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Abstract: Little is known about changes in plasma metabolome profiles during the oral glucose
tolerance test (OGTT) in Chinese. We aimed to characterize plasma metabolomic profiles at 0 and 2 h
of OGTT and their changes in individuals of different glycemic statuses. A total of 544 metabolites
were detected at 0 and 2 h of OGTT by a nontarget strategy in subjects with normal glucose (n = 234),
prediabetes (n = 281), and newly diagnosed type 2 diabetes (T2D) (n = 66). Regression model, mixed
model, and partial least squares discrimination analysis were applied. Compared with subjects of
normal glucose, T2D cases had significantly higher levels of glycerone at 0 h and 22 metabolites at
2 h of OGTT (false discovery rate (FDR) < 0.05, variable importance in projection (VIP) > 1). Seven of
the twenty-two metabolites were also significantly higher in T2D than in prediabetes subjects at 2 h
of OGTT (FDR < 0.05, VIP > 1). Two hours after glucose challenge, concentrations of 35 metabolites
(normal: 18; prediabetes: 23; T2D: 13) significantly increased (FDR < 0.05, VIP > 1, fold change
(FC) > 1.2), whereas those of 45 metabolites (normal: 36; prediabetes: 29; T2D: 18) significantly
decreased (FDR < 0.05, VIP > 1, FC < 0.8). Distinct responses between cases and noncases were
detected in metabolites including 4-imidazolone-5-acetate and 4-methylene-L-glutamine. More
varieties of distinct metabolites across glycemic statuses were observed at 2 h of OGTT compared
with fasting state. Whether the different patterns and responsiveness of certain metabolites in T2D
reflect a poor resilience of specific metabolic pathways in regaining glucose homeostasis merits
further study.

Keywords: diabetes; oral glucose tolerance test; metabolome; dynamic change

1. Introduction

An epidemic of type 2 diabetes (T2D) has affected approximately 9.3% of adults world-
wide [1]. Individuals with T2D are known to have a 2-fold higher risk of cardiovascular
disease (CVD), the leading cause of mortality globally [2], as well as increased risks of
other noncommunicable diseases, which contribute to enormous economic and health bur-
dens [3,4]. As a complex disease, T2D can be predicted by lifestyle, obese phenotypes, and
clinical indicators. However, it was still not fully understood how disturbed metabolic path-
ways were linked to the progress of impaired glucose homeostasis from normal glycemia to
a prediabetic condition and eventually to T2D. Thus, identifying novel metabolic signatures
linked to different stages of pathophysiological disturbance and evaluating individuals’
glucose homeostatic capacity during the progression of T2D are critical for early prevention
and intervention, especially for those countries with high rates of undiagnosed T2D, such
as China, where 56.7% of patients were undiagnosed [5].
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With recent developments in advanced metabolomics technologies, plenty of metabolic
biomarkers detected in the fasting state, including branched-chain amino acids, medium-
and long-chain acylcarnitines, and sphingolipids, have been found to be associated with
increased T2D risk [6–11]. However, in the postprandial state, the metabolic system shifts
from a catabolic to an anabolic mode. After overnight fasting, fuel is primarily supplied
by glycogenolysis, lipolysis, and proteolysis, whereas after carbohydrate intake, elevated
blood glucose levels will trigger insulin secretion (pancreas), suppression of glycogenolysis
and gluconeogenesis (liver), lipolysis (adipose tissue), and proteolysis (muscle) to maintain
fuel homeostasis [12–14]. Thus, fasting levels of metabolites cannot adequately represent
the capability of the body to maintain homeostasis under dietary perturbations [15]. Indeed,
standard nutritional challenge tests such as the “PhenFlex test” have been developed to
evaluate organ and tissue functions to counteract stress and regain metabolic hemostasis.
Biomarkers identified in the challenge test were shown to be more sensitive than those
detected in the fasting state to discriminate diabetic cases from healthy controls [16,17].
Therefore, the determination of dynamic changes in metabolites during nutritional chal-
lenge might aid in identifying metabolites from pathways and mechanisms that are inactive
during the fasting condition.

The oral glucose tolerance test (OGTT) is considered the gold standard to assess an
individual’s ability to maintain and regain glucose homeostasis. The test involves adminis-
tering 75 g of glucose following overnight fasting. This sudden glucose challenge induces
a transition from fasting to feeding state, as well as causing a switch from catabolism
to anabolism in the body [12]. Thus, OGTT provides a good opportunity to investigate
dynamic changes in metabolites and metabolic pathways linked to the resilience of glucose
homeostasis. To date, only a few studies have examined metabolite variations during
OGTT. Their results showed that levels of some metabolites, including free fatty acids [13],
amino acids [12], acylcarnitines [14], glycerol [12], β-hydroxybutyric acid [12], and hypox-
anthine [12], decreased, while concentrations of others, including lactate and hippurate,
increased [18]. However, most of these studies were conducted in Western nondiabetic
populations with relatively small sample sizes. It is thus unclear whether their results are
applicable to Chinese populations, who have different dietary patterns [19] and genetic
variations involved in glucose metabolism [20]. Therefore, the current study aimed to
investigate the metabolomic profiles of subjects with normal glucose, prediabetes, and T2D
in a fasting state and at 2 h of OGTT, as well as the dynamic changes in the metabolome
during OGTT in adult Chinese individuals of different glycemic statuses.

2. Materials and Methods
2.1. Study Population

The Guizhou-Bijie Type 2 Diabetes Study was a population-based case–control study
conducted from September 2009 to January 2010 in Bijie city of Guizhou province. A total
of 4917 participants aged 30 to 80 years were recruited. Participants were required to
have been resident for at least 10 years in the Bijie area and to be free from the following
conditions: (1) type 1 diabetes; (2) severe psychological disorders, physical disabilities,
cancer, CVD, Alzheimer’s disease, or dementia within 6 months; or (3) current diagnosis of
tuberculosis, AIDS, or other communicable diseases. Of the participants, 2755 underwent
a standard 2 h 75 g OGTT if they had not been previously diagnosed with T2D and
were not currently taking antidiabetic treatments. After excluding those with insufficient
blood samples, 581 participants (234 with normal glucose, 281 with prediabetes, and 66
with newly diagnosed T2D), for whom both pre- and post-OGTT metabolomic data were
available, were finally included in the current analysis. The flow chart of the current study
is shown in Supplementary Figure S1. The study protocol was approved by the institutional
review board of the Shanghai Institutes for Biological Sciences. Written informed consent
was provided by all participants. This study abided by the principles of the Declaration
of Helsinki.
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2.2. Data Collection

Information on demographic variables, health statuses, and lifestyles was obtained
by face-to-face interviews by research term members using a standardized questionnaire.
Educational attainment was classified into three groups according to years of education
(0–6 years, 7–9 years, or ≥10 years). Current smoking and alcohol drinking were grouped
into ’yes’ or ’no’ categories. All participants were invited to undergo a physical examination
in local hospitals. Anthropometric measurements were performed by trained medical staff
according to a standardized protocol. Height and weight were measured in light clothing
without shoes to the nearest 0.1 cm and 0.1 kg, respectively. Body mass index (BMI) was
calculated as weight (kg) divided by the square of height (m). After an overnight fast,
subjects underwent a 75 g OGTT with venous blood samples collected at fasting state and
2 h after OGTT.

2.3. Plasma Collection and Laboratory Measurements

Blood samples were collected at both 0 and 2 h of OGTT and centrifuged at 3000 rpm
for 15 min (4 ◦C). Plasma samples were stored at −80 ◦C before analysis. Fasting and
2 h glucose were measured enzymatically by an automatic analyzer (7080 Hitachi, Tokyo,
Japan) with reagents from Wako Pure Chemical Industries (Osaka, Japan). Fasting and
2 h insulin were measured by radioimmunoassay (LINCO Research, St. Charles, MO,
USA). Homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis
model assessment of β-cell function (HOMA-B) were conducted by the updated method
(http://www.dtu.ox.ac.uk/homacalculator/, accessed on 30 March 2018).

2.4. Metabolic Profiling

All plasma samples were thawed at 4 ◦C on ice overnight. Quality control (QC) sam-
ples were prepared by pooling aliquots (10 µL from each sample) of all plasma samples.
Analysis was performed following a procedure described previously [21]. Fifty microliter
plasma samples were mixed with 150 µL cold methanol dissolved in an internal stan-
dard of inosine (15N4, 95%+) (1 ppm). Samples were vortexed for 30 s and incubated
at −20 ◦C for 2 h for protein precipitation. After centrifugation for 20 min (4000 rpm,
4 ◦C), the supernatants were transferred to liquid chromatography–mass spectrometry
(LC-MS) vials for ultra-high-performance LC with quadrupole time-of-flight MS (UHPLC-
QTOF/MS)(UHPLC system: Nexera UHPLC LC-30A, Shimadzu Technologies, Kyoto,
Japan; QTOF mass spectrometer: AB 6600 TripleTOF, SCIEX, Concord, ON, Canada) analy-
sis. The QC samples were processed by the same method as the plasma samples. All plasma
samples were randomly injected for data acquisition, whereas the blank samples (100%
acetonitrile (ACN)) and QC samples were injected every 10 samples. In total, seven batches
were arranged for the measurement. The LC-MS analysis was performed using a UHPLC
system (Nexera UHPLC LC-30A, Shimadzu Technologies, Kyoto, Japan) coupled to a QTOF
mass spectrometer (AB 6600 TripleTOF, SCIEX, Concord, ON, Canada) in positive and neg-
ative modes, respectively. The mobile phases consisted of 25 mM CH3COONH4 + 25 mM
NH4OH (A) and 100% acetonitrile (B). Chromatographic separation was performed on
UPLC BEH amide columns (1.7 µm, 2.1 × 100 mm) with the following gradient: 0–0.5 min,
95% B; 0.5–7 min, 95% B to 65% B; 7–8 min, 65% B to 40% B; 8–9 min, 40% B; 9–9.1 min, 40%
B to 95% B; 9.1–12 min, 95% B. With R package XCMS (version 1.46) [22], the MS raw data
(.wiff) files were converted to the mzXML format using ProteoWizard. The parameters in
XCMS were set as follows: centwave settings for feature detection (∆m/z = 25 ppm, peak
width = c (5, 30)); obiwarp settings for retention time correction (profStep = 1); and param-
eters including minfrac = 0.5, bw = 5, and mzwid = 0.015 for chromatogram alignment.
Metabolite identification was performed using the online MetDNA server [23]. Undefined
metabolites, metabolites with >20% missing, and those with a coefficient of variation >30%
were excluded. Zero values were imputed using half of the minimum values in the original
data. MetNormalizer was used to remove intra- and inter-batch variations [24]. Finally,
544 metabolites were analyzed.

http://www.dtu.ox.ac.uk/homacalculator/
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2.5. Definition of Diseases

T2D was identified as fasting glucose≥ 7.0 mmol/L or OGTT 2 h glucose≥ 11.1 mmol/L.
Among non-T2D individuals, prediabetes was defined as 5.6≤ fasting glucose < 7.0 mmol/L
or 7.8 ≤ OGTT 2 h glucose < 11.1 mmol/L. Participants with fasting glucose < 5.6 mmol/L
and OGTT 2 h glucose < 7.8 mmol/L were categorized as normal glucose subjects [25].

2.6. Statistical Analyses

Analysis of variance (ANOVA), Kruskal–Wallis test, and chi-squared test were used
to compare baseline characteristics among normal glucose, prediabetes, and T2D subjects
for normally distributed continuous variables, skewed-distribution continuous variables,
and categorical variables, respectively.

A multivariate logistic regression model and partial least squares discriminant analysis
(PLS-DA) were used to identify different metabolites among subjects with normal glucose,
prediabetes, and T2D. PLS-DA is an algorithm that combines dimensionality reduction and
discriminant analysis for predictive and descriptive modeling, as well as discriminative
variable selection when dealing with high-dimensional data [26]. The logistic regression
model was adjusted for age, sex, education attainment (≤6 years, 7–9 years, ≥10 years),
current smoking (yes/no), current drinking (yes/no), BMI, family history of diabetes
(yes/no), and measure batches. False discovery rate (FDR) was defined as expected
proportion of incorrect assignments among the accepted assignments, and it was used in
the current study to do multiple hypothesis testing correction to reduce the number of false
positives [27]. VIP (variable importance in projection) values showed the magnitude that
metabolites contributed to group separation in the PLS-DA model [28]. Metabolites with
FDR < 0.05 in the logistic model and VIP > 1.0 in PLS-DA were considered as significantly
different metabolites between different glycemic statuses.

Linear mixed-effects models combined with PLS-DA were employed to identify
significantly changed metabolites during OGTT. The fold change (FC) of metabolites
represented the geometric mean of the ratio of the metabolites in each sample at 2 h to
0 h. Significantly changed metabolites were defined by FDR-corrected p-value < 0.05 in the
mixed-effects model, VIP > 1 in PLS-DA, and FC > 1.2 for increased metabolites or FC < 0.8
for decreased metabolites in total, normal glucose, prediabetes, or T2D subjects. Percent
change was calculated as (FC − 1) × 100%.

All analyses were performed in R software (version 3.5.1, R Core Team, Vienna,
Austria). Raw values of metabolites were used to calculate FC to avoid negative FC values,
and log-transformed values were used in all other analyses.

3. Results
3.1. Characteristics of Participants

The characteristics of the normal glucose, prediabetes, and T2D subjects are shown
in Table 1. The mean (SD) age of all participants was 48.3 (10.1) years, and 78.1% of them
were men. Compared with those of normal glucose, T2D and prediabetes subjects were
older and more likely to have a family history of diabetes. They also exhibited higher BMI,
higher levels of fasting and 2 h glucose and insulin, and higher levels of HOMA-IR but
had lower levels of HOMA-B (all p < 0.05).
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Table 1. Characteristics of participants according to glycemic statuses.

Total
(n = 581)

Normal
Glucose
(n = 234)

Prediabetes
(n = 281)

T2D
(n = 66) p

Age, year 48.3 ± 10.1 47.2 ± 10.2 48.3 ± 10.2 52.2 ± 8.2 0.002 a,b

Male, n (%) 454 (78.1) 175 (74.8) 231 (82.2) 48 (72.7) 0.067
Current smoker, n (%) 351 (60.4) 137 (58.5) 179 (63.7) 35 (53.0) 0.211
Current drinker, n (%) 303 (52.2) 110 (47.0) 162 (57.9) 31 (47.0) 0.033 c

Years of education, n (%) 0.501
0–6 year 124 (21.3) 50 (21.4) 56 (19.9) 18 (27.3)
7–9 year 175 (30.1) 72 (30.8) 81 (28.8) 22 (33.3)
≥10 year 282 (48.5) 112 (47.9) 144 (51.2) 26 (39.4)

BMI, kg/m2 24.5 ± 3.5 24.0 ± 3.6 24.7 ± 3.3 25.1 ± 3.4 0.017 a,c

Family history of diabetes, n (%) 13 (2.2) 0 (0.0) 9 (3.2) 4 (6.1) 0.004 a,c

Fasting glucose, mol/L 5.92 ± 1.12 5.15 ± 0.34 6.06 ± 0.43 8.15 ± 1.68 <0.001 a,b,c

2 h glucose (OGTT), mol/L 5.82 ± 2.74 4.77 ± 1.14 5.64 ± 1.79 10.47 ± 4.86 <0.001 a,b,c

Fasting insulin, pmol/L 43.9 ± 27.9 38.3 ± 25.0 44.4 ± 24.9 61.7 ± 40.2 <0.001 a,b,c

2 h insulin (OGTT), pmol/L 144.2 ± 143.5 112.7 ± 97.8 151.5 ± 144.4 227.5 ± 223.3 <0.001 a,b,c

HOMA-IR 0.86 ± 0.57 0.72 ± 0.47 0.87 ± 0.48 1.33 ± 0.94 <0.001 a,b,c

HOMA-B 60.0 ± 27.9 69.1 ± 30.0 56.3 ± 23.5 43.8 ± 26.5 <0.001 a,b,c

Data are presented as mean ± SD (standard deviation), n (%), or median (IQR). Percentages may not sum to 100 because of rounding.
Proportions were compared by chi-squared test, means by ANOVA, and medians by Kruskal–Wallis test. (a) Significantly different between
T2D and normal glucose subjects (p < 0.05); (b) significantly different between T2D and prediabetes subjects (p < 0.05); (c) significantly
different between prediabetes and normal glucose subjects (p < 0.05).

3.2. Differences in Metabolites among Normal Glucose, Prediabetes, and T2D Subjects at 0 and 2 h
of OGTT

PLS-DA score plots of the first two principal components (Figure 1) demonstrated
distinct metabolomic profiles between T2D and the other two groups (normal glucose and
prediabetes) at 0 and 2 h of OGTT but not between normal glucose and prediabetes subjects.
After combining the results of PLS-DA and logistic regression analysis (Table 2), levels of
glycerone at 0 h (odds ratio (OR) per SD 2.02 (95% CI 1.45–2.87)) and those of 22 metabolites
at 2 h of OGTT (OR per SD ranging from 1.76 to 2.44) were significantly higher in T2D
subjects than in normal glucose subjects. Moreover, seven of the 22 metabolites at 2 h were
also significantly higher in T2D subjects than in prediabetes subjects (OR per SD ranging
from 1.66 to 2.24).
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Table 2. Significantly different metabolites among subjects with different glycemic statuses at 0 and 2 h of OGTT.

Comparison OGTT
Time Point Metabolite OR per SD

(95% CI) FDR VIP

T2D vs. normal glucose 0 h Glycerone 2.02 (1.45–2.87) 0.025 3.31
2 h Xanthosine 5′-phosphate 1.76 (1.27–2.50) 0.033 2.18

5-(L-Alanin-3-yl)-2-hydroxy-cis,cis-
muconate

6-semialdehyde
1.78 (1.25–2.59) 0.049 2.16

Cellobionate 1.79 (1.26–2.60) 0.045 1.93
Glycochenodeoxycholate 7-sulfate 1.79 (1.27–2.70) 0.049 1.92

L-Homocysteine 1.79 (1.29–2.53) 0.024 2.15
Linatine 1.81 (1.29–2.59) 0.027 1.93

1-Hydroxy-2-methyl-2-butenyl
4-diphosphate 1.84 (1.28–2.68) 0.033 1.02

(S)-Malate 1.86 (1.29–2.74) 0.033 2.35
O-Carbamoyl-L-serine 1.88 (1.36–2.66) 0.012 2.68

D-Erythrulose 1.90 (1.37–2.72) 0.012 1.82
Sphingosine 1.99 (1.36–2.99) 0.024 1.91

Benzoate 1.99 (1.36–3.04) 0.025 2.41
Pyruvate 2.01 (1.37–3.03) 0.024 2.49
Succinate 2.02 (1.40–3.02) 0.014 2.23

D-Glucono-1,5-lactone 2.02 (1.42–2.96) 0.011 2.57
Parapyruvate 2.03 (1.44–2.95) 0.007 2.53

3-β-D-Galactosyl-sn-glycerol 2.19 (1.36–3.64) 0.046 2.17
Propanoate 2.22 (1.58–3.21) 0.002 2.80

4-Imidazolone-5-acetate 2.27 (1.57–3.38) 0.003 2.99
Glycerone 2.32 (1.64–3.37) 0.001 3.35

Porphobilinogen 2.40 (1.65–3.61) 0.002 2.42
L-Glutamate 2.44 (1.69–3.66) 0.001 2.26

T2D vs. prediabetes 2 h Glycochenodeoxycholate 7-sulfate 1.66 (1.27–2.21) 0.024 2.35
Propanoate 1.77 (1.31–2.43) 0.024 2.39
(S)-Malate 1.84 (1.34–2.60) 0.024 2.37
Linatine 2.02 (1.40–2.99) 0.024 2.58

Glycerone 2.06 (1.54–2.79) 8.79 × 10−4 3.43
4-Imidazolone-5-acetate 2.09 (1.47–3.08) 0.016 2.72

Porphobilinogen 2.24 (1.56–3.33) 0.008 2.72

ORs per SD and 95% CIs were calculated by logistic regression model with multivariate adjustment for age, sex, education, family history
of diabetes, current smoking, current drinking, BMI, and batch. VIP was calculated by PLS-DA model. OGTT, oral glucose tolerance test;
OR, odds ratio; SD, standard deviation; FDR, false discovery rate; VIP, variable importance in projection; T2D, type 2 diabetes.

3.3. Responses of Metabolites to the Glucose Challenge

As presented in Figure 2, the PLS-DA score plots showed distinct metabolomic pat-
terns at 0 and 2 h of OGTT among the various groups: all subjects and subjects with normal
glucose, prediabetes, and T2D. In total, levels of 80 metabolites significantly changed
during OGTT (FDR < 0.05, VIP > 1, FC > 1.2 or FC < 0.8) (Figure 3), of which levels of
35 metabolites increased (total, 20; normal glucose, 18; prediabetes, 23; T2D, 13; a Venn
diagram is shown in Supplementary Figure S2) in response to OGTT, whereas those of
45 metabolites decreased (total, 29; normal glucose, 36; prediabetes, 29; T2D, 18; a Venn dia-
gram is shown in Supplementary Figure S3). The largest increase at 2 h of OGTT was seen
for tauropine, levels of which increased by 79% in all, 65% in normal, 94% in prediabetes,
and 67% in T2D subjects. By contrast, the largest decrease at 2 h of OGTT was seen for
levels of AMP, which decreased by 50% in all, 52% in normal, 51% in prediabetes, and 38%
in T2D subjects. Notably, the patterns of significantly changed metabolites between normal
glucose and prediabetes subjects were similar, whereas T2D subjects exhibited a distinct
pattern (Figure 3). For example, T2D subjects, but not normal glucose and prediabetes
subjects, had significantly elevated 4-imidazolone-5-acetate (amino acid metabolism) and
4-methylene-L-glutamine levels and significantly decreased tetradecanoic acid (fatty acid
metabolism) and 2-(acetamidomethylene)succinate (vitamin B metabolism) levels. Individ-
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ual FC, FDR, and VIP values for each significantly changed metabolite are displayed in
Supplementary Table S1.
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4. Discussion

By comparing nontargeted metabolomic profiles at fasting state and 2 h of OGTT,
a considerably large number of distinct metabolites across different glycemic statuses
were detected at 2 h of OGTT compared with the fasting state. Among the 544 detected
metabolites, 80 changed significantly following OGTT (35 increased and 45 decreased),
and the pattern of metabolite change diverged between T2D cases and noncases (normal
glucose or prediabetes subjects).

To the best of our knowledge, this is the largest study investigating dynamic changes
in the plasma metabolome during OGTT in a Chinese population. Most prior studies
were conducted in Western populations and mainly focused on changes in metabolites in
non-T2D subjects [12–14,18,29–32]. By contrast, the current study also analyzed changes
of metabolites in individuals with newly diagnosed T2D, where less evidence had been
available. In line with previous findings, we confirmed several metabolites that signifi-
cantly responded during OGTT, including AMP, L-glutamate, and L-citrulline. Moreover,
we identified a number of novel metabolites, including sphingosine, that were altered
following glucose challenge. In addition, we revealed differences in dynamic changes of
metabolites in response to OGTT across individuals of different glycemic statuses. There-
fore, the present study provides novel insights regarding the different metabolic responses
of subjects with different glucose hemostatic conditions, specifically in an Asian (including
Chinese) population, which has different metabolic phenotypes and T2D susceptibility
compared with Western populations.

The results showed that there were more different metabolites between T2D cases
and those with normal glucose at 2 h of OGTT than at fasting state (22 metabolites vs.
1 metabolite). Levels of seven metabolites at 2 h of OGTT were also higher in T2D sub-
jects than in prediabetes subjects. This phenomenon is likely to reflect the impairment
of glucose homeostasis resilience of certain tissues/organs under glucose challenge, as
indicated by the profoundly altered specific metabolite signals in T2D subjects. Among
these different metabolites, glycerone was the only one positively associated with T2D at
0 h of OGTT, implying a potential role in generating advanced glycation end-products
(AGEs) [33]. On the other hand, we found that five diabetes-related metabolites (amino
acids: homocysteine [34] and glutamate [35]; TCA cycle metabolites: succinate [36] and
malate [37]; and pyruvate [38]) previously reported at fasting state were significantly el-
evated in T2D cases at 2 h but not at 0 h of OGTT in the current study. This discrepancy
might reflect different stages of impaired flexibility or resilience of the tissues or organs
involved in regulating glucose homeostasis. It was unclear whether altered profiles of
these metabolites and the related pathways would become evident only under a challenge
such as OGTT in our newly diagnosed T2D cases. Moreover, the limited sample size of the
current study might have been another reason. Nevertheless, we identified several novel
metabolites, including erythrulose and linatine, that were significantly higher in individu-
als with T2D than in those with normal glucose. Although the underlying mechanisms
were not fully elucidated, a study in a mouse model showed that levels of erythrulose, as a
degradation product of ascorbic acid, increased during the pathogenesis of T2D [39]. In fact,
increased degradation of ascorbic acid may contribute to accelerated oxidative damage [40].
Moreover, erythrulose was found to promote AGE formation via reaction with protein
amino groups [41]. As an antagonist of vitamin B6, linatine at high circulating levels may
downregulate vitamin B6 yield and thereby affect glucose-stimulated insulin secretion [42].
Further studies are needed to confirm our findings and to provide interpretations with
respect to the mechanisms involved.

In addition to different profiles of metabolites across individuals with different
glycemic statuses, we found that 80 metabolites significantly responded to glucose chal-
lenge. Among the 35 metabolites with significantly increased relative abundance, tauropine,
derived from taurine, showed the most prominent elevation. Moreover, hypotaurine, the
precursor of taurine, also showed significantly increased levels in T2D subjects at 2 h
of OGTT in our study. Significant increases in taurine levels have been consistently ob-
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served after intake of glucose or sugar-sweetened beverages in previous studies [43,44].
Indeed, an in vivo study showed that taurine could improve glucose homeostasis by re-
ducing the synthesis of AGEs or preventing mitochondrial dysfunction in β-cells [45].
Of note, the increase in levels of another metabolite, 5′-methylthioadenosine, could be
explained by activation of adenosylmethionine synthase upon glucose intake and up-
regulated conversion of S-adenosylmethionine to 5′-methylthioadenosine [46]. Interest-
ingly, we observed elevated levels of methane-metabolism-related metabolites, namely
5,10-methylenetetrahydromethanopterin and APMF-Glu, at 2 h of OGTT; this could be
attributed to stimulation of methanogenesis by glucose loading. The increase in 3-phospho-
D-glycerate, a glycolysis-related metabolite, may reflect activation of pathways during
switching from the fasting to the re-feeding phase [12]. On the other hand, glucose chal-
lenge in the current study significantly reduced concentrations of 45 metabolites. Several
of these have been previously reported, including metabolites involved in amino acid
metabolism (glutamate and citrulline), purine metabolism (AMP and xanthosine), and
fatty acid oxidation (tetradecanoic acid, hexadecanoic acid, (9Z)-hexadecenoic acid, erucic
acid, octanoylcarnitine, and palmitoylcarnitine) [9,13,32]. The changes in these metabo-
lites might be attributed to glucose-induced shifting from protein catabolism to protein
anabolism, as well as inhibition of triglyceride catabolism and fatty acid β-oxidation. In
addition to the previously reported metabolites, we also identified several novel ones,
including sphingosine. As the precursor of sphingosine-1-phosphate (S1P), sphingosine
plays an important part in sphingolipid metabolism [47]. In vitro studies revealed that
elevated levels of sphingosine could inhibit glucose uptake in muscle cells, while S1P
could upregulate glucose-stimulated insulin secretion in pancreatic β-cells [48,49]. There-
fore, reduced levels of sphingosine might reflect elevated catalytic activity of sphingosine
kinases following glucose challenge, which would promote transformation from sphin-
gosine to S1P and consequently accelerate insulin secretion. Overall, these significantly
glucose-responsible metabolites might provide subtle insights into the process of regaining
glucose homeostasis.

Notably, our study showed different patterns of significantly changed metabolites
between T2D cases and noncases. For instance, 4-methylene-L-glutamine, which is mainly
involved in the C5-branched dibasic acid metabolism pathway related to carbohydrate
metabolism in microbiota, was significantly increased in T2D subjects only [50]. T2D
subjects also showed a smaller magnitude of decline in AMP levels compared with nor-
mal glucose and prediabetes subjects. This difference may have been due to impaired
insulin sensitivity in T2D cases, as insulin was previously shown to downregulate AMP
in rat hepatocytes in an in vitro study [51]. Furthermore, insulin resistance might also
explain the blunted decline in D-glycerate (pentose phosphate pathway) and alpha-D-
galactosyl-(1->3)-1D-myo-inositol (galactose metabolism) levels in T2D subjects. In addi-
tion to the fact that T2D and non-T2D subjects might have differently regulated metabolic
pathways—including those involving amino acids (4-imidazolone-5-acetate, L-citrulline,
β-citryl-L-glutamate), fatty acids (tetradecanoic acid, L-palmitoylcarnitine), vitamin B (thi-
amin triphosphate, 2-(acetamidomethylene)succinate), and purine (5-ureido-4-imidazole
carboxylate, hypoxanthine)—it remains to be elucidated whether or to what extent per-
sonal variations in the resilience of glucose homeostasis could influence these significantly
changed metabolites.

Strengths of the current study included the fact that we characterized patterns and
changes of a large number of metabolites before and after glucose challenge among subjects
with different glycemic statuses (normal glucose, prediabetes, and newly diagnosed T2D
subjects). Moreover, repeated metabolomic profiling at 0 and 2 h of OGTT allowed subjects
to serve as their own controls and eliminated confounding factors. Our study also had
limitations. First, owing to limited resources, we only collected blood samples at 0 and 2 h
of OGTT for metabolomics analysis, and some important metabolic signals at other time
points may have been missed. Second, the nontargeted method was unable to accurately
quantify the absolute level of a given metabolome. Third, the changes observed could
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be explained only for a limited number of metabolites, and mechanistic links for most
metabolites were unclear. Last, the current study population was recruited from Bijie,
Guizhou, and the findings of our study may not be generalizable to other populations.

5. Conclusions

In summary, we found several differences in levels of metabolites between T2D
and normal glucose or prediabetes subjects at 0 and 2 h of OGTT, as well as a panel
of metabolites that significantly changed with different patterns for different glycemic
statuses during OGTT. Levels of metabolites under glucose challenge might provide more
information than those in fasting state alone.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13051474/s1, Table S1: Metabolites significantly changed at 2 h of OGTT. Figure S1: Study
flow diagram. Figure S2: Venn diagram of significantly increased metabolites in total, normal glucose,
prediabetes, and T2D subjects. Figure S3: Venn diagram of significantly decreased metabolites in
total, normal glucose, prediabetes, and T2D subjects.
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