXnfXigð1�R2
YjXnfXigÞ

1
2ry

ð1�R2
XjXnfXigÞ

1
2rxi

(78)

So here we see that in the probability limit we can express any regression coefficient estimator in terms of
population partial correlations and limits of coefficients of determinations. The sample regression coefficient can
be expressed in terms of the appropriate sample statistics.

Similarly, if we have a data generating process that can be expressed as a linear function in parameters over the
parameter space b 2 Rp, the we can similarly express the true regression coefficients in terms of population partial
correlations and coefficients of determination. Let

Y ¼ X1b1 þ X2b2 þ � (79)

be the true data generating process. As in the text we assume that E½�jX� ¼ 0. Here we suppose that ½X1;X2� is
an arbitrary partition of Xn�p such that X1 is a vector and X2 is ðp� 1Þ � n dimensional.

b1 ¼
qY;X1jX2

ð1�R2
YjX2
Þ12ry

ð1�R2
X1jX2
Þ12rx1

(80)

Notice that this does not depend in any way on the true data process for X1.
If we think about X1 as our treatment of interest, then we can see, using the tools from above, that we can

express the treatment effect estimator bbx1 directly in terms of partial correlation and coefficients of determina-
tions. This could be further decomposed into a function of only pairwise correlations and variances, since the
coefficients of determination can themselves be decomposed into further functions of correlations and variances.
This tells us that a known covariance matrix is sufficient to completely determine any OLS estimator. As we say in
section 3, we were able to express the relative bias of the naive and adjusted estimators entirely in terms of
correlations and variances. This can be extremely useful for sensitivity analysis or for simulating estimators.
As mentioned in the section above with a real data set, much of the matrix can be estimated and the structure
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of admissible covariance and correlation matrices is well known and there exist many algorithms to simulate them

and even priors such as the LKJ prior which can be placed over them. Correlation matrices especially may be easy

to elicit domain knowledge which may further inform or restrict potential simulation studies or sensitivity

analysis.
If the true outcome generating process is conditionally linear, we can similarly decompose and understand the

true regression coefficient and this is independent of any assumptions on the treatment assignment mechanism

and does not require any assumptions on independence between the variables. Of course, if the DAG or partial

DAG is known and it implies independencies or conditional independences, this can help fill unknown partial

correlations, correlations, or coefficients of determination. The ability to be able to easily convert correlations to

partial correlations is particularly useful with DAGs which imply conditional independence, where there may be

obvious restrictions on partial correlations which are harder to discern in terms of pairwise correlations. Here, the

way that we model variables other than the outcome may be more important however, as partial correlations are

defined in terms of linear projections which is only equivalent to conditioning on variables when the conditional

expectations are linear, a special case of which is when the variables are multivariable normal. Here, careful

asymptotic arguments may still be used at times to simplify the partial correlation structures in some non-linear or

non-multivariate normal cases.

A.7 Probability limit calculations

Now we will show the generality of probability limits for generating meaningful expressions of estimator behavior

and again we will use bbbav0
a from equation (9), where Z ¼ ½1;BAV�.

From the FWL theorem, bbbav0
a ¼ ATMzY

ATMzA
.

bbbav0
a ¼ ATMzY

ATMzA
(81)

¼ ATMzðay þ Aba þ Ubu þ BAVbbav þ �1Þ
ATMzA

(82)

¼ ba þ
ATMzðUbu þ �1Þ

ATMzA
(83)

¼ ba þ bu
ATMzU

ATMzA
þ ATMz�2

ATMzA
(84)

¼ ba þ bu
1
nA

TMzU
1
nA

TMzA
þ

1
nA

TMz�2
1
nA

TMzA
(85)

which follows by simply substituting in the true structural equations for Y and A, 4 and 5, respectively, and

then applying the annihilating properties of Mz to set linear combinations of constants and BAV to 0. Notice that

we have not used any information about structural equation for the treatment. Thus the numerical form in

equation (85) holds for any treatment structural equation, A ¼ fðU;BAV; �2Þ. Further, since this is written in

general matrix notation, U and BAV can be extended to be arbitrary p_1 and p_2 dimensional variables.
We can now solve for the probability limits of the three remaining expressions separately (1nA

TMzA;
1
nA

TMzU,

and 1
nA

TMz�2) and combine them due to the properties of probabilities limits, namely equations (35), (36), and

(37). We begin with deriving 1
nA

TMz�2),

1

n
ATMz�2 ¼ !p E½ATMz�2� (86)

¼ E½ATMzE½�2jA;Z�� (87)
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¼ E½ATMzE½�2�� (88)

¼ 0 (89)

where the first line follows from the WLLN, line two from the Law of Iterated Expectations, and the third from
the independence of �2 from A and BAV. Next we consider 1

nA
TMzA

1

n
ATMzA ¼ 1

n
ðaa þ Ucu þ BAVcbav þ �2ÞTMzðaa þ Ucu þ BAVcbav þ �2Þ (90)

¼ 1

n
ðUcu þ �2ÞTMzðUcu þ �2Þ (91)

!p plim 1

n
ðUcuþ�2ÞTM1ðUcuþ�2Þ (92)

¼ plim
1

n
ðUcuÞTM1ðUcuÞþplim

1

n
2ðUcuÞTM1�2þplim 1

n
�2M1�2 (93)

¼ c2uE½ðU � �UÞTðU � �UÞ� þ 2cuE½UE½�2jU�� þ E½�2T�2� (94)

¼ c2ur
2
u þ 0þ r2�2 (95)

¼ r2a � c2bavr
2
bav (96)

where line 92 follows from the fact that BAV is independent of both U and �2. Since Mz is a residual making
vector, we can compare the residuals in the probability limit from the following two regressions

ðUcu þ �2Þ ¼ aUcuþ�2 þ BAVgbav þ t1 (97)

ðUcu þ �2Þ ¼ aUcuþ�2 þ t2 (98)

Due to independence,dgbav!p 0 and thus the residuals from the two regressions will be equivalent asymptotically.
Thus we can replace Mz with M1 in equation (92), which as the centering projection matrix enjoys favorable
properties as discussed in section A.1.

Finally we need to find the probability limit of 1
nA

TMzU.

1

n
ATMzU ¼ 1

n
ðaa þ Ucu þ BAVcbav þ �2ÞTMzU (99)

¼ 1

n
ðUcu þ �2ÞTMzU (100)

!p 1

n
ðUcu þ �2ÞTM1U (101)

¼ 1

n
ðcuðUTM1UÞ þ cuUM1�2 (102)

!p cuE½ðU� �UÞ2� þ E½ðU� �UÞð22 � �22Þ� (103)

¼ cur
2
u (104)
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Putting this altogether, this implies

bbbav0
a !

p
bu

cur
2
u

r2a � c2bavr
2
bav

(105)

This is equivalent to the expectation in this case. The benefit is that it is more robust to functional form

assumptions and by using properties (35) to (37) and the FWL theorem, we can find asymptotic bias expressions

by partitioning the estimator into a series of functions of residuals from simpler regressions. Further, we can

always find the limiting expression for the numerator and the denominator separately. Expectations cannot be

split up in such a manner and ratios of variables can be very difficult to find closed-form expressions for the

expectation without imposing restrictive assumptions.

A.8 Probability limit derivations for section 4

Derivation of bias amplification limits of estimators in equation (21) under the structural equations in equations

(19) and (20). Here we assume without loss of generality that E½f 1ðUÞ� ¼ 0 and E½f 2ðBAVÞ� ¼ 0, since the intercept

can absorb the means of such function if they are non-zero.

bbnaive

a ¼ ATMiY

ATi
(106)

¼ ATMiðay þ Aba þ f1ðUÞ þ f2ðBAVÞ þ �1Þ
ATi

(107)

¼ ba þ
ATMif 1ðUÞ

ATi
þ ATMif2ðBAVÞ

ATi
þ ATMi�1

ATi
(108)

!p ba þ
COVðA; f1ðUÞÞ

r2a
þ COVðA; f2ðBAVÞÞ

r2a
þ E½A�1�

r2a
(109)

¼ ba þ
COVðA; f1ðUÞÞ

r2a
þ COVðA; f2ðBAVÞÞ

r2a
þ E½AE½�1jA;U;BAV��

r2a
(110)

¼ ba þ
COVðA; f1ðUÞÞ

r2a
þ COVðA; f2ðBAVÞÞ

r2a
(111)

Since for example

ATMif 1ðUÞ
ATi

¼
1
n

Xn

i¼1ðAi � �AÞðf1ðUÞi � �f1ðUÞÞ
1
n

Xn

i¼1 ðAi � �AÞ2
(112)

!p E½ðA� E½A�Þðf1ðUÞ � E½f1ðUÞ�Þ�
E½ðA� E½A�Þ2� (113)

¼ COVðA; f1ðUÞÞ
VARðAÞ (114)

Where the probability limit follows from the weak law of large numbers and the continuous mapping theorem.

For the adjusted estimator bbjf2ðBAVÞ, let Z ¼ ½i; f 2ðBAVÞ�.
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bbjf2ðBAVÞ ¼ ATMZY

ATMZA
(115)

¼ ATMZðay þ Aba þ f1ðUÞ þ f2ðBAVÞ þ �1Þ
ATMZA

(116)

¼ ba þ
ATMZf1ðUÞ
ATMZA

þ ATMZ�1

ATMZA
(117)

¼ ba þ
ATMZðf1ðUÞTMzÞT

ATMZA
þ ATMZ�1

ATMZA
(118)

By idempotence of MZ. ATMZ is the residual from the regression of the treatment on Z and likewise

ðf1ðUÞTMzÞT is the transpose of the residuals from the regression of f1ðUÞ on Z. To find the residuals, it suffices

to find the coefficients from the above regressions.
Let A ¼ ia1 þ f2ðBAVÞff2ðbavÞ1 þ t1 and f1ðUÞ ¼ ia2 þ f2ðBAVÞff2ðbavÞ2 represent the regression equations.

Following the FWL theorem once more, we have the following estimators

ba1 ¼ iTMf2ðBAVÞA
iTMf2ðBAVÞi

!p E½A� � COVðA; f2ðBAVÞÞ
Varðf2ðBAVÞÞ E½f2ðBAVÞ� ¼ E½A� (119)

dff2ðbavÞ1 ¼ f2ðBAVÞTMiA

f2ðBAVÞTMif2ðBAVÞ
!p COVðA; f2ðBAVÞÞ

Varðf2ðBAVÞÞ (120)

ba2 ¼ iTMf2ðBAVÞf1ðUÞ
iTMf2ðBAVÞi

!p E½f1ðUÞ� � COVðf1ðUÞ; f2ðBAVÞÞ
Varðf2ðBAVÞÞ E½f2ðBAVÞ� ¼ 0 (121)

dff2ðbavÞ2 ¼ f2ðBAVÞMif1ðUÞ
f2ðBAVÞMif2ðBAVÞ!

p COVðf2ðBAVÞ; f1ðUÞÞ
Varðf2ðBAVÞÞ (122)

Using the probability limits of the estimates, the continuous mapping theorem and the fact that ATMZA!p ð1�
R2

AjZÞr2a whereR2
AjZ is understood to be the probability limit of theR2 from the regression of the treatment on the

columns of Z, we get

bbjf2ðBAVÞ!p COVðATMZ; ðf1ðUÞTMZÞ
r2að1�R2

AjZÞ
(123)

¼ ba þ
COVðA; f1ðUÞÞ � COVðA;f2ðBAVÞÞCOVðf 1ðUÞ;f 2ðBAVÞÞ

Varðf2ðBAVÞ
r2að1�R2

AjZÞ
(124)

and the error term drops out since E½�1jA; i; f2ðBAVÞ� ¼ 0.

A.8.1 Orthogonal semi-parametric models derivation

From the standard OLS formula we get

bbsemi ¼
1
n ðA� bE½AjBAV�ÞTðY � bE½YjBAV�Þ
1
n ðA� bE½AjBAV�ÞTðA� bE½AjBAV�Þ (125)
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!p E½ðA� E½AjBAV�ÞTðY � E½YjBAV�Þ�
E½ðA� E½AjBAV�ÞTðA� E½AjBAV�Þ� (126)

¼ E½E½ðA� E½AjBAV�ÞTðY � E½YjBAV�ÞjBAV��
E½E½ðA� E½AjBAV�ÞTðA� E½AjBAV�Þ�jBAV� (127)

¼ E½COVðA;YjBAVÞ�
EðVarðAjBAVÞ (128)

¼ E½COVðA;YjBAVÞ�
r2a � varðE½AjBAV�Þ (129)

This holds under any DAG and any set of structural equations. However, as discussed in section 4, without

making restrictions on the underlying structural equations, the estimator may not be meaningful or easily com-

parable to a causal effect of interest. Under the structural equations in equations (19) and (20), the estimator

probability limit is

bbsemi!p E½E½ðA� E½AjBAV�ÞTðY � E½YjBAV�ÞjBAV��
E½E½ðA� E½AjBAV�ÞTðA� E½AjBAV�Þ�jBAV� (130)

¼
E½E½ðA� E½AjBAV�ÞTððay þ Aba þ f1ðUÞ þ f2ðBAVÞ þ �1Þ
� E½ððay þ Aba þ f1ðUÞ þ f2ðBAVÞ þ �1ÞjBAV�jBAV�Þ�

� �
E½E½ðA� E½AjBAV�ÞTðA� E½AjBAV�Þ�jBAV� (131)

¼ ba þ
E½E½ðA� E½AjBAV�ÞTðf1ðUÞ � E½f1ðUÞjBAV�Þ

r2a � varðE½AjBAV�Þ (132)

¼ ba þ
COVðA; f1ðUÞjBAVÞ
r2a � varðE½AjBAV�Þ (133)

In the special case that U and BAV are independent, as they would be under the DAG in Figure 3, this reduces

to

bbsemi!p ba þ
COVðA; f1ðUÞÞ

r2a � varðE½AjBAV�Þ (134)

A.9 Bias amplification under mispecification and unrestricted structural equations

A.9.1 Bias Amplification and mispecification of the control function

In section 4 of the main text, we considered the problem of bias amplification when f2ðBAVÞ was specified

correctly at least in the limit n!1. Here we consider the additional possibility of misspecification. Suppose

the structural equations were again those in equations (19) and (20) and instead of including the function f2ðBAVÞ
we include some other control function hðBAVÞ. For clarity, this control function could be just the linear term

BAV or a polynomial function for example, but in general it might be anything the analyst believes is reasonable,

but that is ultimately not quite correct. If hðBAVÞ is unable to be written as a linear combination of f2ðBAVÞ (i.e.
@a; b 2 R : hðBAVÞ ¼ aþ bf2ðBAVÞ), then there may be mispecification bias in addition to unmeasured

confounding.
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The naive estimator (bbnaive

a ) and the estimator conditional on hðBAVÞ will have the following probability limits.

bbnaive

a !p ba þ ðCovðA; f1ðUÞÞ þ CovðA; f2ðBAVÞÞ 1r2a
(135)

bbjhðBAVÞ!p ba þ ðCovðATMz; ðf1ðUÞTMzÞTÞ þ CovðATMz; ðf2ðBAVÞTMzÞTÞÞ 1

ð1�R2
AjhðBAVÞÞr2a

(136)

¼ ba þ COVðA; f1ðUÞÞ � COVðA; hðBAVÞÞCOVðf1ðUÞ; hðBAVÞÞ
VarðhðBAVÞÞ (137)

þCOVðA; f2ðBAVÞÞ � COVðA; hðBAVÞÞCOVðhðBAVÞ; f2ðBAVÞÞ
VarðhðBAVÞÞ

1

1�R2
AjhðBAVÞ

(138)

When we compare the probability limit of the misspecified estimator (bbhðBAVÞ
) in equation (136) and the

adjusted estimator in equation (123), there is an additional term due to misspecification in the numerator

(CovðATMz; ðf2ðBAVÞTMzÞTÞ). This does not necessarily mean that it is more biased and will depend on the

signs of the covariances between all of the relevant variables. The numerator of the bias term

ðCovðATMz; ðf1ðUÞTMzÞTÞ þ CovðATMz; ðf2ðBAVÞTMzÞTÞÞ is still the covariance of the treatment and outcome

through the confounding pathways f1ðUÞ ! A! Y and the part of f2ðBAVÞ ! A! Y which is not controlled

by linear combinations of hðBAVÞ. The denominator is again always greater than 1 and contributing to ampli-

fication, but increases hyperbolically with respect to how well hðBAVÞ linearly explains variance in the treatment

rather than f2ðBAVÞ. Notice that even though hðBAVÞ is misspecified with respect to the true outcome equation

(19), this does not mean that the amplification term will be less severe. It is possible that hðBAVÞ explains more of

the treatment covariance since A ¼ aa þ gðU;BAVÞ þ �2 and hðBAVÞ may better approximate gðU;BAVÞ. Overall,

misspecification does not qualitatively change the problem of bias amplification, but in the case that the analyst

does not know f2ðBAVÞ it may be more difficult to harness domain knowledge to accurately predict the sign and

direction of the bias. The amplifying denominator can still be estimated using observed data and used in the

process of model selection or sensitivity analysis.

A.9.2 Bias amplification under unrestricted structural equations, heterogeneous causal effects

In the main text, we restricted our focus to systems of structural equations which were partially linear in the

treatment of interest such that the desired causal effect was a single parameter (ba) in the true model. In practice, it

may be that the causal effect of interest is heterogeneous and a more complicated functional and the treatment of

this setting is beyond the scope of this manuscript. In the case that we assume that the effect of interest is ba but it
is not, we can say the following about the OLS and partially least squares estimators.

If we make no assumptions about the functional form, and allow for non-linearities, and interactions between

all variables, we can show that the OLS adjusted estimator is always the expression below (see Appendix A.1)

cbjza ¼ ðMzAÞTMzY

ðMzAÞTðMzAÞ
(139)

When Z includes an intercept column, both ðMzAÞT and MzY will have mean zero and thus we can think of the

numerator as an empirical estimate of the covariance between the residuals from the regression of A on Z and the

residuals from the regression of Y on Z. Unmeasured confounding bias in OLS occurs when after projecting out

linear combinations of the controlling variables, Z, there remain linear associations between the outcome and the

treatment due to unobserved variables. The part of the bias due to unmeasured confounding is amplified when-

ever the control variables explain variance in the treatment. Holding all else constant, as the residuals from the

regression of the treatment on Z decrease in magnitude, the absolute value of the estimator
cbjza will increase in

magnitude. This is a general form of the result we showed in the previous section which is extremely powerful in

that it encaptures a very large class of structural equations and DAGs. However, the cost of this generality is that
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without making more specific assumptions about the particular form of the model, and in particular the outcome

model, it becomes more difficult to incorporate the knowledge of the amplification factor into our model selection

and thus a priori know which of the two estimators, bbnaive

a or bbbav0
a , will be less biased, especially when the

nonlinearities imply heterogenous causal effects and thus that ba itself is not the causal effect of interest. In

particular, we cannot easily decompose the bias or relative bias into covariances through the confounding path-

ways and treatment variance. The amplifying denominator remains the same, but the numerator cannot be easily

decomposed. Interaction terms, for example, are an additional difficulty. Pearl,10 for example, showed that under

a simple interaction effect between the unmeasured confounding and some function of a pure instrument, the

adjusted estimator can be less biased than the naive case. To properly evaluate estimators in the context of bias

amplification requires appropriate simulations.
Similarly, we can show that the partially linear estimator conditional on BAV under any structural equations is

dbpartial jBAV ¼ ðA� bE½AjBAV�ÞTðY � bE½YjBAV�ÞðA� bE½AjBAV�ÞTðA� bE½AjBAV�Þ (140)

!p E½COVðA;YjBAVÞ�
ð1� VARðE½AjBAV�Þ

r2a
Þr2a

(141)

Much like the OLS estimator, the numerator of the partially linear estimator is an expectation of the covariance

of the treatment and outcome once we have controlled for BAV. The denominator, just like in the main text is

proportional to the remaining treatment variance once we have controlled for fluctuations in BAV. As BAV

explains more of the treatment variation, the magnitude of the estimator increases hyperbolically. Again, how-

ever, without a priori knowledge of the structural form for the outcome and thus the form of the causal effect of

interest, it is not clear if this will be closer or farther away from desired estimand. As an estimator, however, we

can see that both of these orthogonalization estimators, OLS and partially least squares, have the property that

explaining variance in the treatment increases the magnitude of the estimate hyperbolically.

A.10 Additional details simulation

Suppose we want to simulate a system of linear equations from equations (4) and (5) based on the DAG in Figure

3. Now suppose we are interested in assessing the effect of modifying the edge BAV ! A on the conditional

estimator bbbav0
a . If we incorrectly run this simulation simply by changing the parameter cbav to some (or some set

of) cbav
0 and fail to fix the variance of the treatment A as discussed in section 5, we can show that the bias of

estimator bbbav0
a will remain unchanged. In section A.14 we show that the variance of A in the above simulation

design is equal to

r2a ¼ c2ur
2
u þ c2bavr

2
bav þ r�2

Further we showed that the expectation and probability limit of the estimator is

E½bbbav0
a � ¼ ba þ bu

cur
2
u

r2a � c2bavr
2
bav

Thus, if we change cbav to cbav
0 holding all other parameters constant, it can be shown that the resulting

expectation is unchanged. This is because the increased amplification is precisely cancelled out by increasing

the variance of the treatment.

ra
0 ¼ c2ur

2
u þ c0

2

bavr
2
bav þ r�2

¼ r2a � c2bavr
2
bav þ c0

2

bavr
2
bav
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¼ r2a þ ðc0
2

bav � c2bavÞr2bav

This implies the expectation of the estimator bbbav0
a has the following expression

E½bbbav0
a �0 ¼ ba þ bu

cur
2
u

r02a � c02bavr
2
bav

¼ ba þ bu
cur

2
u

ðr2a þ ðc02bav � c2bavÞr2bavÞ � c02bavr
2
bav

¼ ba þ bu
cur

2
u

r2a � c2bavr
2
bav

¼ E½bbbav0
a �

Thus the expectation of the estimator remains unchanged for any change of parameter, cbav. As a consequence,

the comparison of this estimator with the naive estimator will seem favorable as the absolute magnitude of the

parameter c0bav increases since the difference in absolute bias is

E½bbnaive

a � � E½bbbav0
a � ¼

				bucur2ur2a
þ bbavcbavr

2
bav

r2a

				� 				bu cur
2
u

r2a � c2bavr
2
bav

				
The bias of bbnaive

a is increasing in cbav for sufficiently large cbav and we showed above that the bias for bbbav0
a is

invariant to changes in cbav if we do not fix the variance of the treatment A. Thus eventually the bias of the naive

estimate is strictly increasing in cbav and will continue to appear worse relative to the conditional estimator.

However, as discussed in section 5, this is a consequence of failing to conduct a proper causal simulation exper-

iment comparing data sets plausibly generated from similar experiments and holding all other potentially con-

founding edges constant.

A.11 Real data simulation details

The goal of this section is to utilize the real randomized control trial data described in section 6, which comes from

the DAG in Figure 7(a), and simulate modified covariates (~X) and a modified outcome ( ~Y) such that they come

from the DAG 7b and the equations (22), (23), and (24). This proceeds in two steps. First we need to simulate the

latent variable A� and then conditionally simulate BAV and U.
For simplicity, we set U and BAV to be standard normal variables. The latent variable, A�, has variance of 1 but

its mean, aa is determined to ensure that PðA� > 0Þ ¼ PðUcu þ BAVcbavþ �2 > aaÞ ¼ pa, which is determined in

our data by matching pa to the observed quantity bpa ¼ 1
n

Xn

i¼1 Ai
0:51.
Under the assumptions above, this implies that aa ¼ �U�1ð1� paÞ, where UðxÞ is the cumulative distribution

function (CDF) of the standard normal distribution. As previously mentioned, the variance of the error term �2 is

set precisely to ensure that variance of A� is 1, r2�2 ¼ 1� c2u � c2bav.
The first step is to use the observed A data to simulate the latent A�. Consider the CDF of the latent A�

conditional on A ¼ 1. Let PðA ¼ 1Þ ¼ pa, so that

PðA� � a�jA ¼ 1Þ ¼ PðA� � a�jA� � 0Þ

¼ PðA� � a�;A� � 0Þ
PðA� � 0Þ

¼ Pð0 � A� � a�Þ
PðA� � 0Þ

41Stokes et al.



¼
Pð�E½A��

r2
a�
� A��E½A��

r2
a�

� a��E½A��
r2
a�
Þ

PðA� � 0Þ

¼
Uða��E½A��

r2
a�
Þ � Uð�E½A��

r2
a�
Þ

pa

¼ Uða� � aaÞ � Uð�aaÞ
pa

¼ Uða� � aaÞ � UðU�1ð1� paÞÞ
pa

¼ Uða� � aaÞ � ð1� paÞ
pa

Since PðA� � a�jA ¼ 1Þ is the CDF of a continuous random variable, it is distributed uniformly between 0 and
1. Let X	Uð0; 1Þ be a uniform random variable with support ½0; 1�. Appealing to the probability inverse trans-
form, X and PðA� � a�jA ¼ 1Þ are equivalent in distribution.

) X � Uða� � aaÞ � ð1� paÞ
pa

) paX þ ð1� paÞ � Uða� � aaÞ

) U�1ðpaX þ ð1� paÞÞ þ aa � a�

Similarly, it can be shown that conditional on A¼ 0

a� � U�1ðð1� paÞXÞ þ aa

Thus, in general

a� � U�1ðpaAð1� paÞA�1X þ ð1� paÞAÞ þ aa

Therefore, by conditioning on A and simulating a uniform random variable, we can take draws from the
unobserved latent variable A�. Once we have recovered the latent variable, we can jointly simulate U and BAV
conditional on A� and the observed covariates X. The observed covariates are centered and asymptotically mul-
tivariate normal. Since U, BAV, and A� are univariate or multivariate normal variables and X are asymptotically
normal, the conditional distribution will be asymptotically multivariate normal and proportional to the joint
density. From standard multivariate normal theory

U ¼ u;BAV ¼ bavjA� ¼ a�;X ¼ x	Nðl�;RÞ

As stated above, the conditional distribution is proportional to the joint model. Thus, we will define R and l for
the joint density.

U ¼ u;BAV ¼ bav;A� ¼ a�;X ¼ x	Nðl;RÞ

R ¼ RðU;BAVÞ;ðU;BAVÞ RðU;BAVÞ;ðA�;XÞ
RðA�;XÞ;ðU;BAVÞ RðA�;XÞ;ðA�;XÞ


 �
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RðU;BAVÞ;ðU;BAVÞ ¼
r2u 0 0 0
0 r2bav1 0 0

0 0 r2bav2 0

0 0 0 r2bav3

26664
37775

RðU;BAVÞ;ðA�;XÞ ¼
cur

2
u 0 0 0

c ~x1r
2
bav1

0 0 0

c ~x2r
2
bav2

0 0 0

c ~x3r
2
bav3

0 0 0

26664
37775

RðA�;XÞ;ðU;BAVÞ ¼ RT
ðU;BAVÞ;ðA�;XÞ

RðA�;XÞ;ðA�;XÞ ¼
r2a� 0 0 0
0 r2x1 0 0

0 0 r2x2 0

0 0 0 r2x3

26664
37775

l ¼

lu
lbav1
lbav2
lbav3
la�
lx1
lx2
lx3

2666666666664

3777777777775
¼

0
0
0
0
aa
0
0
0

266666666664

377777777775
:

Using standard multivariate normal theory and the matrices defined above, we can define the mean, l� and
variance, R� of the conditional model

R� ¼ RðU;BAVÞ;ðU;BAVÞ � RðU;BAVÞ;ðA�;XÞR�1ðA�;XÞ;ðA�;XÞRðA�;XÞ;ðU;BAVÞ; and

l� ¼ RðU;BAVÞ;ðA�;XÞR�1ðA�;XÞ;ðA�;XÞð½A�;X� � ½
la�
lx
�ÞT

Using the conditional distribution, we can thus take draws of U;BAV conditional on the particular values of A�

and X. Using the simulated BAV we add it to the covariates X to form the modified covariates, ~X ¼ X
r0 þ BAV,

where r0 is a scaling factor chosen simultaneously with rbav such that the variance of ~X is precisely equal to rx ¼ 1.
This step is important if we would like to compare simulations with the modified and the unmodified covariates.
In the particular simulations conducted in section 6, the scaling was chosen such that VarðXi

r0 Þ ¼ 0:01; i ¼ 1; 2; 3
and thus r2bavi ¼ 0:99; i ¼ 1; 2; 3.

Now that the modified covariates have been constructed, the modified outcome can be constructed. The
original RCT data coming from Figure 7(a) is assumed to come from the linear model

Y ¼ ay þ Aba þ Xbx þ �1

where ba and bx are estimated unbiasedly in section 6. Next, we add the unmeasured confounding, Ubu directly
(where bu is chosen) and then add BAVbxþ ~Xbadj, where badj ¼ b~x � bx where b~x is chosen to set the desired
covariance between the modified covariates and the modified outcome

~Y ¼ Y þ Ubu þ BAVbx þ ~Xðb~x � bxÞ
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¼ ðay þ Aba þ Xbx þ �1Þ þ Ubu þ BAVbx þ ~Xðb~x � bxÞ

¼ ay þ Aba þ Ubu þ ðX þ BAVÞbx þ ~Xðb~x � bxÞ þ �1

¼ ay þ Aba þ Ubu þ ð~XÞbx þ ~Xðb~x � bxÞ þ �1

¼ ay þ Aba þ Ubu þ ~Xb~x þ �1

This is precisely the outcome equation in equation (22) in Section 6.2. Thus following this method we can use

the real data to create a data simulation using the original treatment data and matching many of the character-

istics of the real data, but precisely control the causal structure and correlations between the variables. As with the

other simulations, there will still be restrictions on the parameters and correlations that we set such as positive

definiteness of all the variance matrices in the above simulation.

A.12 Real data simulation comparison of estimators

Consider a causal simulation experiment coming from a DAG and system of equations identical to the one

considered in section 6.2 as described by Figure 7(b) and the system of equations (22), (23), and (24). The

experiment uses the real data described in section 6 and the procedure detailed in section A.11. The simulation

experiment involves intervening on the edge ~X1 ! A, that is increasing the covariance between ~X1 and A. As in

section 5 we will explore the consequences of failing to properly hold all non-intervention edges of the DAG.

Simulation Parameters c~X cu bu b~x ba

Control 0.20, 0.38, 0.33 0.63 0.15 0.10, �0.15, �0.10 0.1377

Intervention 0.55, 0.38, 0.33 0.63 0.15 0.10, �0.15, �0.10 0.1377

Above, the parameters for the two simulation treatments are described. The only difference between the two is

that in the control, c ~x1 ¼ 0:2 and in the intervention c ~x1 ¼ 0:55. Below we visualize the naive, adjusted, and

unbiased estimators for the control treatment.
In the control treatment, we see that the unbiased estimator behaves as expected, centered on the true under-

lying parameter. The naive estimator bbnaive

a is only slightly biased, since some unmeasured biases due to the vector
~X and U happen to be of opposing signs and partially cancel each other out. If this is not the case, of course the

naive estimator may be significantly more biased. The adjusted estimator behaves poorly with an average absolute

bias of 0.18. Although the parameters in the latent space are relatively large, c~x ¼ ½0:2; 0:38; 0:33�, the covariances
in the observed space with respect to the treatment are relatively small, COVðA; ~XÞ ¼ ½0:08; 0:15; 0:13�, and yet the

amplifying effect is quite large. In fact, the amplifying variables jointly explain only 18% of the variance of the

treatment, but since the variance of the treatment was already quite small, r2a
0:25, the amplifying variables had a

more than proportional effect.
The bias attributed to the path A U ! Y for the naive estimator is

buCOVðA;UÞ
r2a

¼ 0:15�0:25
0:25 ¼ 0:0375

:25 ¼ 0:0375� 4 ¼ 0:15, whereas for the amplified estimator it is
0:15�0:25

0:25�ð0:082þ0:152þ0:132Þ ¼ 0:0375
:183 ¼ 0:0375� 4:88 ¼ 0:183. Since ATMzA � ATMiA; 8Z : i � Z, we can rewrite the bias

due to bias amplification as jbu�COVðA;UÞjð1�cÞ�r2a ; c 2 ½0; 1�, where c is the proportion of treatment variance explained by

the bias amplifiers jointly

@2ðjbu�COVðA;UÞjð1�cÞ�r2a Þ
@r2a@c

¼
�bu � COVðA;UÞ
ð1� cÞ2ðr2aÞ2

; bu � COVðA;UÞ > 0

bu � COVðA;UÞ
ð1� cÞ2ðr2aÞ2

; bu � COVðA;UÞ < 0

8>>><>>>:
The derivative above shows us that as the variance, r2a, gets smaller, the marginal impact on absolute bias from

an increase in the proportion of the variance explained by the amplifiers increases.
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Now consider the intervention of increasing the proportion of variance explained by one of the potential

amplifiers, ~X1 , by increasing c ~x1 to 0.55. Again, we will consider the case of keeping all of the variances constant

to the case where we simply change the parameter and allow the variances to float.
Notice in the left panel that although we have intentionally increased the amplification, the amplifying esti-

mator has seemingly not changed. However, when we fix the variance, the bias amplification increases as we

expected (the mean absolute bias increased from 0.18 to 0.23). The reason for this effect is that as the variance of

the latent treatment A� increases, the covariances of the variables of the unmeasured confounding and the treat-

ment as well as the potential amplifiers, COVðA;UÞ and COVðA; ~XÞ, decrease. It can be shown that when A�; ~X;
and U are normal or multivariate normal

COVðA;UÞ ¼ 1

pa
E½U� þ cur

2
uffiffiffiffiffiffiffiffiffiffiffiffi

2pr2a�
p exp

�a2a
2r2a�

 !
(142)

COVðA; ~XÞ ¼ 1

pa
E½~X� þ c~xr

2
~xffiffiffiffiffiffiffiffiffiffiffiffi

2pr2a�
p exp

�a2a
2r2a�

 !
: (143)

We can see in equation (142) that if we allow the variance of A� to increase as c ~x1 increases that COVðA;UÞ
decreases. In the case of this simulation, the covariance decreased from 0.25 in the control treatment to 0.22, since

r2a� increased from 1 to 1þ ð0:552 � 0:22Þ ¼ 1:26. Thus we have decreased the strength of the edge U! A inci-

dentally. Further by considering equation (143), we can see that if we increase c ~x1 we do not necessarily increase

the amount of variance explained by ~X1 since there are two opposing effects. First, consider the increase directly

through c ~x1 and the decrease through increasing r2a� . In the particular example, although our intended goal was to

observe the effect of increasing the weight of the edge ~X1 ! A, we have in fact inadvertently decreased the

covariance from 0.2 to 0.196.
Again we can see that when we fail to hold the variances constant, we are no longer comparing a

controlled intervention on the weight of a particular set of nodes, but have modified the edges into and out of

the intervened upon edge. This example shows that this is true in cases beyond fully linear systems of

equations explored in section 5. Examining the simulation results we can see that this might lead to inappropriate

conclusions about the effects of our interventions and the relative merits of particular estimators in contexts of

interest to us.

A.13 Simulation for Figure 4

The figure was simulated from the general structural equations (4) and (5) with the particular values below.

Y ¼ 2þ :2� Aþ :5� U þ :05� BAV þ t1

A ¼ 1þ :3� U þ :75� BAV þ t2

BAV	Nð0; 1Þ; U	Nð0; 1Þ

t1	Nð0; rt1Þ

rt1 ¼ ðr2y � ðb2ar2a þ b2ur
2
u þ b2bavr

2
bav

þ2babucur2u þ 2babbavcbavr
2
bavr

2
�1
ÞÞ12

¼ 0:906

t2	Nð0; rt2Þ

45Stokes et al.



rt2 ¼ ðr2a � ðc2ur2u þ c2bavr
2
bav þ r2�2ÞÞ

1
2

¼ 0:809

t1 and t2 had variances such that A and Y both have unit variance.

A.14 Variance derivations

A.14.1 Treatment variance for equation (5)

A ¼ aa þ Ucu þ BAVcbav þ �2

) VarðAÞ ¼ c2ur
2
u þ c2bavr

2
bav þ 2cucbavCOVðU;BAVÞ þ Varð�2Þ

r2a ¼ c2ur
2
u þ c2bavr

2
bav þ r2�2 (144)

A.14.2 Outcome variance for equation (4)

Y ¼ ay þ Aba þ Ubu þ BAVbbav þ �1 (145)

) VarðYÞ ¼ b2aVarðAÞ þ b2uVarðUÞ þ bbavVarðBAVÞ þ r2�2þ (146)

2babuCovðA;UÞ þ 2babbavCovðA;BAVÞ þ 2bubbavCovðU;BAVÞ (147)

¼ b2ar
2
a þ b2ur

2
u þ b2bavr

2
bav þ r2�2 þ 2babucur

2
u þ 2babbavcbavr

2
bav (148)

46 Statistical Methods in Medical Research 31(1)


	table-fn1-0962280221995963

