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Abstract The goal of this study was to compare significant
SNP selection approaches in the context of complex traits
based on SNP estimates obtained by models: a model fitting
a single SNP (M1), a model fitting a single SNP and a random
polygenic effect (M2), the nonparametric CAR score (M3), a
SNP-BLUP model with random effects of all SNPs fitted si-
multaneously (M4). There were 46,267 SNPs tested in a pop-
ulation of 2601Holstein Friesian bulls, four traits (milk and fat
yields, somatic cell score, non-return rate for heifers) were
considered. The numbers of SNPs selected as significant dif-
fered among models. M1 selected a very large number of
SNPs, except for a NRH in which no SNPs were significant.
M2 andM3 both selected similar and low number of SNPs for
each trait. M4 selected more SNPs than M2 and M3. Consid-
ering linkage disequilibrium between SNPs, for MY M2 and
M3 selected SNPs more highly correlated with each other than
in the case of M4, while for FY M3 selection contained more
correlated SNPs than M2 and M4. In conclusion, if the re-
search interest is to identify SNPs not only with strong, but
also with moderate effects on a complex trait a multiple–SNP
model is recommended. Such models are capable of account-
ing for at least a part of linkage disequilibrium between SNPs
through the design matrix of SNP effects. Functional annota-
tion of SNPs significant in M4 reveals good correspondence

between selected polymorphisms and functional information
as well as with QTL mapping results.
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Introduction

For many years genome-wide association studies (GWAS)
have been a useful tool for detecting genetic variants associ-
ated with traits in human genetics (Visscher et al. 2012). With
the advancement of genotyping technology high-density sin-
gle nucleotide polymorphism (SNP) platforms have also been
developed for other species including livestock. A whole
bunch of statistical models have been applied to perform
GWAS based on SNP chips. These vary from models where
each SNP is considered individually to models with effects of
all the available SNPs fitted simultaneously. However, the
major drawback of interpreting GWAS results is the optimal
selection of polymorphisms which are to be claimed as signif-
icantly associated with the analyzed trait and poor repeatabil-
ity of results across methods and data sets. This problem is
especially important when analyzing traits with a complex
mode of inheritance (summarized by Visscher et al. 2012).

The variety of GWAS models applied to complex traits
covers linear regression, penalized regression approaches with
various shrinkage priors for SNP effects, like the least absolute
shrinkage and selection operator regression (LASSO) intro-
duced by Tibshirani (1996) (e.g., applied by Wu et al. 2009),
the elastic net introduced by Zou and Hastie (2005) (e.g.,
applied by Do et al. 2011), ridge regression introduced by
Hoerl and Kennard (1970) (e.g., applied and extended by
Zhan and Xu 2012), normal exponential gamma distribution
proposed by Hoggart et al. (2008), or by incorporating the
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functional information into SNP selection through biological
pathways (Braun and Buetow 2011).

Our study was focused on the comparison of significant
SNP selection approaches in the context of complex traits.
Significance of SNPs selected based on estimates obtained
from a mixed model routinely used in genomic evaluation of
dairy cattle in Poland was compared to three single SNP
models. In particular, the genomic selection model, which
considers all polymorphisms simultaneously by applying
shrinkage on SNP estimates through fitting a normal distribu-
tion with a predefined variance, is compared with (i) a linear
model with a fixed effect of a single SNP which accounts
neither for SNP intercorrelation, nor for family relationships
(ii) a linear mixed model with a fixed, single SNP effect and a
random additive polygenic effect for capturing the family re-
lationships, and (iii) the CAR score regression proposed by
Zuber and Strimmer (2011), which represents a fully nonpara-
metric approach. Generally, we were interested in quantifying
the differences between models in defining significant SNPs.
Our particular focus though was on assessing the validity of
the genomic selection model for GWAS purposes, since such
a model is routinely evaluated on large and very informative
data sets in many countries and, besides selection purposes,
could be a potential source of information on single gene
effects on traits undergoing selection.

Materials and methods

Data set

The material of our study consists of 2601 Polish Holstein-
Friesian bulls genotyped with the Illumina BovineSNP50
BeadChip, which consists of 54,001 SNPs (version 1) and
54,609 SNPs (version 2). The applied SNP selection criteria
comprised polymorphism, expressed by the minor allele fre-
quency (MAF), with the minimum MAF of 0.01, and techni-
cal quality of a SNP expressed by the minimum call rate of
90 % within the analyzed sample of bulls. After quality con-
trol 46,267 SNPs were selected for further analysis.

Four traits undergoing a complex mode of inheritance
were considered in the study: somatic cell score (SCS)
representing a trait with Bpure^ polygenic mode of inheri-
tance, milk (MY) and fat (FY) yields representing traits with
a polygenic mode of inheritance enhanced by single genes
with large effects, and non-return rate for heifers (NRH) as a
trait with a very strong environmental component expressed
by heritability of 0.02. Deregressed proofs of bulls were
used as pseudophenotypes. Deregression, which was per-
formed in order to remove ancestral information from the
conventional breeding values of bulls, was based on a meth-
od proposed by Jairath et al. (1998). The corresponding
conventional breeding values were estimated based on a

random regression test day model for MY, FY, and SCS
(Strabel and Jamrozik 2006) and based on a lactation model
for NRH (Jagusiak and Żarnecki 2006) using phenotypic
information corresponding to the routing national evaluation
from April 2012. For each trait 2588 (SCS), 2601 (MY and
FY), and 2524 (NRH) records were available.

Models for SNP effect estimation

The SNP effects were estimated by four different models.
Single SNP models comprising (M1) y=μ+Xβ+ε and
(M2) y=μ+Xβ+Z1α+ε were solved using the ASReml3
software (Gilmour et al. 2009). In the above models y repre-
sents a vector of deregressed breeding values forMY, FY, SCS
or NRH; β denotes a fixed SNP effect with a design matrix
X∈{−1,0,1} for a homozygous, a heterozygous, and an alter-
native homozygous SNP genotype respectively; α denotes a
random polygenic effect of a bull with an incidence matrixZ1,

where α is distributed as N 0;Aσ̂2
α

� �
, withA being a relation-

ship matrix for bulls and σ̂2
α representing the estimate of total

additive genetic variance of a given trait calculated elsewhere
for the whole active population of Polish Holstein-Friesian
dairy cattle. The residual effects vector ε is distributed as
N(0,Dσε

2) whereD is a diagonal matrix weighted by the effec-
tive daughter contribution for each bull and σε

2 denotes a re-
sidual variance; μ denotes an overall mean. The CAR score
regression (M3) proposed by Zuber and Strimmer (2011) was
selected as the third model for its simplicity and computational
efficiency of variable ranking in linear regression based on the
Mahalanobis-decorrelation of the explanatory variables
representing a nonparametric approach. According to Zuber
and Strimmer (2011) this approach is very effective computa-
tionally and yields prediction errors as well as true and false
positive rates that compare favorably with other regression
techniques such as elastic net and boosting. The CAR scores
ωi, which were considered as the SNP selection criterion, are

defined as:ω ¼ P−1=2Pβy, where Pβy is the marginal correla-
tion vector between deregressed breeding values and SNPs, P
denotes shrinkage estimator given by: λId+(1−λ)Rempirical,

where λ is a shrinkage intensity and Rempirical is the empirical
non-regularized correlation matrix among SNP genotypes.
The CAR criterion was computed using an R package CARE.
The genomic selection model (M4) y=μ+Z2g+ε, equivalent
to the so called SNP-BLUP model, is routinely used for the
prediction of direct genomic breeding values for the Polish
Holstein-Friesian population (Szyda et al. 2011). Here Z2 is
a design matrix for SNP genotypes, which is parameterized as
−1, 0, or 1 for a homozygous, a heterozygous, and an alterna-
tive homozygous genotype respectively and g is a vector of
random additive SNP effects distributed defined as:

N 0; I σ̂2a
46267

� �
, with I being an identity matrix.

208 J Appl Genetics (2016) 57:207–213



The SNP effects in M1 were estimated by weighted least
squares with the effective number of daughters corresponding
to teach observation y used as a weighting variable. To estimate
β in M2 the objective function logfy(y|α,β,G)+logfα(α,G),

whereG ¼ Aσ̂2
α, was used. Differentiating it with respect to β

and α leads to the mixed model equations (Henderson 1984).
M3 is a model free procedure in which CAR scores are func-
tions of empirical SNP-pseudophenotype and SNP-SNP corre-
lations. The estimation of parameters of M4 was based on solv-
ing the corresponding mixed model equations using the itera-
tion on data technique applying the Gauss-Seidel algorithm
with residuals update (Legarra and Misztal 2008).

Significant SNP selection

In case of M1, M2, and M4 the Wald test was used to obtain
the nominal type I error corresponding to a standard normal
distribution. For single SNP models M1 and M2 the resulting
P values were subjected to multiple testing correction for the
number of SNP tested (N=46,267) via Bonferroni’s approach,
while for a multiple SNP model M4 a nominal P value was
used as a selection criterion. In M3 the null distribution of the

function of CAR scores t ¼ ω
ffiffiffiffiffiffiffiffi
1−κ
1−ω2

q
was used for obtaining

type I error rates, which follows the Student t distribution with
(κ−1) degrees of freedom estimated by the R package fdrtool
(Strimmer 2008). For all models SNPs were selected as sig-
nificant when P values associated with their estimates did not
exceed the 0.001 threshold.

Genomic annotation of SNPs was performed using
SNPchiMp (Nicolazzi et al. 2014) for the identification of
SNP positions corresponding to the UMD3.1 bovine genome
assembly and Variant Effect Predictor (McLaren et al. 2010)
for the identification of genomic positions of SNPs.

Results

The number of significant SNPs selected

The numbers of SNPs selected as significant by different
models are presented in Table 1. For MY, FY, and SCS the
simplest model M1 always selected a very large number of
SNPs ranging between 2242 (SCS) and 3398 (MY), widely

exceeding the number of SNPs selected by M2-M4. Although
models 2 and 3 markedly differ in modeling and hypothesis
testing assumptions, they both select a very similar and low
number of SNPs for each trait. The genomic selection model
M4 is intermediate in terms of the number of SNPs selected.

Except for M4, traits with different putative inheritance
modes resulted in different numbers of significant SNPs. For
MY and FY the largest numbers of SNPs were selected at
BTA14 — a chromosome harboring DGAT1 gene of high
effect on milk production traits. For SCS, a trait with a pure
polygenic mode of inheritance, a lower number of SNPs was
indicated as significant, with only four SNPs selected by M2.
For NRH, a trait with a very weak genetic component (as
compared to the environmental based variation) no SNPs were
identified by M1-M3. A very different pattern was observed
for M4. Since all polymorphisms’ effects are estimated simul-
taneously with the underlying normal distribution shrinkage,
the SNP selection procedure based on the 0.001 threshold
chooses 0.1 % of the most significant SNPs regardless of a
trait. As a consequence a very similar number of polymor-
phisms varying between 125 (NRH) and 182 (FY) for each
trait was selected. Since, based on the very large number of
SNPs selected, M1 does not seem to be a valid model for
GWAS on complex traits, in further result description and
discussion we confine ourselves to M2-M4.

Influence of SNP informativeness on SNP selection

No marked differences between models were observed re-
garding the information content, expressed by MAF, between
SNPs selected as significant byM2–M4. The averageMAF of
polymorphisms selected for MY by M2 amounted to 0.39, by
M3 to 0.30 and M4 to 0.36 and was even more similar for FY
with 0.37 (M2), 0.38 (M3) and 0.49 (M4). The average MAF
in group of SNPs common between all considering models is
0.40 for MYand 0.38 for FY. On the other hand, considering
MY, on average M2 and M3 selected SNPs which were more
highly correlated with each other than was the case for M4
since the average LD expressed by pairwise correlation be-
tween significant SNPs was equal to 0.18 and 0.17 forM2 and
M3, but only 0.08 for the genomic selection model. For FY,
the average LD of 0.11 among SNPs selected by M4 was also
lower from the corresponding values form M2 and M3 which
were equal to 0.17 and 0.21 respectively. The highest average
pairwise correlation was observed between significant SNPs
which were common for models M2 and M3.

Comparison of significant SNP sets between models

Figure 1 presents the percentage of SNPs significant between
M2 and M4. For production traits a relatively large propor-
tion of significant SNPs was common among all three
models making 24 SNPs common for MY and 41 SNPs

Table 1 The numbers of SNPs selected as significant

Trait M1 M2 M3 M4

Fat yield 2435 72 48 182

Milk yield 3398 66 78 153

Somatic cell score 2242 4 0 163

Non-return rate for heifers 0 0 0 125
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common for FY, while no common for all models polymor-
phisms were identified for SCS and NRH. Focusing on the
genomic selection model M4 as the reference it is evident
from Fig. 2 that more mutual SNPs existed between M4 and
M2 than between M4 and M3. In particular, in addition to
the polymorphisms common to all three models, the geno-
mic selection model had 12 and 11 additional SNPs in com-
mon with M2 for MY and FY respectively, but only one
SNP for MY mutual with M3. For MY there are four poly-
morphisms common for models M2 and M3.

Genomic SNP annotation

Genomic annotation was carried out for SNPs which were
selected as significant by all three modles, i.e., M2, M3,
and M3 (Table 2). Since M3 indicated no significant

polymorphisms for SCS and NRH for those traits no anno-
tation was considered. For FY 22 genes were marked by
significant SNPs common between models, while for MY a
lower number of eight genes was identified with six of
them also significant for FY. All genes are located on
BTA14 with varying distances from DGAT1 — a well
known candidate gene for milk production traits (Grisart
et al. 2002), ranging between 104,646 and 3,768,523 bp
(calculated as a distance between corresponding significant
SNP positions) (Fig. 3). Most of the SNPs are located
within genomic range of the gene, mainly within intronic
regions, but rs110323635 and rs41256919 lie in exons of
MAPK15 and MAF1 genes respectively.

Although some of the genes may represent spurious asso-
ciations arising through high LD to DGAT1, those which are
located in more distant regions of BTA14 are potential

Fig. 2 Genomic location of significant SNPs common between models

Fig. 1 The percentage of SNPs
significant between models
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candidate genes. Special attention is to be focused on EEF1D
which according to a recent study of Xie et al. (2014) in dairy
cattle exhibits significantly higher expression in mammary
gland as in other tissues.

Discussion

We observed that for complex traits approaches which model
the genetic component by a single SNP— here represented by

M1, which are very common and successful in GWAS
for disease traits, have methodological problems. Since
such models do not account for the polygenic back-
ground differentiating between SNPs in high LD, espe-
cially in the neighborhood of genes with strong effects is
problematic and the multiple testing correction is not
sufficient to remove the SNP effect upward bias due to
correlated SNPs. An intensive post-processing of SNP
estimates and/or corresponding P values regarding LD
is then required.

Table 2 Annotation of SNPs significant inM2,M3, andM4. Genes significant for bothMYand FYare marked in bold. For significant genes all SNPs
located within intron/exon regions are listed

Gene acronym Gene name Ensemble ID BTA SNP SNP annotation SNP position

Fat yield

FOXH1 Forkhead box H1 ENSBTAG00000004761 14 rs109146371 3390 bp upstream 1,651,311

CYHR1 Cysteine/histidine-rich 1 ENSBTAG00000035254 14 rs109968515 intron 1,675,278

VPS28 Homologous to vacuolar protein sorting 28 ENSBTAG00000026320 14 rs17870736 intron 1,696,470

DGAT1 Diacylglycerol O-acyltransferase 1 ENSBTAG00000026356 14 rs109421300 intron 1,801,116

MAF1 Homologous to RNA polymerase III-inhibiting protein ENSBTAG00000012242 14 rs41256919 exon –missense variant 1,923,292

SPATC1 Spermatogenesis and centriole associated 1 ENSBTAG00000026350 14 rs41629750 4472 bp upstream 2,002,873

PLEC Plectin ENSBTAG00000011922 14 rs109350371 460 bo upstream 2,054,457

MAPK15 Mitogen-activated protein kinase 15 ENSBTAG00000019864 14 rs110323635 exon –missense variant 2,239,085

EEF1D Elongation factor 1-delta ENSBTAG00000014643 14 rs109661298 intron 2,319,504

ZC3H3 Zinc finger CCCH-type containing 3 ENSBTAG00000021472 14 rs109617015 intron 2,386,688

RHPN1 Rhophilin, Rho GTPase binding protein 1 ENSBTAG00000002104 14 rs109529219 intron 2,468,020

Novel gene ENSBTAG00000003606 14 rs110199901 intron 2,524,432

LY6K Lymphocyte antigen 6 complex, locus K ENSBTAG00000000158 14 rs110174651 297 bp downstream 2,754,909

LY6D Lymphocyte antigen 6 complex, locus D ENSBTAG00000034498 14 rs110237430 978 bp downstream 2,803,998

LYPD2 LY6/PLAUR domain containing 2 ENSBTAG00000016210 14 rs109476486 2653 bp upstream 2,826,632

BAI1 Brain-specific angiogenesis inhibitor 1 ENSBTAG00000006385 14 rs109545018 intron 3,006,509

GPR20 G protein-coupled receptor 20 ENSBTAG00000015985 14 rs110411273 71 bp downstream 3,640,788

TSNARE1 t-SNARE domain containing 1 ENSBTAG00000009974 14 rs109875744
rs110888717
rs109295487

intron
intron
intron

3,078,843
3,117,493
3,137,184

PTK2 PTK2 protein tyrosine kinase 2 ENSBTAG00000009578 14 rs109670279
rs41624797
rs109131748
rs110185345

intron
intron
intron
intron

3,885,798
3,956,956
4,017,201
4,043,743

EIF2C2 Argonaute RISC catalytic component 2 ENSBTAG00000001579 14 rs109948273
rs41576704
rs108980964

intron
intron
intron

4,103,850
4,127,413
4,149,375

TRAPPC9 Trafficking protein particle complex 9 ENSBTAG00000013955 14 rs109807697
rs109248069
rs111018678
rs110017379
rs55617160
rs110805364

intron
intron
intron
intron
intron
intron

4,240,287
4,267,053
4,336,714
4,364,952
4,468,478
4,583,344

COL22A1 Collagen, type XXII, alpha 1 ENSBTAG00000015374 14 rs110444021
rs110351374

intron
intron

5,225,467
5,428,037

Milk yield

C8orf33 Chromosome 14 open reading frame 33 ENSBTAG00000000879 14 rs109752439 87 bp downstream 1,489,496

FAM135B Family with sequence similarity 135, member B ENSBTAG00000018218 14 rs110622450
rs109118650
rs110501942
rs109402117

intron
intron
intron
intron

5,428,037
5,462,752
5,494,654
5,569,639
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A possible alternative, which is non-intensive computa-
tionally, is to use a single SNP model with the genetic back-
ground described by an additive polygenic effect (like M2) or
a multiple–SNP without any assumptions regarding the inher-
itance mode (like M3). In our study M2 and M3 for MYand
for FY, above and beyond the M2-M3, also the genomic mod-
el (M4) selected a similar number of SNPs as the number 55
resulting from the estimator proposed by Hayes and Goddard
(2001) of the total number of genes influencing the variance of

production traits (M):M ¼ N ln 1−p
p

� �
, where p=1/2Ne. Note,

that here we used the estimated number of heterozygous QTL
segregating for production traits as N=10.73 (Hayes and
Goddard 2001) and the effective population size for dairy
cattle as Ne=103 (Qanbari et al. 2010).

However, if the research interest is to identify SNPs not
only with strong, but also with moderate effects on a complex
trait a multiple–SNP model – here represented by M4, is rec-
ommended. Such models are capable of accounting for at least
a part of LD between SNPs through the design matrix of SNP
effects. A fine tuning of SNP selection procedure is needed
based on the expected number of SNPs influencing the vari-
ability of a given trait, e.g., based on heritability estimates.

Recently, Wang et al. (2012) applied a genomic selection
model (single step GBLUP) for GWAS on complex traits
based on simulated data and found a good accuracy of predic-
tion of QTL effects through SNPs. As indicated in that study it
is important to realize that the selected SNPs do not necessar-
ily represent underlying genes and that a chromosomal region
in high LD (which is usually, but not always, equivalent to a
region in physical neighborhood of the SNP) should be con-
sidered in search for causal mutations. Comparing the average
LD of SNPs selected by single gene methods with the set
selected by the genomic selection model it is evident that the
latter is able to better deal with correlations between particular
SNPs which occur through LD. Moreover, as pointed out by
Dekkers (2012) a genomic selection model directly accounts
for the population structure, not only on an averaged genome-
wide level (through the additive polygenic covariance, as in-
corporated into M2), but also at a particular SNP sites
(through the design matrix of SNP genotypes, as incorporated
into M4). Another very important, practical advantage of
using the genomic selection model for GWAS is that in most
countries the model and underlying SNP effects are anyway
evaluated on large, informative data sets.
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