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Abstract

The analysis of Pleurotus ostreatus genome reveals the presence of automatically anno-

tated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or

physiological data are available so far, a functional approach was applied to identify lipases

from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with

different patterns depending on the used C source. Two of the four identified proteins (Pleo-

Lip241 and PleoLip369), expressed in both analysed conditions, were chosen for further

studies, such as an in silico analysis and their molecular characterization. To overcome

limits linked to native production, a recombinant expression approach in the yeast Pichia

pastoris was applied. Different expression levels were obtained: PleoLip241 reached a max-

imum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L.

Despite their sequence similarity, these enzymes exhibited different substrate specificity

and diverse stability at pH, temperature, and presence of metals, detergents and organic

solvents. The obtained data allowed classifying PleoLip241 as belonging to the “true lipase”

family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241

was used to remove the hydrophobic layer from wool surface in order to improve its dyeabil-

ity. The encouraging results obtained with lipase treated wool led to forecast PleoLip241

applicability in this field.

Introduction

Lipolytic enzymes are grouped into two major families, lipases (EC 3.1.1.3) and carboxyles-

terases (EC 3.1.1.1). Lipolytic enzymes are able to hydrolyze or synthesize ester bonds, depend-

ing on the amount of water in the reaction medium [1]. Lipolytic enzymes have a highly

conserved catalytic triad, composed of Ser, Asp, and His residues [2]. The catalytic serine is

part of a conserved pentapeptide (G-X-S-X-G) [3]. These enzymes belong to the α/β hydrolase

family with a central β-sheet, containing the active serine placed in a loop termed the catalytic

elbow [4]. Although distinction between lipases and carboxylesterases is still a matter of

debate, one of the criteria of classification was based on substrate specificity. True lipases attack

triacylglycerols with fatty acid chain lengths of more than C10 [5], whereas esterases hydrolyse
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glycerolesters with fatty acid chain lengths of C10 or shorter chains. The biological function of

lipases is the hydrolysis of triacylglycerols, however they also display alcoholysis, aminolysis,

interesterification, and esterification activity, with rigorous regioselectivity, stereoselectivity,

and chemoselectivity. Lipases are produced by animals, plants, and microorganisms including

bacteria, yeast, and fungi [6]. Over the last few years, there has been a progressive increase in

the number of publications related to proprieties and industrial applications of microbial

lipases in several sectors, ranging from food, pharmaceutical, cosmetic, leather, biofuel, laun-

dry, and in several bioremediation processes. In this context it is understandable that reducing

production costs at large scale industrial level, and discovering new strains for the production

of novel lipases with industrially useful properties, is increasingly becoming a new interest area

of lipase research [7,8].

Only few examples of lipolytic enzymes from basidiomycetes fungi are present in the recent

literature [9–15]. However, lipases have never been isolated from the basidiomycete fungus

Pleurotus ostreatus even if many putative lipase coding genes have been automatically anno-

tated in its genome [16,17]. On the other hand, enormous efforts have been made to character-

ize its oxidative enzymatic systems [18,19].

Considering that no biochemical or physiological data about P. ostreatus lipolytic enzymes

are available, in this study several culture conditions were explored to verify the functional

expression of lipolytic enzymes from this fungus. Lipase production was verified in different

conditions and the produced enzymes identified and characterized. Selected enzymes were

further studied by means of an in silico analysis and molecular characterization. Based on sub-

strate specificity, one of the enzymes was classified as true lipase. Capability to improve dye-

ability of wool was tested, demonstrating a possible application in the textile field.

Materials and methods

Materials

Reagents were purchased from Sigma-Aldrich Corp. (St. Louis, MO). The expression vector

pJGGαKR was purchased from Biogrammatics, Ltd (Las Palmas Dr, Carlsbad, CA, USA).

DNA restriction and modifying enzymes were supplied by Promega (Madison, WI, USA).

Culture media were bought from BD Difco (Becton Drive, Franklin Lakes, NJ USA).

P. ostreatus culture conditions

The basidiomycete fungus used in this study was P. ostreatus (Jacq.:Fr.) Kummer (type: Flor-

ida) (ATCC MYA-2306) from ATCC, the Global Bioresource Centre. The fungus was main-

tained through periodic transfer at 4˚C on PDY broth (24 g/L potato dextrose and 5g/L yeast

extract).

To detect lipase activity on chromogenic plates, fungus mycelium (a 5 mm diameter agar

plug from the edge of a 7 day old agar culture) was grown on PDY agar plates (diameter 100

mm) supplemented with 1% olive oil, 1% phenol red and 1% CaCl2, and incubated in the dark

for 4 days at 28˚C and checked for the development of yellowish halo indicating the presence

of lipolytic activity. The effect of the following carbon sources on lipase secretion was evalu-

ated: olive oil (0.1–1%), Olive Mill Wastewater (OMW) (1–10%), glycerol (0.1–1%), glucose

(5–10 g/L).

P. ostreatus pre-cultures were prepared as follows: 250 Erlenmeyer flasks containing 75mL

of PDY broth. Flasks were maintained in continuous agitation at 125 rpm and 28˚C in com-

plete darkness. After 5 days, the entire culture was homogenized by Waring Blender 7011HS1

(3 flashes of 3 sec at maximum rpm) and inoculated in a 1:10 ratio in PDY broth added with
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the carbon sources allowing lipase production, at the lowest concentrations: 1% olive oil, 5%

OMW, 10 g/L glucose.

Lipase assay

Lipase activity was determined spectrophotometrically (UVIKON 922 UV/Vis Spectropho-

tometer, BioTek Instruments) using p-nitrophenyl decanoate as substrate. The p-nitrophenyl

decanoate was dissolved in isopropanol at a concentration of 10 mM. The assay was carried in

50 mM Tris-HCl (pH 8.0) with 0.2 mM the p-nitrophenyl decanoate. The activity was assayed

by detecting the released product, p-nitrophenol, at 405 nm (ε405 = 3,390 M−1cm−1).

Polyacrylamide gel electrophoresis (PAGE)

Native PAGE was performed at alkaline pH. The separating and stacking gels contained,

respectively, 9% and 4% acrylamide and 50 mM Tris-HCl (pH 9.5) and 18 mM Tris-HCl (pH

7.5) as buffers. The electrode reservoir solution contained 25 mM Tris and 190 mM glycine

(pH 8.4). After electrophoresis the gel was rinsed in dH2O and in 20 mM Tris-HCl (pH 8).

Visualization of the bands was achieved by overlapping to the gel a thin layer of polymerized

agarose containing 1% olive oil, 1% phenol red, 1% CaCl2.

The purity of the sample and the Mw of the protein were verified by 15% SDS-PAGE,

stained with Coomassie brilliant blue R-250. The molecular weight standard used was PageRu-

ler™ Plus Prestained Protein Ladder (200–10 kDa) from ThermoFisher Scientific.

Protein identification

Proteins were identified by standard proteomic strategies on gel bands exhibiting enzymatic

activity, following the procedures as already reported [20]. Briefly, bands corresponding to

active proteins were excised from the gel and repeatedly washed with acetonitrile and 0.1 M

ammonium bicarbonate. Cysteines were reduced with 10 mM dithiothreitol (DTT) for 45 min

at 56˚C and alkylated by incubation in 5mM iodoacetamide for 15 min at room temperature

in the dark. Enzymatic digestion was carried out with trypsin (12.5 ng/μL) in 50mM ammo-

nium bicarbonate buffer, pH 8.5, at 4˚C for 2h. a new aliquot of buffer solution with trypsin

was added and the sample incubated for 18h at 37˚C. Peptides were extracted with 0.1% (v/v)

formic acid in 50% (v/v) acetonitrile at room temperature and lyophilized. Peptide mixtures

were analyzed by LC–MS/MS, on a HPLC–Chip LC system (Agilent 1200) connected to a

Q-TOF 6520 (Agilent Technologies). Lyophilized samples were resuspended in 10 μL of 0.1%

(v/v) formic acid. After loading, the peptide mixtures were concentrated and washed at 4 μL/

min in a 40 nL enrichment column with 0.2% (v/v) formic acid in 2% (v/v) acetonitrile. Frac-

tionation was carried out on a C-18 reverse phase column (75μm×43mm) at a flow rate of

0.4μL/min with a linear gradient of eluent B (95% v/v acetonitrile and 0.2% v/v formic acid) in

eluent A (2% v/v acetonitrile and 0.1% v/v formic acid) from 7% to 80% in 51 min. Mass spec-

trometry analyses were performed using data dependent acquisition MS scans (mass range

300–2400m/z), followed by MS/MS scans (mass range 100–2000m/z) of the 4 most intense

ions of a chromatographic peak. Raw data from LC–MS/MS were converted to m/z data, and

searched against the PleosPC15 database available at the Joint Genome Institute0s website

(http://genome.jgi-psf.org/PleosPC15_2) using the licensed version of Mascot 2.1 (Matrix

Science).

Pleurotus ostreatus lipases
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Bioinformatics analysis

Protein sequences were aligned with those available in the GenBank database [21] using the

Blast software at the National Centre of Biotechnology Information website (http://www.

ncbi.nlm.nih.gov) [22]. The 3D structure models were built with Phyre2 program [23]. N-

glycosylation sites were identified with NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/

NetNGlyc/).

A Neighbour Joining tree was constructed using MEGA 7.0 software [24] based on the

alignment of PleoLip241 and PleoLip369 protein sequences with ClustalW using default set-

tings for multiple sequence alignments.

Recombinant expression in P. pastoris

The BG-10 Pichia pastoris strain (BioGrammatics Ltd.) was used for the heterologous expres-

sion and was propagated in YPDS medium (10 g/L yeast extract; 20 g/L bacto tryptone; 20 g/L

glucose; 182.2 g/L sorbitol).

PleoLip241 and PleoLip369 coding genes, excluding the signal peptide regions, were opti-

mized according to P. pastoris codon usage and synthesized (Thermo Fischer Scientific,

Waltham, Massachusetts, USA). Genes were hydrolyzed with BsaI and ligated into the corre-

sponding site of the pJGGαkR vector in-frame with the α-factor signal peptide under the con-

trol of the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter, yielding

the recombinant pJGGαKR /PleoLip241 and pJGGαKR /PleoLip369 plasmids. Both plasmids

were linearized by BsiWI and transformed into P. pastoris BG10 by electroporation, as already

reported [25].

Tributyrin agar plates (5 g/L peptone; 3 g/L yeast extract; 0.1% tributyrin; 20 g/L agar, pH

6.0 [26]) were used to identify the highest-producing P. pastoris clones after the transforma-

tions with pJGGαKR /PleoLip241 and pJGGαKR /PleoLip369 constructs. Plates were incu-

bated upside down for 5 days at 28˚C and checked for the appearance of a clear halo. Positive

clones were inoculated in liquid media, and daily assayed for cell density and secreted lipase

activity.

Selected recombinant clones were inoculated in 50 mL BMGY medium (13 g/L yeast

nitrogen base with ammonium sulfate without amminoacids; 10 g/L yeast extract; 20 g/L pep-

tone; 100 mM potassium phosphate, pH 6.0; 4x10-4 g/L biotin; 1% glycerol) in a 250 mL baf-

fled shaken flask. This preculture was grown overnight at 28˚C on a rotary shaker (250 rpm),

then a volume of suspension sufficient to reach a final OD600 value of 1.0 was used to inocu-

late 1 L shaken flasks containing 250 mL of BMGY medium. Cells were grown on a rotary

shaker (250 rpm) at 28˚C. YP (10 g/L Yeast extract, and 20 g/L peptone) broths added with

different carbon sources (10 g/L glucose, 1% glycerol, 2% oleic acid, 2% palm oil) were tested

as alternative growth media. The supernatant was daily recovered and assayed for lipase

production.

Protein purification

After the growth, the cells were harvested by centrifugation at 8,000 g at 4˚C for 15 min. The

sample was concentrated and dialysed on T-Series TFF Cassettes system (10 KDa cutoff mem-

brane) (PALL Corporation). The samples dialysed in 50 mM Tris-HCl pH 7 were loaded on

CM Sepharose FF column (GE Healthcare) previously equilibrated in the same buffer. The

proteins were eluted with a NaCl gradient (0 to 1 M NaCl) in the same buffer.

Pleurotus ostreatus lipases
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Recombinant protein characterization

Effect of pH and temperature on lipase activity and stability. The optimal pH of lipase

activity was determined using p-nitrophenyl decanoate in the range of 2 to 12 by using differ-

ent pH buffer solutions (McIlvaine buffer, pH 2–8; 50 mM Tris-HCl, pH 8–10; sodium car-

bonate, pH 10–12) at room temperature (25˚C). The optimal temperature of the enzyme

activity was evaluated in the range 30˚ - 60˚C in 50 mM Tris-HCl buffer, pH 8.

pH stability was assessed by incubating the enzyme at the same pHs (2–12). Lipase thermo-

stability was determined by incubating the enzyme in the temperature range 30–60˚C.

All the measurements were made in triplicate.

Substrate specificity. p-nitrophenyl esters containing acyl chains with different length

(Acetate, Butyrate, Valerate, Octanoate, Decanoate, Dodecanoate, Myristate, Palmitate, Stea-

rate) were used to determine the substrate specificity. The assays were carried out in standard

conditions (50 mM Tris-HCl pH 8, 25˚C). All the measurements were made in triplicate.

Effect of metal ions, detergents and organic solvents. The effect of metal ions, solvents

and detergents on PleoLip241 and PleoLip369 activities after incubation of 4 hours at 25˚C

was measured. The assays were carried out in standard conditions (50 mM Tris- HCl pH 8,

25˚C). All the measurements were made in triplicate.

Kinetic parameters determination. Kinetic parameters were measured at pH 8 using

p-nitrophenyl esters in the range 0.001–1 mM. Kinetic parameters were determined by a non-

linear regression curve using GraphPad Prism version 7.00 for Windows, GraphPad Software

(http://www.graphpad.com).

Wool dyeing

Twenty mg of pure new wool were treated with 3U of PleoLip241 in 50 mM Tris-HCl pH 8.

The reaction mixture was incubated for 2 hours at 40˚C in shaking conditions (100 rpm). The

untreated wool was used as control. After treatment, treated and untreated wool were dyed

using 10 mM of the commercial dye Direct Blue 71. Dyeing was performed at 60˚C for 1 hour

in shaking conditions (100 rpm). After the dyeing, the wool was squeezed and the absorbance

spectrum of the colouration bath was analysed using an UVIKON 922 UV/Vis Spectropho-

tometer (BioTek Instruments). The percentage of the dye remaining in the colouration bath

was calculated measuring the Abs594 nm of the colouration bath before and after the wool

dyeing.

Results and discussion

P. ostreatus lipases

An analysis of the P. ostreatus genome searching for lipolytic coding genes, revealed the pres-

ence of 53 putative lipase and 34 putative carboxylesterase coding-genes, with five genes in

common between the two groups. Considering that all these genes are postulated to be lipo-

lytic enzymes based on automated annotation, and no biochemical or physiological data are

available so far, in this study a functional approach was applied to identify lipases from

P. ostreatus. With the aim to stimulate lipase production from P. ostreatus and characterise the

extracellular enzymes, the fungus was grown in the presence of different carbon sources (olive

oil, OMW, glycerol and glucose) (S1 Table). The different conditions were analysed by a chro-

mogenic screening on plate, using olive oil as substrate [27]. The choice of this substrate was

aimed at selecting true lipases, such as lipolytic enzymes able to hydrolise acyl glycerols with

fatty acid chain lengths of more than C10. All carbon sources, except glycerol, led to the secre-

tion of active lipases. Time course analysis of extracellular lipolytic enzyme production was

Pleurotus ostreatus lipases
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conducted in selected conditions (1% olive oil, 5% OMW, 10 g/L glucose) (Fig 1). Production

profiles in the presence of 5% v/v OMW and 10 g/L glucose were comparable and higher than

that observed in the presence of 1% olive oil. A maximum production of about 30 U/L in five

days was obtained in the best growth conditions. The obtained value is in the same range of

other reports [15]. Proteins secreted in the presence of OMW and glucose were analysed

through native PAGE with the aim to verify the number of lipases secreted (Fig 2a). In the

presence of OMW only an active lipase band was detectable, while two active lipases were

detected in the presence of glucose. Protein bands exhibiting enzymatic activity were identified

by LC-MSMS analysis searching the annotated P. ostreatus genome. Identified proteins are

reported in Fig 2b. It is worth to note that in these two selected conditions at least 4 putative

lipase coding genes were expressed with a pattern depending on the culture conditions: Pleo-
Lip241, PleoLip369, PleoLip103 and PleoLip104. Two of the four identified proteins (PleoLip241

and PleoLip369), expressed in both analysed conditions, were chosen for further studies, such

as an in silico analysis and their molecular characterization by recombinant expression.

Bioinformatic analysis

The sequences coding for PleoLip241 (2,327 bp long) and PleoLip369 (2,213 bp long) display a

52.6% of identity and are interrupted by twelve and eleven introns, respectively. All the

Fig 1. Time course activity. Extracellular lipases produced by P.ostreatus in different culture conditions. All

experiments have been conducted in triplicate. Standard deviations among three replicates were less than

5%.

https://doi.org/10.1371/journal.pone.0185377.g001

Fig 2. Secreted lipases from P. ostreatus. (a) Native PAGE of the extracellular proteins; (b) Protein identification.

https://doi.org/10.1371/journal.pone.0185377.g002
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splicing junctions of introns adhere to the GT-AG rule and most of the internal lariat sites con-

form to the consensus CTRAY [28]. The intron size ranges from 48 to 60 bp, similarly to most

of the fungal introns [29]. A common gene structure is shared between the two genes, as dis-

played in the Fig 3a.

The promoter regions extending 1500 bp upstream of the ATG were searched for consensus

sequences: fatty acid responsive elements FARE (CCTCGG) [30]; heat shock elements (HSE,

NGAAN) [31]; NIT2 binding site (TATCT) [32] putative response elements PRE (ATATC

and TGGGT motifs) [33]; cAMP-response elements (CGTCA and TGACG-motifs) [34,35];

O2-site (GATAA) [36]; Cre-A-binding site (GCGGGG) [37]; and stress-responsive elements

(STRE, CCCCT) [38]. Several putative response elements were identified, differentially distrib-

uted along the promoter sequences (Fig 3b). STRE, NIT2 and O2-site elements were found in

both promoter sequences. In PleoLip369, a free fatty acid element (FARE) and a high number

of HSE elements were also identified.

Fig 3. Bioinformatic analysis of PleoLip241 and PleoLip369. (a) Gene structure of coding sequences.

Red boxes exons, black boxes introns. The sequence coding for the pentapeptide (G-X-S-X-G) and for the

three aminoacids of the catalytic triad are shown in the picture: (black diamond) Ser, (black star) Asp, (black

circle) His; (b) Distribution of putative cis-acting elements in the promoter regions, around 1500 bp upstream

of the start codons: TATA box; CAAT box; GC box; (black square) FARE, (black vertical bar) HSE; (black

closed parenthesis) NIT2; (upside black triangle) STRE; (black triangle) MRE; (black circle) O2-site; (white

circle) PRE; (black rectangle) TGACG-motif; (black cross) CGTCA-motif; (c) Neighbour Joining tree of protein

sequences. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. All positions containing alignment gaps and missing data were

eliminated only in pairwise sequence comparisons (pair wise deletion option). Phylogenetic analyses were

conducted in MEGA 7.0 [24]. P. ostreatus lipases are highlighted in bold.

https://doi.org/10.1371/journal.pone.0185377.g003
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PleoLip241 and PleoLip369 proteins display 58.9% of sequence identity and are closely

related to other microbial lipases. PleoLip241 shows the highest identity with a lipase from

Pleurotus eryngii (97.4%), whereas PleoLip369 with a lipase from Hypsizygus marmoreus
(53%).

The phylogenetic positioning of PleoLip241 and PleoLip369 is shown in Fig 3c. Based on

this Neighbor Joining (NJ) tree, PleoLip241 and PleoLip369 fall in different clusters.

A multiple alignment, with lipases whose 3D structures have been determined and with

lipases showing the highest identity with the new Pleo-lipases, allowed to identify the residues

of the catalytic triad (Ser, Asp, His) and of the conserved pentapeptide (G-X-S-X-G) [3]. In the

case of PleoLip241 the conserved residues of the active site are Ser273, Asp403, His520; with

GQSAG as pentapeptide. In the case of PleoLip369 the catalytic triad is Ser266, Asp394, His512

and the conserved pentapeptide GESAG (S1 Fig). Four potential N-glycosylation sites can be

identified in PleoLip241 (Asn-132, Asn-360, Asn-396, Asn-521) and six in PleoLip369 (Asn-

24, Asn-31, Asn-128, Asn-342, Asn-366, Asn-390).

Recombinant production of PleoLip 241 and PleoLip369

PleoLip 241 and PleoLip369 were expressed in the yeast P. pastoris under the control of the

constitutive GAP promoter. Both proteins were found to be secreted in active form in the

extracellular broth in the different culture conditions tested. The best results were obtained

growing the recombinant yeasts in BMGY at 28˚C for both proteins. PleoLip241 production

reached a maximum of 4000 U/L, whereas a maximum of 700 U/L was obtained for Pleo-

Lip369 after 9 days of growth. Both production levels are very interesting if compared with

those reported for the recombinant expression of other basidiomycete lipases. Krugener and

co-authors performed a recombinant expression in Escherichia coli of a lipase from Pleurotus
sapidus achieving a production of 116 U/L [9]. The recombinant expression in P. pastoris of a

lipase from Bjerkandera adusta led to a production of about 40 U/L [39].

PleoLip 241 and PleoLip369 enzymes were purified to homogeneity (S2 Fig) through an

ultrafiltration step followed by a cationic exchange chromatography.

Molecular characterization of recombinant lipases

Effect of pH and temperature. Activity of both recombinant enzymes was tested in the

pH range 2–12. Both enzymes were active between pH 6 and 9, with a maximum of activity at

pH 7 (Fig 4a). Enzyme stability was assayed in the pH range 6–9 (Table 1). PleoLip241 showed

a higher stability at all pH values in comparison with PleoLip369. Both proteins exhibited their

optimal stability at pH 8.

Fig 4. Effect of pH (a) and temperature (b) on PleoLip241 and PleoLip369 activities. The highest value of

activity is considered as 100%. Standard deviations among three replicates were less than 5%.

https://doi.org/10.1371/journal.pone.0185377.g004
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The effect of temperature on the activity of both purified lipases was assessed in the range

30–60˚C (Fig 4b). The two lipases retained the same activity level at 30˚, 40˚C and 50˚C.

However, while PleoLip241 maintained 100% activity also at 60˚C, PleoLip369 activity was

almost halved. Lipase stability was investigated in the same temperature range, and also at 4˚C

to assess protein storage stability (Table 1). Both enzymes were stable at 4˚C with a t1/2 of

about 40 days. PleuLip241 was found to be more stable than PleuLip369 at all the tested

temperatures.

Effect of metal ions, detergents and organic solvents. The enzymatic activity of both

lipases was tested in the presence of several ions, detergents and organic solvents (Table 2).

PleoLip241 confirmed its higher stability respect to PleoLip369 in all the tested conditions.

Table 1. pH stability and thermostability of PleoLip241 and PleoLip369. Standard deviations were less than 5%.

t ½ (days) t ½ (days)

pH PleoLip241 PleoLip369 T (˚C) PleoLip241 PleoLip369

6 4 3 4 45 41

7 21 9 30 30 21

8 30 21 40 30 18

9 4 1 50 1 1

60 0.04 0.04

https://doi.org/10.1371/journal.pone.0185377.t001

Table 2. Effect of metal ions, solvents and detergents on PleoLip241 and PleoLip369 activities. Stan-

dard deviations were less than 5%.

Residual activity (100%)

PleoLip241 PleoLip369

Metal ions 1 mM 10 mM 1 mM 10 mM

NaCl 102 96 100 20

MgCl2 92 91 88 15

CaCl2 101 84 98 6

ZnCl2 83 37 86 0

KCl 88 83 55 7

CuSO4 50 0 35 0

FeSO4 50 20 27 0

MnCl2 100 95 77 18

Solvents 10% 20% 10% 20%

Ethanol 70 70 34 —

Glycerol 81 68 55 52

Aceton 45 40 20 —

Methanol 70 75 40 —

Methylacetate 65 50 — —

t-Buthanol 80 65 62 35

Ethyl acetate 63 72 45 22

Detergents 1% 1%

Tween20 0 0

Tween 80 18 0

Triton X100 135 115

SDS 0 0

https://doi.org/10.1371/journal.pone.0185377.t002
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The presence of Cu2+ and Fe2+ impaired the activity of both enzymes, conversely, an activ-

ity enhancement by these metals was reported by different authors [40,41].

In the presence of Tween 20, Tween 80 and SDS, lipase activity of both enzymes were

remarkably inhibited. Conversely, Triton X-100 seemed to stabilize and improve both lipase

activities, on the other hand examples of lipases inhibited by this detergent have been reported

in the literature [42].

Substrate specificity. Substrate specificity of both enzymes was assessed using substrates

with different acyl chain length. PleoLip241 preferentially hydrolyzed long chains substrates

with the following order C10>C14>C12>C16>C18�C8, whereas PleoLip369 showed a nar-

rower substrate specificity than PleoLip241 with preference towards C10 (Fig 5a). Based on

these results, PleoLip241 can be classified as a true lipase. With the aim to understand the

molecular reasons of the different substrate specificity displayed by the two enzymes, homol-

ogy models of the two proteins were built. The modelled structures of both enzymes display

the common α/β hydrolase fold of lipases and carboxylesterases (Fig 5b). Overlapping of pro-

tein models highlights an extra loop obstructing the substrate pocket accessibility in Pleo-

Lip369, probably responsible of its inability to hydrolize long chain substrates.

Kinetic parameters. Lipase kinetic parameters were assessed using their corresponding

preferred substrates, i.e. Decanoate, Dodecanoate, Myristate and Palmitate for PleoLip241,

and Octanoate, Decanoate, and Dodecanoate for PleoLip369 (Table 3). Both enzymes dis-

played very high affinity towards the tested substrates in comparison with other reported

Fig 5. Substrate specificity of PleoLip241 and PleoLip369. (a) The specific activity of each lipase is

reported as percentage of their respective activity towards the standard substrate (PNP-Decanoate).

Standard deviations were less than 5%. (b) Overlapping of 3D models of PleoLip241 (cyan) and of

PleoLip369 (green). Residues of the catalytic triad are displayed as sticks (Serine in red, Histidine in magenta,

Glutammic acid in blue). The close-up highlights the loop (shown in blue) obstructing substrate pocket in

PleoLip369. The corresponding region in PleoLip241 is shown in orange. Images were elaborated with PyMol.

https://doi.org/10.1371/journal.pone.0185377.g005
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lipases [43–46]. PleoLip241 displayed a higher affinity and turnover towards both C10 and

C12 acylic substrates respect to PleoLip369.

Effect of lipase pretreatment on the dyeability of wool

Considering the superior performances of PleoLip241 in terms of stability, specificity for long

chain substrates and also the achieved production level, this enzyme was tested for its effect in

improving wool dyeability. As a fact, wool displays on its surface a lipid layer that represents a

hydrophobic barrier for dye uptake during the industrial process of colouring [47]. A lipase

treatment can be a mild and eco-friendly alternative respect to the currently applied chemical

methods affecting wool properties, and leading to an increase in environmental pollution.

Pieces of pure new wool were treated with recombinant PleoLip241, and then dyed with a

commercial dye. The dye remaining in the colouration bath after the dyeing process was mea-

sured. Comparison between the dyeing process of the untreated and the treated wool, revealed

that a reduced amount of dye was found in the colouration bath of the lipase treated wool

(55%) respect to the amount of dye found after colouration of the untreated sample (86%). It is

possible to correlate this result with an increase of dyeability of wool after treatment with

PleoLip241.

Conclusions

A mining approach of the P. ostreatus genome revealed the presence of 53 putative lipase and

34 putative carboxylesterase coding-genes. Following a functional strategy, four of them were

found to be differently expressed by P. ostreatus in the tested growth conditions. Two of the

four identified proteins (PleoLip241 and PleoLip369), expressed in both tested conditions,

were chosen for recombinant expression in P. pastoris. Despite their sequence similarity

(58.9%), these enzymes exhibited dissimilar stability in all the investigated conditions and dif-

ferent substrate specificity. Indeed, by phylogenetic analysis the two proteins fall in different

clusters.

Functional data allowed classifying PleoLip241 as true lipase, despite the automated annota-

tion collocated it within the carboxylesterase family.

PleoLip241 was used to remove the hydrophobic layer from wool surface in order to

improve its dyeability. The obtained results about wool dyeing encouraged the future exploita-

tion of PleoLip241 in this field. As a fact, lipases can be applied not only to improve dyeability,

but also to promote the uptake of different chemical compounds, such as anti-static, anti-per-

spirant or anti-microbial, in order to develop smart textiles.

Supporting information

S1 Table. Growth media conditions for extracellular lipase induction. The conditions

that induce the production of extracellular lipase after five growth days are reported. All

Table 3. Kinetic parameters of the recombinant lipases.

PleoLip241 PleoLip369

Substrate KM (μmol/L) Kcat (min-1) KM (μmol/L) Kcat (min-1)

pNP-C8 nd nd 510 ± 60 0.11 ± 0.01

pNP-C10 30 ± 5 2.9 ± 0.4 130 ± 20 0.42 ± 0.05

pNP-C12 150 ± 6 1.6 ± 0.1 652 ± 75 0.21 ±0.02

pNP-C14 85 ± 4 1.2 ± 0.1 nd nd

pNP-C16 350 ± 38 0.9 ± 0.1 nd nd

https://doi.org/10.1371/journal.pone.0185377.t003
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experiments have been conducted in triplicate.

(DOCX)

S1 Fig. Multiple alignment among between lipase coding sequences from P. ostreatus and

sequences of lipases from Hypsizygus marmoreus and from Pleurotus eryngii. In the grey

box the conserved pentapeptide is displayed. The red arrows indicate the three aminoacids of

catalytic triade.

(DOCX)

S2 Fig. SDS-PAGE of recombinant lipases. Lane 1: Protein ladder; Lane 2: PleoLip369 crude

extract; Lane 3: PleoLip241 crude extract; Lane 4: purified PleoLip369; Lane 5: purified Pleo-

Lip241.

(DOCX)
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